1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
|
# Owner(s): ["module: onnx"]
"""Tests for onnx export that don't run the exported model."""
import contextlib
import io
import itertools
import unittest
import unittest.mock
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import onnx
import onnx.numpy_helper
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.onnx import OperatorExportTypes, symbolic_helper, utils
from torch.onnx._globals import GLOBALS
from torch.onnx._internal import registration
from torch.testing._internal import common_quantization, common_utils
def export_to_onnx(
model: Union[torch.nn.Module, torch.jit.ScriptFunction],
input: Union[torch.Tensor, Tuple[torch.Tensor]],
custom_ops: Optional[
Iterable[
Union[contextlib.AbstractContextManager, contextlib.ContextDecorator],
]
] = None,
mocks: Optional[Iterable] = None,
operator_export_type: torch.onnx.OperatorExportTypes = torch.onnx.OperatorExportTypes.ONNX,
opset_version: int = GLOBALS.export_onnx_opset_version,
**torch_onnx_export_kwargs,
) -> onnx.ModelProto:
"""Exports `model(input)` to ONNX and returns it.
Custom operators and/or unittest patches can be used help reproducing specific behaviors.
Args:
model: model to export
input: model input with same format as `torch.onnx.export(..,args,...)`
custom_ops: list of custom operators to use during export
mocks: list of mocks to use during export
operator_export_type: export type as described by `torch.onnx.export(...operator_export_type,...)`
opset_version: ONNX opset version as described by `torch.onnx.export(...opset_version,...)`
torch_onnx_export_kwargs: extra torch.onnx.export kwargs arguments
Returns:
A valid ONNX model (`onnx.ModelProto`)
"""
custom_ops = custom_ops or []
mocks = mocks or []
with contextlib.ExitStack() as stack:
for ctx in itertools.chain(custom_ops, mocks):
stack.enter_context(ctx)
f = io.BytesIO()
torch.onnx.export(
model,
input,
f,
operator_export_type=operator_export_type,
opset_version=opset_version,
**torch_onnx_export_kwargs,
)
# Validate ONNX graph before returning it
onnx_model = onnx.load_from_string(f.getvalue())
onnx.checker.check_model(onnx_model)
return onnx_model
class TestONNXExport(common_utils.TestCase):
def test_fuse_addmm(self):
class AddmmModel(torch.nn.Module):
def forward(self, x):
return torch.mm(x, x) + x
x = torch.ones(3, 3)
f = io.BytesIO()
torch.onnx._export(AddmmModel(), x, f, verbose=False)
def test_onnx_transpose_incomplete_tensor_type(self):
