File: op_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (57 lines) | stat: -rw-r--r-- 1,275 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Owner(s): ["module: onnx"]

import torch
import torch.nn as nn


class DummyNet(nn.Module):
    def __init__(self, num_classes=1000):
        super().__init__()
        self.features = nn.Sequential(
            nn.LeakyReLU(0.02),
            nn.BatchNorm2d(3),
            nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False),
        )

    def forward(self, x):
        output = self.features(x)
        return output.view(-1, 1).squeeze(1)


class ConcatNet(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, inputs):
        return torch.cat(inputs, 1)


class PermuteNet(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input.permute(2, 3, 0, 1)


class PReluNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.features = nn.Sequential(
            nn.PReLU(3),
        )

    def forward(self, x):
        output = self.features(x)
        return output


class FakeQuantNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fake_quant = torch.ao.quantization.FakeQuantize()
        self.fake_quant.disable_observer()

    def forward(self, x):
        output = self.fake_quant(x)
        return output