1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
# Owner(s): ["module: onnx"]
import contextlib
import dataclasses
import io
import unittest
from typing import AbstractSet, Tuple
import torch
from torch.onnx import errors
from torch.onnx._internal import diagnostics
from torch.onnx._internal.diagnostics import infra
from torch.testing._internal import common_utils
def _assert_has_diagnostics(
engine: infra.DiagnosticEngine,
rule_level_pairs: AbstractSet[Tuple[infra.Rule, infra.Level]],
):
sarif_log = engine.sarif_log()
unseen_pairs = {(rule.id, level.value) for rule, level in rule_level_pairs}
actual_results = []
for run in sarif_log.runs:
if run.results is None:
continue
for result in run.results:
id_level_pair = (result.rule_id, result.level)
unseen_pairs.discard(id_level_pair)
actual_results.append(id_level_pair)
if unseen_pairs:
raise AssertionError(
f"Expected diagnostic results of rule id and level pair {unseen_pairs} not found. "
f"Actual diagnostic results: {actual_results}"
)
@contextlib.contextmanager
def assert_all_diagnostics(
test_suite: unittest.TestCase,
engine: infra.DiagnosticEngine,
rule_level_pairs: AbstractSet[Tuple[infra.Rule, infra.Level]],
):
"""Context manager to assert that all diagnostics are emitted.
Usage:
with assert_all_diagnostics(
self,
diagnostics.engine,
{(rule, infra.Level.Error)},
):
torch.onnx.export(...)
Args:
test_suite: The test suite instance.
engine: The diagnostic engine.
rule_level_pairs: A set of rule and level pairs to assert.
Returns:
A context manager.
Raises:
AssertionError: If not all diagnostics are emitted.
"""
try:
yield
except errors.OnnxExporterError:
test_suite.assertIn(infra.Level.ERROR, {level for _, level in rule_level_pairs})
finally:
_assert_has_diagnostics(engine, rule_level_pairs)
def assert_diagnostic(
test_suite: unittest.TestCase,
engine: infra.DiagnosticEngine,
rule: infra.Rule,
level: infra.Level,
):
"""Context manager to assert that a diagnostic is emitted.
Usage:
with assert_diagnostic(
self,
diagnostics.engine,
rule,
infra.Level.Error,
):
torch.onnx.export(...)
Args:
test_suite: The test suite instance.
engine: The diagnostic engine.
rule: The rule to assert.
level: The level to assert.
Returns:
A context manager.
Raises:
AssertionError: If the diagnostic is not emitted.
"""
return assert_all_diagnostics(test_suite, engine, {(rule, level)})
class TestOnnxDiagnostics(common_utils.TestCase):
"""Test cases for diagnostics emitted by the ONNX export code."""
def setUp(self):
engine = diagnostics.engine
engine.clear()
super().setUp()
def test_assert_diagnostic_raises_when_diagnostic_not_found(self):
with self.assertRaises(AssertionError):
with assert_diagnostic(
self,
diagnostics.engine,
diagnostics.rules.node_missing_onnx_shape_inference,
diagnostics.levels.WARNING,
):
pass
def test_cpp_diagnose_emits_warning(self):
class CustomAdd(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
return x + y
@staticmethod
def symbolic(g, x, y):
return g.op("custom::CustomAdd", x, y)
class M(torch.nn.Module):
def forward(self, x):
return CustomAdd.apply(x, x)
with assert_diagnostic(
self,
diagnostics.engine,
diagnostics.rules.node_missing_onnx_shape_inference,
diagnostics.levels.WARNING,
):
# trigger warning for missing shape inference.
torch.onnx.export(M(), torch.randn(3, 4), io.BytesIO())
def test_py_diagnose_emits_error(self):
class M(torch.nn.Module):
def forward(self, x):
return torch.diagonal(x)
with assert_diagnostic(
self,
diagnostics.engine,
diagnostics.rules.operator_supported_in_newer_opset_version,
diagnostics.levels.ERROR,
):