# Smoke test to get us into the state where we are attempting to export
# a transpose op, where the input is a TensorType without size information.
# This would previously not work, since we would
# take the size of the input and use the length of its sizes as the
# number of dimensions in the permutation.
class Foo(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
return x.contiguous().transpose(0, 1).sum()
class TraceMe(torch.nn.Module):
def __init__(self):
super(TraceMe, self).__init__()
self.foo = Foo()
def forward(self, x):
return self.foo(x)
tm = TraceMe()
tm = torch.jit.trace(tm, torch.rand(3, 4))
f = io.BytesIO()
torch.onnx.export(tm, (torch.rand(3, 4),), f)
def test_export_tensoroption_to(self):
def foo(x):
return x[0].clone().detach().cpu() + x
traced = torch.jit.trace(foo, (torch.rand([2])))
torch.onnx.export_to_pretty_string(traced, (torch.rand([2]),))
def test_onnx_export_script_module(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
y = x - x
return x + x
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
@common_utils.suppress_warnings
def test_onnx_export_func_with_warnings(self):
@torch.jit.script
def func_with_warning(inp):
return torch.nn.functional.sigmoid(inp) # triggers a deprecation warning
class WarningTest(torch.nn.Module):
def __init__(self):
super(WarningTest, self).__init__()
def forward(self, x):
return func_with_warning(x)
# no exception
torch.onnx.export_to_pretty_string(
WarningTest(), torch.randn(42), verbose=False
)
def test_onnx_export_script_python_fail(self):
class PythonModule(torch.jit.ScriptModule):
def __init__(self):
super(PythonModule, self).__init__()
@torch.jit.ignore
def forward(self, x):
return torch.neg(x)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = PythonModule()
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return y + y
mte = ModuleToExport()
f = io.BytesIO()
with self.assertRaisesRegex(RuntimeError, "Couldn't export Python"):
torch.onnx._export(mte, (torch.zeros(1, 2, 3),), f, verbose=False)
def test_onnx_export_script_inline_trace(self):
class ModuleToInline(torch.nn.Module):
def __init__(self):
super(ModuleToInline, self).__init__()
def forward(self, x):
return torch.neg(x)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = torch.jit.trace(ModuleToInline(), torch.zeros(1, 2, 3))
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return y + y
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
def test_onnx_export_script_inline_script(self):
class ModuleToInline(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToInline, self).__init__()
@torch.jit.script_method
def forward(self, x):
return torch.neg(x)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = ModuleToInline()
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return y + y
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
def test_onnx_export_script_module_loop(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
# test if we support end to end onnx export on loop and
# nested loops with and without loop index
for _ in range(5):
for i in range(3):
x = x + i
return x
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
@common_utils.suppress_warnings
def test_onnx_export_script_truediv(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
z = x.size(0) / 2
return x + z
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(
mte, (torch.zeros(1, 2, 3, dtype=torch.float),), verbose=False
)
def test_onnx_export_script_non_alpha_add_sub(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
bs = x.size(0) + 1
return bs - 1
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.rand(3, 4),), verbose=False)
def test_onnx_export_script_module_if(self):
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
@torch.jit.script_method
def forward(self, x):
if bool(torch.sum(x) > 0):
x = torch.neg(x)
return x
mte = ModuleToExport()
torch.onnx.export_to_pretty_string(mte, (torch.zeros(1, 2, 3),), verbose=False)
def test_onnx_export_script_inline_params(self):
class ModuleToInline(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToInline, self).__init__()
self.m = torch.nn.Parameter(torch.ones(3, 3))
self.unused = torch.nn.Parameter(torch.ones(1, 2, 3))
@torch.jit.script_method
def forward(self, x):
return torch.mm(x, self.m)
class ModuleToExport(torch.jit.ScriptModule):
def __init__(self):
super(ModuleToExport, self).__init__()
self.mod = ModuleToInline()
self.param = torch.nn.Parameter(torch.ones(3, 4))
@torch.jit.script_method
def forward(self, x):
y = self.mod(x)
return torch.mm(y, self.param)
mte = ModuleToExport()
result = mte(torch.zeros(2, 3))
reference = torch.mm(
torch.mm(torch.zeros(2, 3), torch.ones(3, 3)), torch.ones(3, 4)
)
self.assertEqual(result, reference)
torch.onnx.export_to_pretty_string(mte, (torch.ones(2, 3),), verbose=False)
def test_onnx_export_speculate(self):
class Foo(torch.jit.ScriptModule):
def __init__(self, m):
super(Foo, self).__init__()
self.m = m
@torch.jit.script_method
def forward(self, x):
