1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
# Owner(s): ["module: unknown"]
import io
import caffe2.python.onnx.backend as c2
import numpy as np
import onnx
import torch.ao.nn.quantized as nnq
import torch.nn as nn
import torch.onnx
from torch.testing._internal import common_utils
class TestQuantizedOps(common_utils.TestCase):
def generic_test(
self, model, sample_inputs, input_names=None, decimal=3, relaxed_check=False
):
torch.backends.quantized.engine = "qnnpack"
pt_inputs = tuple(torch.from_numpy(x) for x in sample_inputs)
model.qconfig = torch.ao.quantization.get_default_qconfig("qnnpack")
q_model = torch.ao.quantization.prepare(model, inplace=False)
q_model = torch.ao.quantization.convert(q_model, inplace=False)
traced_model = torch.jit.trace(q_model, pt_inputs)
buf = io.BytesIO()
torch.jit.save(traced_model, buf)
buf.seek(0)
q_model = torch.jit.load(buf)
q_model.eval()
output = q_model(*pt_inputs)
f = io.BytesIO()
torch.onnx.export(
q_model,
pt_inputs,
f,
input_names=input_names,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
# Caffe2 doesn't support newer opset versions
opset_version=9,
)
f.seek(0)
onnx_model = onnx.load(f)
caffe_res = c2.run_model(onnx_model, dict(zip(input_names, sample_inputs)))[0]
# Due to change in requantization logic for certain ops such conv, linear
# in pytorch's integration of qnnpack, numerics may have a mismatc with C2.
# This mismatch should not be off my more than 1.
# This flag helps us override default behavior under certain circumstances.
if relaxed_check:
output_diff = np.absolute(np.squeeze(output.detach().numpy()) - caffe_res)
max_diff = np.amax(output_diff)
# This check had to be changed to account for changes in
# qnnpack's requant logic.
np.testing.assert_(
max_diff <= 1, "Maximum absolute difference must be less than 1"
)
else:
np.testing.assert_almost_equal(
output.detach().numpy(), caffe_res, decimal=decimal
)
def generic_unary_test(self, op):
class QModule(torch.nn.Module):
def __init__(self, op):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.op = op
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = self.op(self.quant1(x))
return self.dequant(res)
x = np.random.random((1, 2)).astype("float32")
self.generic_test(QModule(op), (x,), input_names=["x"])
def test_quantized_add(self):
class QAddModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.quant2 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x, y):
res = torch.ops.quantized.add(self.quant1(x), self.quant2(y), 1.0, 0)
return self.dequant(res)
x = np.random.random(2).astype("float32")
y = np.random.random(2).astype("float32")
self.generic_test(QAddModule(), (x, y), input_names=["x", "y"])
def test_quantized_relu(self):
self.generic_unary_test(torch.nn.ReLU())
def export_to_onnx(self, model, input, input_names):
traced = torch.jit.trace(model, input)
buf = io.BytesIO()
torch.jit.save(traced, buf)
buf.seek(0)
model = torch.jit.load(buf)
f = io.BytesIO()
torch.onnx.export(
model,
input,
f,
input_names=input_names,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
# Caffe2 doesn't support newer opset versions
opset_version=9,
)
f.seek(0)
onnx_model = onnx.load(f)
return onnx_model
def test_qlinear_model(self):
class LinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = torch.ao.quantization.default_qconfig
self.fc1 = torch.ao.quantization.QuantWrapper(
torch.nn.Linear(5, 10).to(dtype=torch.float)
)
def forward(self, x):
x = self.fc1(x)
return x
torch.backends.quantized.engine = "qnnpack"
qconfig = torch.ao.quantization.default_qconfig
model = LinearModel()
model.qconfig = qconfig
model = torch.ao.quantization.prepare(model)
model = torch.ao.quantization.convert(model)
x_numpy = np.random.rand(1, 2, 5).astype(np.float32)
x = torch.from_numpy(x_numpy).to(dtype=torch.float)
outputs = model(x)
input_names = ["x"]
onnx_model = self.export_to_onnx(model, x, input_names)
caffe_res = c2.run_model(onnx_model, dict(zip(input_names, x_numpy)))[0]
output_diff = np.absolute(np.squeeze(outputs.numpy()) - caffe_res)
max_diff = np.amax(output_diff)