# trigger error for operator unsupported until newer opset version.
torch.onnx.export(
M(),
torch.randn(3, 4),
io.BytesIO(),
opset_version=9,
)
def test_diagnostics_engine_records_diagnosis_reported_outside_of_export(
self,
):
sample_rule = diagnostics.rules.missing_custom_symbolic_function
sample_level = diagnostics.levels.ERROR
with assert_diagnostic(
self,
diagnostics.engine,
sample_rule,
sample_level,
):
diagnostics.context.diagnose(sample_rule, sample_level, ("foo",))
@dataclasses.dataclass
class _RuleCollectionForTest(infra.RuleCollection):
rule_without_message_args: infra.Rule = dataclasses.field(
default=infra.Rule(
"1",
"rule-without-message-args",
message_default_template="rule message",
)
)
class TestDiagnosticsInfra(common_utils.TestCase):
"""Test cases for diagnostics infra."""
def setUp(self):
self.engine = infra.DiagnosticEngine()
self.rules = _RuleCollectionForTest()
self.diagnostic_tool = infra.DiagnosticTool("test_tool", "1.0.0", self.rules)
with contextlib.ExitStack() as stack:
self.context = stack.enter_context(
self.engine.create_diagnostic_context(self.diagnostic_tool)
)
self.addCleanup(stack.pop_all().close)
return super().setUp()
def test_diagnose_raises_value_error_when_rule_not_supported(self):
rule_id = "0"
rule_name = "nonexistent-rule"
with self.assertRaisesRegex(
ValueError,
f"Rule '{rule_id}:{rule_name}' is not supported by this tool "
f"'{self.diagnostic_tool.name} {self.diagnostic_tool.version}'.",
):
self.context.diagnose(
infra.Rule(id=rule_id, name=rule_name, message_default_template=""),
infra.Level.WARNING,
)
def test_diagnostics_engine_records_diagnosis_reported_in_nested_contexts(
self,
):
with self.engine.create_diagnostic_context(self.diagnostic_tool) as context:
context.diagnose(self.rules.rule_without_message_args, infra.Level.WARNING)
sarif_log = self.engine.sarif_log()
self.assertEqual(len(sarif_log.runs), 2)
self.assertEqual(len(sarif_log.runs[0].results), 0)
self.assertEqual(len(sarif_log.runs[1].results), 1)
self.context.diagnose(self.rules.rule_without_message_args, infra.Level.ERROR)
sarif_log = self.engine.sarif_log()
self.assertEqual(len(sarif_log.runs), 2)
self.assertEqual(len(sarif_log.runs[0].results), 1)
self.assertEqual(len(sarif_log.runs[1].results), 1)
def test_diagnostics_engine_records_diagnosis_with_custom_rules(self):
custom_rules = infra.RuleCollection.custom_collection_from_list(
"CustomRuleCollection",
[
infra.Rule(
"1",
"custom-rule",
message_default_template="custom rule message",
),
infra.Rule(
"2",
"custom-rule-2",
message_default_template="custom rule message 2",
),
],
)
with self.engine.create_diagnostic_context(
tool=infra.DiagnosticTool(
name="custom_tool", version="1.0", rules=custom_rules
)
) as diagnostic_context:
with assert_all_diagnostics(
self,
self.engine,
{
(custom_rules.custom_rule, infra.Level.WARNING), # type: ignore[attr-defined]
(custom_rules.custom_rule_2, infra.Level.ERROR), # type: ignore[attr-defined]
},
):
diagnostic_context.diagnose(
custom_rules.custom_rule, infra.Level.WARNING # type: ignore[attr-defined]
)
diagnostic_context.diagnose(
custom_rules.custom_rule_2, infra.Level.ERROR # type: ignore[attr-defined]
)
def test_diagnostic_tool_raises_type_error_when_diagnostic_type_is_invalid(
self,
):
with self.assertRaisesRegex(
TypeError,
"Expected diagnostic_type to be a subclass of Diagnostic, but got",
):
_ = infra.DiagnosticTool(
"custom_tool",
"1.0",
self.rules,
diagnostic_type=int,
)
if __name__ == "__main__":
common_utils.run_tests()
|