x += x
# because we are testing if we emit `if` statement correctly
# we cannot use `True` as the condition. Constant prop
# would remove the `if` statements.
c = torch.sum(x) > 4
if bool(c):
if bool(c):
y = self.m(x)
else:
y = self.m(x)
else:
y = self.m(x)
return y
linear = torch.jit.trace(
torch.nn.Linear(10, 20).float(), torch.zeros(1, 10, dtype=torch.float)
)
@torch.jit.script
def transpose(x):
return x.t()
f1 = Foo(transpose)
f2 = Foo(linear)
torch.onnx.export_to_pretty_string(f1, (torch.ones(1, 10, dtype=torch.float),))
torch.onnx.export_to_pretty_string(f2, (torch.ones(1, 10, dtype=torch.float),))
def test_onnx_export_shape_reshape(self):
class Foo(torch.nn.Module):
def forward(self, x):
import torch.onnx.operators
x = x.repeat(5, 1, 1)
shape = torch.onnx.operators.shape_as_tensor(x)
reshaped = torch.onnx.operators.reshape_from_tensor_shape(x, shape)
return reshaped
foo = torch.jit.trace(Foo(), torch.zeros(1, 2, 3))
torch.onnx.export_to_pretty_string(foo, (torch.zeros(1, 2, 3)))
def test_listconstruct_erasure(self):
class FooMod(torch.nn.Module):
def forward(self, x):
mask = x < 0.0
return x[mask]
torch.onnx.export_to_pretty_string(
FooMod(),
(torch.rand(3, 4),),
add_node_names=False,
do_constant_folding=False,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
def test_export_dynamic_slice(self):
class DynamicSliceExportMod(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x):
retval = x[0]
for i in range(x.size(1)):
retval += torch.sum(x[0:i], dim=0)
return retval
mod = DynamicSliceExportMod()
input = torch.rand(3, 4, 5)
torch.onnx.export_to_pretty_string(
DynamicSliceExportMod(), (input,), opset_version=10
)
def test_export_dict(self):
class DictModule(torch.nn.Module):
def forward(self, x_in: torch.Tensor) -> Dict[str, torch.Tensor]:
return {"test_key_out": x_in}
x_in = torch.tensor(1)
mod = DictModule()
mod.train(False)
torch.onnx.export_to_pretty_string(mod, (x_in,))
with self.assertRaisesRegex(RuntimeError, r"DictConstruct.+is not supported."):
torch.onnx.export_to_pretty_string(torch.jit.script(mod), (x_in,))
def test_source_range_propagation(self):
class ExpandingModule(torch.nn.Module):
def __init__(self):
super().__init__()
# Will be expanded during ONNX export
self.ln = torch.nn.LayerNorm([1])
def forward(self, input):
return self.ln(input)
mod = ExpandingModule()
graph, _, _ = utils._model_to_graph(
mod,
(torch.zeros(1),),
operator_export_type=torch.onnx.OperatorExportTypes.ONNX,
)
# Ensure that every node in the graph has a valid source range
for node in graph.nodes():
self.assertTrue(node.sourceRange())
@common_utils.skipIfCaffe2
def test_clip_aten_fallback_due_exception(self):
def bad_clamp(g, self, min, max):
return symbolic_helper._onnx_unsupported("Bad boy!")
class MyClip(torch.nn.Module):
def forward(self, x):
return torch.clamp(x, min=-0.5, max=0.5)
onnx_model = export_to_onnx(
MyClip(),
torch.randn(3, 4, requires_grad=True),
custom_ops=[common_utils.custom_op("aten::clamp", bad_clamp, 9)],
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
self.assertAtenOp(onnx_model, "clamp", "Tensor")
@common_utils.skipIfCaffe2
def test_clip_aten_fallback_explicit_request(self):
class MyClip(torch.nn.Module):
def forward(self, x):
return torch.clamp(x, min=-0.5, max=0.5)
def break_is_registered_op_api(name):
fake_missing_symbolics = {"aten::clamp"}
if name in fake_missing_symbolics:
return None
return registration.registry.get_function_group(name)
# Force missing symbolic for well-known op using a mock
onnx_model = export_to_onnx(
MyClip(),
torch.randn(3, 4, requires_grad=True),
mocks=[
unittest.mock.patch(
"torch.onnx._internal.registration.registry.get_function_group",
side_effect=break_is_registered_op_api,
)
],
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
self.assertAtenOp(onnx_model, "clamp", "Tensor")
def _helper_test_to_(self, cast_fn: Callable[[torch.Tensor], torch.Tensor]):
"""Helper to test aten::to(device) variants.
