1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
from torch import nn
from torch.nn.utils.rnn import PackedSequence
class LstmFlatteningResult(nn.LSTM):
def forward(self, input, *fargs, **fkwargs):
output, (hidden, cell) = nn.LSTM.forward(self, input, *fargs, **fkwargs)
return output, hidden, cell
class LstmFlatteningResultWithSeqLength(nn.Module):
def __init__(self, input_size, hidden_size, layers, bidirect, dropout, batch_first):
super().__init__()
self.batch_first = batch_first
self.inner_model = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=layers,
bidirectional=bidirect,
dropout=dropout,
batch_first=batch_first,
)
def forward(self, input: PackedSequence, hx=None):
output, (hidden, cell) = self.inner_model.forward(input, hx)
return output, hidden, cell
class LstmFlatteningResultWithoutSeqLength(nn.Module):
def __init__(self, input_size, hidden_size, layers, bidirect, dropout, batch_first):
super().__init__()
self.batch_first = batch_first
self.inner_model = nn.LSTM(
input_size=input_size,
hidden_size=hidden_size,
num_layers=layers,
bidirectional=bidirect,
dropout=dropout,
batch_first=batch_first,
)
def forward(self, input, hx=None):
output, (hidden, cell) = self.inner_model.forward(input, hx)
return output, hidden, cell
|