1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
# Owner(s): ["module: onnx"]
import onnxruntime
import torch
from pytorch_test_common import skipIfNoCuda
from torch.onnx import verification
from torch.testing._internal import common_utils
def _jit_graph_to_onnx_model(graph, operator_export_type, opset_version):
r"""
This function exports torch::jit::Graph object
to serialized ONNX ModelProto.
This function is for testing purpose.
It only keeps the essential parts for IR graph conversions.
It also does not interact with actual PyTorch modules nor
PyTorch tensor inputs.
"""
torch.onnx.symbolic_helper._set_opset_version(opset_version)
graph = torch.onnx.utils._optimize_graph(
graph, operator_export_type, params_dict={}
)
proto, _, _, _ = graph._export_onnx(
{},
opset_version,
{},
False,
operator_export_type,
False,
False,
{},
True,
"",
{},
)
return proto
class _TestJITIRToONNX:
"""Abstract base class for test cases.
Intentionally not a sub-class of unittest.TestCase so that unittest / pytest
don't run it directly. unitest.TestCase is mixed in as another base class when
creating concrete sub-types. See MakeTestCase().
"""
opset_version = -1 # Sub-classes must override
ort_providers = ["CPUExecutionProvider"]
check_shape = True
check_dtype = True
ignore_none = True # True for tracing, and Flase for scripting
def run_test(self, graph_ir, example_inputs):
graph = torch._C.parse_ir(graph_ir)
jit_outs = torch._C._jit_interpret_graph(graph, example_inputs)
onnx_proto = _jit_graph_to_onnx_model(
graph, torch.onnx.OperatorExportTypes.ONNX, self.opset_version
)
ort_sess = onnxruntime.InferenceSession(
onnx_proto, providers=self.ort_providers
)
ort_outs = verification._run_ort(ort_sess, example_inputs)
verification._compare_ort_pytorch_outputs(
ort_outs,
jit_outs,
rtol=1e-3,
atol=1e-7,
check_shape=self.check_shape,
check_dtype=self.check_dtype,
ignore_none=self.ignore_none,
acceptable_error_percentage=None,
)
def test_example_ir(self):
graph_ir = """
graph(%1 : Float(2, 3),
%2 : Float(2, 3)):
%3 : int = prim::Constant[value=1]()
%4 : Float(2, 3) = aten::add(%1, %2, %3)
return (%4)
"""
a = torch.randn(2, 3)
b = torch.randn(2, 3)
self.run_test(graph_ir, (a, b))
def test_add_sub_with_graph_inputs(self):
for op in ["add", "sub", "rsub"]:
graph_ir = f"""
graph(%1 : Float(2, 3),
%2 : Float(2, 3),
%3 : int):
%4 : Float(2, 3) = aten::{op}(%1, %2, %3)
return (%4)
"""
a = torch.randn(2, 3)
b = torch.randn(2, 3)
self.run_test(graph_ir, (a, b, 2))
def test_native_layer_norm(self):
graph_ir = """
graph(%x : Float(2, 3, 2),
%w : Float(3, 2),
%b : Float(3, 2)):
%5 : int = prim::Constant[value=3]()
%6 : int = prim::Constant[value=2]()
%7 : int[] = prim::ListConstruct(%5, %6)
%10 : float = prim::Constant[value=1.0000000000000001e-05]()
%11 : Float(2, 3, 2), %12 : Float(2, 1, 1), %13 : Float(2, 1, 1) = aten::native_layer_norm(%x, %7, %w, %b, %10)
return (%11, %12, %13)
"""
x = torch.randn(2, 3, 2)
w = torch.randn(3, 2)
b = torch.randn(3, 2)
self.run_test(graph_ir, (x, w, b))
def test_convolution(self):
graph_ir = """
graph(%1 : Tensor,
%2 : Tensor):
%3 : NoneType = prim::Constant()
%4 : int[] = prim::Constant[value=[1, 1]]()
%5 : int[] = prim::Constant[value=[0, 0]]()
%6 : bool = prim::Constant[value=0]()
%7 : int = prim::Constant[value=1]()
%8 : Tensor = aten::convolution(%1, %2, %3, %4, %5, %4, %6, %5, %7)
return (%8)
"""
x = torch.randn(8, 1, 5, 5)
w = torch.randn(4, 1, 3, 3)
self.run_test(graph_ir, (x, w))
def test_log_softmax(self):
graph_ir = """
graph(%x: Tensor):
%half_to_float: bool = prim::Constant[value=0]()
%dim: int = prim::Constant[value=1]()
%y = aten::_log_softmax(%x, %dim, %half_to_float)
return (%y)
"""
x = torch.randn(5, 2)
self.run_test(graph_ir, (x,))
@skipIfNoCuda
def test_log_softmax_half_to_float(self):
graph_ir = """
graph(%x: Tensor):
%half_to_float: bool = prim::Constant[value=1]()
%dim: int = prim::Constant[value=1]()
%y = aten::_log_softmax(%x, %dim, %half_to_float)
return (%y)
"""
x = torch.randn(5, 2).half().to("cuda")
self.run_test(graph_ir, (x,))
def test_native_dropout(self):
graph_ir = """
graph(%1 : Float(2, 3)):
%2 : float = prim::Constant[value=0.0]()
%training : bool = prim::Constant[value=1]()
%3 : Tensor, %4 : Tensor = aten::native_dropout(%1, %2, %training)
return (%3, %4)
"""
a = torch.randn(2, 3)
self.run_test(graph_ir, (a,))
def MakeTestCase(opset_version: int) -> type:
name = f"TestJITIRToONNX_opset{opset_version}"
return type(
str(name),
(common_utils.TestCase,),
dict(_TestJITIRToONNX.__dict__, opset_version=opset_version),
)
TestJITIRToONNX_opset14 = MakeTestCase(14)
if __name__ == "__main__":
common_utils.run_tests()
|