`cast_fn` is converted into a `torch.jit.script`. It wraps `aten::to`
during export to preventing the devices to be hard-coded.
Needed by detectron2 after https://github.com/facebookresearch/detectron2/pull/4132/
"""
cast_fn = torch.jit.script(cast_fn)
onnx_model = export_to_onnx(cast_fn, torch.zeros([1, 3, 32, 32]))
for n in onnx_model.graph.node:
self.assertNotEqual(n.op_type, "To")
self.assertNotEqual(n.op_type, "Cast")
def test_to__cpu_string(self):
def cast_cpu_string(src: torch.Tensor) -> torch.Tensor:
return src.to("cpu")
self._helper_test_to_(cast_cpu_string)
def test_to__device_cpu_string(self):
def cast_device_cpu_string(src: torch.Tensor) -> torch.Tensor:
return src.to(device="cpu")
self._helper_test_to_(cast_device_cpu_string)
def test_script_custom_class_error(self):
class BoxCoder:
def __init__(self, bbox_xform_clip: float) -> None:
self.bbox_xform_clip = bbox_xform_clip
def decode(self, rel_codes: Tensor, boxes: List[Tensor]) -> Tensor:
boxes = torch.cat(boxes, dim=0)
pred_ctr_x = (
torch.clamp(rel_codes[:, 0::4], max=self.bbox_xform_clip)
* boxes[:, 2]
)
return pred_ctr_x
class MyModule(torch.nn.Module):
__annotations__ = {
"box_coder": BoxCoder,
}
def __init__(self):
super().__init__()
self.box_coder = BoxCoder(1.4)
def forward(self, box_regression: Tensor, proposals: List[Tensor]):
return self.box_coder.decode(box_regression, proposals)
model = torch.jit.script(MyModule())
box_regression = torch.randn([4, 4])
proposal = [torch.randn(2, 4), torch.randn(2, 4)]
with self.assertRaises(RuntimeError) as cm:
onnx_model = io.BytesIO()
torch.onnx.export(
model,
(box_regression, proposal),
onnx_model,
)
def test_initializer_sequence(self):
class MyModule(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
test_model = MyModule(3, 4, 10)
state_dict_list = [k for (k, v) in test_model.state_dict().items()]
named_params_list = [k for (k, v) in test_model.named_parameters()]
x = torch.randn(32, 3)
f = io.BytesIO()
torch.onnx._export(test_model, (x,), f, do_constant_folding=False)
loaded_model = onnx.load_from_string(f.getvalue())
actual_list = [p.name for p in loaded_model.graph.initializer]
assert actual_list == state_dict_list, (
"Initializers' sequence is not as same as state_dict(). Expected: ("
+ ", ".join(state_dict_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
assert actual_list == named_params_list, (
"Initializers' sequence is not as same as named_parameters(). Expected: ("
+ ", ".join(named_params_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
def test_initializer_sequence_script_model(self):
def list_is_expected(short_list, long_list) -> bool:
if len(short_list) > len(long_list):
return False
for i in range(len(short_list)):
if short_list[i] not in long_list[i]:
return False
return True
def loop(x, y):
for i in range(int(y)):
x = x + i
return x
class MyModule(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, x, y):
x = loop(x, y)
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
test_model = torch.jit.script(MyModule(3, 4, 10))
state_dict_list = [k for (k, v) in test_model.state_dict().items()]
named_params_list = [k for (k, v) in test_model.named_parameters()]
x = torch.ones(2, 3, dtype=torch.float)
y = torch.tensor(5, dtype=torch.long)
f = io.BytesIO()
torch.onnx.export(test_model, (x, y), f, do_constant_folding=False)
loaded_model = onnx.load_from_string(f.getvalue())
actual_list = [p.name for p in loaded_model.graph.initializer]
assert list_is_expected(state_dict_list, actual_list), (
"ScriptModel - Initializers' sequence is not as same as state_dict(). Expected: ("
+ ", ".join(state_dict_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
assert list_is_expected(named_params_list, actual_list), (
"ScriptModel - Initializers' sequence is not as same as named_parameters(). Expected: ("
+ ", ".join(named_params_list)
+ "). Actual:("
+ ", ".join(actual_list)
+ ")."
