1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
# The model is from here:
# https://github.com/pytorch/examples/blob/master/word_language_model/model.py
from typing import Optional, Tuple
import torch
import torch.nn as nn
from torch import Tensor
class RNNModel(nn.Module):
"""Container module with an encoder, a recurrent module, and a decoder."""
def __init__(
self,
rnn_type,
ntoken,
ninp,
nhid,
nlayers,
dropout=0.5,
tie_weights=False,
batchsize=2,
):
super().__init__()
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp)
if rnn_type in ["LSTM", "GRU"]:
self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
else:
try:
nonlinearity = {"RNN_TANH": "tanh", "RNN_RELU": "relu"}[rnn_type]
except KeyError:
raise ValueError(
"""An invalid option for `--model` was supplied,
options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']"""
) from None
self.rnn = nn.RNN(
ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout
)
self.decoder = nn.Linear(nhid, ntoken)
# Optionally tie weights as in:
# "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
# https://arxiv.org/abs/1608.05859
# and
# "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016)
# https://arxiv.org/abs/1611.01462
if tie_weights:
if nhid != ninp:
raise ValueError(
"When using the tied flag, nhid must be equal to emsize"
)
self.decoder.weight = self.encoder.weight
self.init_weights()
self.rnn_type = rnn_type
self.nhid = nhid
self.nlayers = nlayers
self.hidden = self.init_hidden(batchsize)
@staticmethod
def repackage_hidden(h):
"""Detach hidden states from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple([RNNModel.repackage_hidden(v) for v in h])
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.fill_(0)
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, input, hidden):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(
output.view(output.size(0) * output.size(1), output.size(2))
)
self.hidden = RNNModel.repackage_hidden(hidden)
return decoded.view(output.size(0), output.size(1), decoded.size(1))
def init_hidden(self, bsz):
weight = next(self.parameters()).data
if self.rnn_type == "LSTM":
return (
weight.new(self.nlayers, bsz, self.nhid).zero_(),
weight.new(self.nlayers, bsz, self.nhid).zero_(),
)
else:
return weight.new(self.nlayers, bsz, self.nhid).zero_()
class RNNModelWithTensorHidden(RNNModel):
"""Supports GRU scripting."""
@staticmethod
def repackage_hidden(h):
"""Detach hidden states from their history."""
return h.detach()
def forward(self, input: Tensor, hidden: Tensor):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(
output.view(output.size(0) * output.size(1), output.size(2))
)
self.hidden = RNNModelWithTensorHidden.repackage_hidden(hidden)
return decoded.view(output.size(0), output.size(1), decoded.size(1))
class RNNModelWithTupleHidden(RNNModel):
"""Supports LSTM scripting."""
@staticmethod
def repackage_hidden(h: Tuple[Tensor, Tensor]):
"""Detach hidden states from their history."""
return (h[0].detach(), h[1].detach())
def forward(self, input: Tensor, hidden: Optional[Tuple[Tensor, Tensor]] = None):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(
output.view(output.size(0) * output.size(1), output.size(2))
)
self.hidden = self.repackage_hidden(tuple(hidden))
return decoded.view(output.size(0), output.size(1), decoded.size(1))
|