File: test_autograd_funs.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (212 lines) | stat: -rw-r--r-- 6,649 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Owner(s): ["module: onnx"]

import unittest

import torch

from onnx_test_common import run_model_test
from torch.onnx import OperatorExportTypes
from torch.onnx._globals import GLOBALS
from torch.onnx.utils import _model_to_graph


class TestAutogradFuns(unittest.TestCase):
    opset_version = GLOBALS.export_onnx_opset_version
    keep_initializers_as_inputs = False
    onnx_shape_inference = True

    def test_single_output(self):
        class SingleOut(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                result = i.exp()
                result = result.log()
                ctx.save_for_backward(result)
                return result

            @staticmethod
            def backward(ctx, grad_output):
                (result,) = ctx.saved_tensors
                return grad_output * result

        class Caller(torch.nn.Module):
            def forward(self, input):
                result = input + 5
                return SingleOut.apply(result) + 3

        model = Caller()
        input = torch.ones(1)
        run_model_test(self, model, input_args=(input,))

    def test_multi_output(self):
        class MultiOut(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                result_exp = i.exp()
                result_log = result_exp.log()
                ctx.save_for_backward(result_exp, result_log)
                return result_exp, result_log

            @staticmethod
            def backward(ctx, grad_output):
                (result,) = ctx.saved_tensors
                return grad_output * result

        class Caller(torch.nn.Module):
            def forward(self, input):
                return MultiOut.apply(input)

        model = Caller()
        input = torch.ones(1, 5)
        run_model_test(self, model, input_args=(input,))

    def test_partial_output(self):
        class PartialOut(torch.autograd.Function):
            @staticmethod
            def forward(ctx, input):
                ctx.save_for_backward(input)
                values, indices = torch.topk(input, 3)
                return values

        class Caller(torch.nn.Module):
            def forward(self, input):
                return PartialOut.apply(input)

        model = Caller()
        input = torch.ones(1, 5)
        run_model_test(self, model, input_args=(input,))

    def test_nested_autograd(self):
        class Child(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                result = i.log()
                result_log = result.log()
                ctx.save_for_backward(result_log)
                return result_log

            @staticmethod
            def backward(ctx, grad_output):
                (result,) = ctx.saved_tensors
                return grad_output * result

        class Parent(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                result_exp = i.exp()
                result_log = Child.apply(result_exp)
                ctx.save_for_backward(result_exp, result_log)
                return result_exp, result_log

            @staticmethod
            def backward(ctx, grad_output):
                (result,) = ctx.saved_tensors
                return grad_output * result

        class Caller(torch.nn.Module):
            def forward(self, input):
                return Parent.apply(input)

        model = Caller()
        input = torch.ones(1, 5)
        run_model_test(self, model, input_args=(input,))

    # Run export in ONNX_FALLTHROUGH mode as torch.erf() is not supported
    def test_aten_unsupported(self):
        class Erf(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                erf_out = torch.special.erf(x)
                ctx.save_for_backward(erf_out)
                return erf_out

            @staticmethod
            def backward(ctx, grad_output):
                result = ctx.saved_tensors
                return torch.special.erfinv(result), None

        class Caller(torch.nn.Module):
            def forward(self, input):
                return Erf.apply(input)

        model = Caller()
        input = torch.ones(1, 5)

        # Test ONNX_FALLTHROUGH_MODE
        graph, _, _ = _model_to_graph(
            model,
            (input,),
            operator_export_type=OperatorExportTypes.ONNX_FALLTHROUGH,
        )
        iter = graph.nodes()
        self.assertEqual(next(iter).kind(), "prim::PythonOp")

        # Test ATEN_FALLBACK_MODE
        graph, _, _ = _model_to_graph(
            model,
            (input,),
            operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK,
        )
        iter = graph.nodes()
        self.assertEqual(next(iter).kind(), "prim::PythonOp")

    def test_inline_and_symbolic(self):
        class Exp(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                ctx.save_for_backward(input)
                return i.exp()

            @staticmethod
            def symbolic(g, input):
                return g.op("Exp", input)

        class LogLog(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                ctx.save_for_backward(input)
                return i.log().log()

        class Caller(torch.nn.Module):
            def forward(self, input):
                exp_result = Exp.apply(input)
                return LogLog.apply(exp_result)

        model = Caller()
        input = torch.ones(1)
        run_model_test(self, model, input_args=(input,))

    def test_inline_with_scoped_tracing(self):
        class Exp(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                ctx.save_for_backward(input)
                return i.exp()

            @staticmethod
            def symbolic(g, input):
                return g.op("Exp", input)

        class LogLog(torch.autograd.Function):
            @staticmethod
            def forward(ctx, i):
                ctx.save_for_backward(input)
                return i.log().log()

        class Caller(torch.nn.Module):
            def forward(self, input):
                exp_result = Exp.apply(input)
                return LogLog.apply(exp_result)

        model = Caller()
        input = torch.ones(1)

        torch.jit._trace._trace_module_map = {
            _m: torch.typename(type(_m)) for _m in model.modules()
        }
        run_model_test(self, model, input_args=(input,))
        torch.jit._trace._trace_module_map = None


if __name__ == "__main__":
    unittest.main()