)
def test_onnx_checker_invalid_graph(self):
class CustomAddModule(torch.nn.Module):
def forward(self, x, y):
return torch.add(x, y)
def symbolic_custom_invalid_add(g, input, other, alpha=None):
return g.op("Add", input, other, invalid_attr_i=1)
torch.onnx.register_custom_op_symbolic(
"::add", symbolic_custom_invalid_add, opset_version=9
)
x = torch.randn(2, 3, 4)
y = torch.randn(2, 3, 4)
test_model = CustomAddModule()
f = io.BytesIO()
try:
with self.assertRaises(torch.onnx.errors.CheckerError):
torch.onnx.export(test_model, (x, y), f, opset_version=9)
finally:
torch.onnx.unregister_custom_op_symbolic("::add", 9)
self.assertTrue(f.getvalue(), "ONNX graph was not exported.")
loaded_model = onnx.load_from_string(f.getvalue())
def test_shape_value_map(self):
class RSoftMax(torch.nn.Module):
def __init__(self, radix, cardinality):
super().__init__()
self.radix = radix
self.cardinality = cardinality
def forward(self, x):
batch = x.size(0)
x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2)
x = F.softmax(x, dim=1)
x = x.reshape(batch, -1)
return x
radix = 2
cardinality = 1
x = torch.randn(10, 1, 128, 1)
f = io.BytesIO()
torch.onnx.export(
RSoftMax(radix, cardinality),
(x,),
f,
input_names=["x"],
dynamic_axes={"x": [0]},
)
loaded_model = onnx.load_from_string(f.getvalue())
self.assertEqual(
loaded_model.graph.output[0].type.tensor_type.shape.dim[1].dim_value, 128
)
def test_onnx_proto_checker(self):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return 2 * x
x = torch.randn(1, 2, 3, requires_grad=True)
f = io.BytesIO()
torch.onnx.export(Model(), x, f)
model = onnx.load(f)
model.ir_version = 0
def check_proto():
torch._C._check_onnx_proto(model.SerializeToString())
self.assertRaises(RuntimeError, check_proto)
def test_maintain_dynamic_shapes_of_unreliable_nodes(self):
def symbolic_pythonop(ctx: torch.onnx.SymbolicContext, g, *args, **kwargs):
return g.op("com.microsoft::PythonOp")
torch.onnx.register_custom_op_symbolic("prim::PythonOp", symbolic_pythonop, 1)
self.addCleanup(torch.onnx.unregister_custom_op_symbolic, "prim::PythonOp", 1)
# necessay parameters for transformer embeddings
hidden_size = 48
max_position_embeddings = 32
batch_size = 2
# issue found that autograd.function making downstream
# node unreliable but with static shape. The issue was first
# discovered with using Apex FusedLayerNorm in Transformers
class CustomLayerNorm(torch.autograd.Function):
@staticmethod
def forward(ctx, embedding):
layer_norm = torch.nn.LayerNorm(hidden_size, eps=1e-12)
return layer_norm(embedding)
class EmbeddingModule(torch.nn.Module):
def forward(
self,
embeddings=None,
):
embedding_output = CustomLayerNorm.apply(embeddings)
query = embedding_output.transpose(0, 1)
target_len, batch_size, embedding_dim = query.size()
# Reshape is used for consuming batch_size, and if it is static,
# this will be a Constant node in the graph
query = query.reshape(target_len, batch_size, embedding_dim)
return query
embeddings = torch.randn(batch_size, max_position_embeddings, hidden_size)
f = io.BytesIO()
torch.onnx.export(
EmbeddingModule().eval(),
(embeddings,),
f,
input_names=["embeddings"],
dynamic_axes={
"embeddings": {
0: "batch_size",
1: "max_position_embeddings",
2: "hidden_size",
}
},
custom_opsets={"com.microsoft": 1},
)
model = onnx.load(io.BytesIO(f.getvalue()))