# Permute pytorch output to NHWC
# This check had to be changed to account for changes in
# qnnpack's requant logic.
np.testing.assert_(
max_diff <= 1, "Maximum absolute difference must be less than 1"
)
def test_qconv_model(self):
class ConvModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.qconfig = torch.ao.quantization.default_qconfig
self.fc1 = torch.ao.quantization.QuantWrapper(
torch.nn.Conv2d(3, 5, 2, bias=True).to(dtype=torch.float)
)
def forward(self, x):
x = self.fc1(x)
return x
torch.backends.quantized.engine = "qnnpack"
qconfig = torch.ao.quantization.default_qconfig
model = ConvModel()
model.qconfig = qconfig
model = torch.ao.quantization.prepare(model)
model = torch.ao.quantization.convert(model)
x_numpy = np.random.rand(1, 3, 6, 6).astype(np.float32)
x = torch.from_numpy(x_numpy).to(dtype=torch.float)
outputs = model(x)
input_names = ["x"]
onnx_model = self.export_to_onnx(model, x, input_names)
y = np.expand_dims(x_numpy, axis=0)
caffe_res = c2.run_model(onnx_model, dict(zip(input_names, y)))[0]
output_diff = np.absolute(np.squeeze(outputs.numpy()) - caffe_res)
max_diff = np.amax(output_diff)
# Permute pytorch output to NHWC
# This check had to be changed to account for changes in
# qnnpack's requant logic.
np.testing.assert_(
max_diff <= 1, "Maximum absolute difference must be less than 1"
)
def test_upsample(self):
class QUpsampleModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = torch.ao.nn.quantized.functional.interpolate(
self.quant1(x), size=[6, 8], mode="nearest"
)
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
self.generic_test(QUpsampleModule(), (x,), input_names=["x"], decimal=5)
def test_avg_pool2d(self):
class QAvgPool2dModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = torch.nn.functional.avg_pool2d(
self.quant1(x), kernel_size=2, stride=1, padding=0
)
return self.dequant(res)
x = np.random.rand(1, 2, 8, 8).astype("float32")
self.generic_test(
QAvgPool2dModule(), (x,), input_names=["x"], relaxed_check=True
)
def test_reshape(self):
class QReshapeModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = self.quant1(x).reshape((1, 2, 1, 12))
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
self.generic_test(QReshapeModule(), (x,), input_names=["x"], decimal=5)
def test_slice(self):
class QSliceModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
qx = self.quant1(x)
res = qx[:, 1:2]
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
self.generic_test(QSliceModule(), (x,), input_names=["x"], decimal=5)
def test_cat(self):
class QConcatModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x, y):
res = torch.ops.quantized.cat(
[self.quant1(x), self.quant1(y)], dim=1, scale=1.0, zero_point=0
)
return self.dequant(res)
x = np.random.rand(1, 2, 3, 4).astype("float32")
y = np.random.rand(1, 4, 3, 4).astype("float32")
self.generic_test(
QConcatModule(),
(
x,
y,
),
input_names=["x", "y"],
)
def test_max_pool2d(self):
class QMaxPool2dModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant1 = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
res = torch.nn.functional.max_pool2d(
self.quant1(x), kernel_size=2, stride=1, padding=0
)
return self.dequant(res)
x = np.random.rand(1, 2, 8, 8).astype("float32")
self.generic_test(QMaxPool2dModule(), (x,), input_names=["x"], decimal=5)
def test_quantized_sigmoid(self):
self.generic_unary_test(torch.nn.Sigmoid())
def test_small_model(self):
class SimpleModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.quant = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
self.func_add = nnq.FloatFunctional()
self.conv1 = nn.Conv2d(3, 2, 5, bias=None).to(dtype=torch.float)
self.act1 = nn.Sigmoid()
self.conv2 = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.fc = nn.Linear(72, 10).to(dtype=torch.float)
self.fc.qconfig = None
def forward(self, x):
x = self.quant(x)
x = self.func_add.add(x, x)
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.dequant(x)
x = x.reshape(-1, 72).contiguous()
x = self.fc(x)
return x
x = np.random.rand(2, 3, 10, 10).astype("float32")
self.generic_test(SimpleModel(), (x,), input_names=["x"], relaxed_check=True)
def test_sequential(self):
class ConvBNReLUModule(nn.Sequential):
def __init__(self):
super().__init__(
nn.Conv2d(3, 3, 1, 1, bias=False),
nn.BatchNorm2d(3),
nn.ReLU(inplace=False),
)
class ModelWithClassifierHead(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1)
self.relu1 = nn.ReLU(inplace=False)
layers = []
for i in range(3):
layers.append(ConvBNReLUModule())
self.features = nn.Sequential(*layers)
head = [nn.Linear(300, 10), nn.ReLU(inplace=False)]
self.classifier = nn.Sequential(*head)
self.seq = nn.Sequential()
self.quant = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.relu1(x)
x = self.features(x)
x = torch.reshape(x, (-1, 3 * 10 * 10))
x = self.classifier(x)
x = self.seq(x)
x = self.dequant(x)
return x
model = ModelWithClassifierHead().eval()
torch.ao.quantization.fuse_modules(
model,
[
["conv1", "relu1"],
["features.0.0", "features.0.1", "features.0.2"],
["features.1.0", "features.1.1", "features.1.2"],
["features.2.0", "features.2.1", "features.2.2"],
],
inplace=True,
)
x = np.random.rand(1, 3, 10, 10).astype("float32")
self.generic_test(model, (x,), input_names=["x"], relaxed_check=True)
if __name__ == "__main__":
common_utils.run_tests()
|