# If there is a constant node with dim=3 and max_position_embeddings,
# batch_size, hidden_size as shape, it means the shape becomes static.
# Normally, with dynamic batch size, this constant node should not exist.
const_node = [n for n in model.graph.node if n.op_type == "Constant"]
self.assertNotEqual(len(const_node), 0)
for node in const_node:
for a in node.attribute:
if a.name == "value":
shape = onnx.numpy_helper.to_array(a.t)
self.assertNotEqual(
shape.tolist(),
[max_position_embeddings, batch_size, hidden_size],
)
def test_is_fp_for_C_TypeList(self):
class M(torch.nn.Module):
def forward(self, x):
x = x.squeeze(1)
w = x.shape[2]
pos = x.view(2, -1).argmax(1)
x_int = pos % w
y_int = (pos - x_int) // w
return y_int, x_int
model = torch.jit.script(M())
inputs = torch.randn(2, 4, 6)
f = io.BytesIO()
torch.onnx.export(
model, inputs, f, dynamic_axes={"x": [0, 1]}, input_names=["x"]
)
@common_utils.skipIfNoCaffe2
def test_caffe2_aten_fallback_must_fallback(self):
class ModelWithAtenNotONNXOp(torch.nn.Module):
def forward(self, x, y):
abcd = x + y
defg = torch.linalg.qr(abcd)
return defg
# TODO: Refactor common_utils._decide_skip_caffe2 to support parametrize
for operator_export_type in (
OperatorExportTypes.ONNX_ATEN,
OperatorExportTypes.ONNX_ATEN_FALLBACK,
):
x = torch.rand(3, 4)
y = torch.rand(3, 4)
f = io.BytesIO()
torch.onnx.export(
ModelWithAtenNotONNXOp(),
(x, y),
f,
do_constant_folding=False,
operator_export_type=operator_export_type,
# support for linalg.qr was added in later op set versions.
opset_version=9,
)
onnx_model = onnx.load(io.BytesIO(f.getvalue()))
self.assertAtenOp(onnx_model, "linalg_qr")
@common_utils.skipIfNoCaffe2
def test_caffe2_onnx_aten_must_not_fallback(self):
class ModelWithAtenFmod(torch.nn.Module):
def forward(self, x, y):
return torch.fmod(x, y)
# TODO: Refactor common_utils._decide_skip_caffe2 to support parametrize
for operator_export_type in (
OperatorExportTypes.ONNX_ATEN_FALLBACK,
OperatorExportTypes.ONNX_ATEN,
):
x = torch.randn(3, 4, dtype=torch.float32)
y = torch.randn(3, 4, dtype=torch.float32)
f = io.BytesIO()
torch.onnx.export(
ModelWithAtenFmod(),
(x, y),
f,
do_constant_folding=False,
operator_export_type=operator_export_type,
opset_version=10, # or higher
)
onnx_model = onnx.load(io.BytesIO(f.getvalue()))
assert onnx_model.graph.node[0].op_type == "Mod"
@common_utils.skipIfCaffe2
def test_aten_fallback_must_fallback(self):
class ModelWithAtenNotONNXOp(torch.nn.Module):
def forward(self, x, y):
abcd = x + y
defg = torch.linalg.qr(abcd)
return defg
x = torch.rand(3, 4)
y = torch.rand(3, 4)
f = io.BytesIO()
torch.onnx.export(
ModelWithAtenNotONNXOp(),
(x, y),
f,
do_constant_folding=False,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
# support for linalg.qr was added in later op set versions.
opset_version=9,
)
onnx_model = onnx.load(io.BytesIO(f.getvalue()))
self.assertAtenOp(onnx_model, "linalg_qr")
@common_utils.skipIfCaffe2
def test_onnx_aten(self):
class ModelWithAtenFmod(torch.nn.Module):
def forward(self, x, y):
return torch.fmod(x, y)
x = torch.randn(3, 4, dtype=torch.float32)
y = torch.randn(3, 4, dtype=torch.float32)
f = io.BytesIO()
torch.onnx.export(
ModelWithAtenFmod(),
(x, y),
f,
do_constant_folding=False,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN,
)
onnx_model = onnx.load(io.BytesIO(f.getvalue()))
self.assertAtenOp(onnx_model, "fmod", "Tensor")
@common_utils.skipIfCaffe2
def test_onnx_aten_fallback_must_not_fallback(self):
# For BUILD_CAFFE2=0, aten fallback only when not exportable
class ONNXExportable(torch.nn.Module):
def __init__(self):
super(ONNXExportable, self).__init__()
self.quant = torch.quantization.QuantStub()
self.fc1 = torch.nn.Linear(12, 8)
self.fc2 = torch.nn.Linear(8, 4)
self.fc3 = torch.nn.Linear(4, 6)
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = x.view((-1, 12))
h = F.relu(self.fc1(x))
h = F.relu(self.fc2(h))
h = F.relu(self.fc3(h))
h = self.dequant(h)
return h
dummy_input = torch.randn(12)
f = io.BytesIO()
torch.onnx.export(
ONNXExportable(),
(dummy_input,),
f,
do_constant_folding=False,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
)
onnx_model = onnx.load(io.BytesIO(f.getvalue()))
all_aten_nodes = [
p
for p in onnx_model.graph.node
if p.op_type == "ATen" and p.domain == "org.pytorch.aten"
]
self.assertEqual(len(all_aten_nodes), 0)
class TestQuantizeEagerONNXExport(common_utils.TestCase):
def _test_lower_graph_impl(self, model, data):
model.qconfig = torch.ao.quantization.default_qconfig
model = torch.ao.quantization.prepare(model)
model = torch.ao.quantization.convert(model)
_ = model(data)
input_names = ["x"]
def _export_to_onnx(model, input, input_names):
traced = torch.jit.trace(model, input)
buf = io.BytesIO()
torch.jit.save(traced, buf)
buf.seek(0)
model = torch.jit.load(buf)
f = io.BytesIO()
torch.onnx.export(
model,
input,
f,
input_names=input_names,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK,
opset_version=9,
)
_export_to_onnx(model, data, input_names)
@common_quantization.skipIfNoFBGEMM
@common_utils.skipIfNoCaffe2
def test_lower_graph_linear(self):
model = torch.ao.quantization.QuantWrapper(
torch.nn.Linear(5, 10, bias=True)
).to(dtype=torch.float)
data_numpy = np.random.rand(1, 2, 5).astype(np.float32)
data = torch.from_numpy(data_numpy).to(dtype=torch.float)
self._test_lower_graph_impl(model, data)
@common_quantization.skipIfNoFBGEMM
@common_utils.skipIfNoCaffe2
def test_lower_graph_conv2d(self):
model = torch.ao.quantization.QuantWrapper(
torch.nn.Conv2d(3, 5, 2, bias=True)
).to(dtype=torch.float)
data_numpy = np.random.rand(1, 3, 6, 6).astype(np.float32)
data = torch.from_numpy(data_numpy).to(dtype=torch.float)
self._test_lower_graph_impl(model, data)
@common_quantization.skipIfNoFBGEMM
@unittest.skip(
"onnx opset9 does not support quantize_per_tensor and caffe2 \
does not support conv3d"
)
def test_lower_graph_conv3d(self):
model = torch.ao.quantization.QuantWrapper(
torch.nn.Conv3d(3, 5, 2, bias=True)
).to(dtype=torch.float)
data_numpy = np.random.rand(1, 3, 6, 6, 6).astype(np.float32)
data = torch.from_numpy(data_numpy).to(dtype=torch.float)
self._test_lower_graph_impl(model, data)
if __name__ == "__main__":
common_utils.run_tests()
|