1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# Owner(s): ["module: onnx"]
import numpy as np
import torch
from pytorch_test_common import skipIfUnsupportedMinOpsetVersion
from torch.onnx import _constants, symbolic_helper
from torch.testing._internal import common_utils
def expect_tensor(scalar_type, shape=None):
def verify(actual_type):
np.testing.assert_equal(actual_type.scalarType(), scalar_type)
# if shape is not None:
# np.testing.assert_equal(actual_type.sizes(), shape)
if shape is not None:
np.testing.assert_equal(actual_type.varyingSizes(), shape)
return verify
class TestONNXShapeInference(common_utils.TestCase):
def setUp(self):
self.opset_version = _constants.ONNX_MAX_OPSET
symbolic_helper._set_onnx_shape_inference(True)
symbolic_helper._set_opset_version(self.opset_version)
def run_test(self, g, n, type_assertion_funcs):
if not isinstance(type_assertion_funcs, list):
type_assertion_funcs = [type_assertion_funcs]
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
for out, type_assertion_func in zip(n.outputs(), type_assertion_funcs):
type_assertion_func(out.type())
def create_empty_graph(self):
g = torch._C.Graph()
# kick off initialization for ConstantMap.
torch._C._jit_pass_onnx_graph_shape_type_inference(g, {}, self.opset_version)
return g
def insert_tensor_constant(self, g, tensor):
return g.op("Constant", value_t=tensor)
def test_cast(self):
# Test cast with input of unknown scalar type.
g = self.create_empty_graph()
input = g.addInput()
cast_out = g.op("Cast", input, to_i=1)
self.run_test(g, cast_out.node(), expect_tensor("Float"))
def test_constant_of_shape(self):
# Test ConstantOfShape with input of onnx::Shape node.
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(1, 2, 3, 4))
shape = g.op("Shape", constant)
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_static(self):
# Test ConstantOfShape with input of prim::ListConstruct of static tensor
rank = 4
g = self.create_empty_graph()
constants = [
self.insert_tensor_constant(g, torch.tensor(i + 1)) for i in range(rank)
]
shape = g.op("prim::ListConstruct", *constants)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
self.run_test(
g, constant_of_shape.node(), expect_tensor("Float", shape=(1, 2, 3, 4))
)
def test_constant_of_shape_dynamic(self):
# Test ConstantOfShape with input of prim::ListConstruct of dynamic tensor
rank = 4
g = self.create_empty_graph()
inputs = [g.addInput() for i in range(rank)]
shape = g.op("prim::ListConstruct", *inputs)
shape.setType(torch._C.ListType.ofInts())
constant_of_shape = g.op("ConstantOfShape", shape, value_t=torch.tensor([2.0]))
self.run_test(
g,
constant_of_shape.node(),
expect_tensor("Float", shape=(None, None, None, None)),
)
def test_gather_dynamic_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = g.addInput()
indices.setType(indices.type().with_dtype(torch.int64).with_sizes([None]))
output = g.op("Gather", input, indices, axis_i=1)
self.run_test(
g, output.node(), expect_tensor("Float", shape=([None, None, 16, 16]))
)
def test_gather_scalar_index(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(
input.type().with_dtype(torch.float).with_sizes([None, 3, 16, 16])
)
indices = self.insert_tensor_constant(g, torch.tensor(1))
output = g.op("Gather", input, indices, axis_i=1)
self.run_test(g, output.node(), expect_tensor("Float", shape=([None, 16, 16])))
def test_reshape(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 5))
constant_2 = self.insert_tensor_constant(g, torch.tensor([2, 0, -1]))
shape = g.op("Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(2, 16, 25)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 4]))
shape = g.op("Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(10, 16, 4)))
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2, 16, 5, 4))
constant_2 = self.insert_tensor_constant(g, torch.tensor([-1, 0, 0]))
shape = g.op("Reshape", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(8, 16, 5)))
def test_reshape_symbolic(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None, 2, 8]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 0, -1]))
output = g.op("Reshape", input, constant)
self.run_test(g, output.node(), expect_tensor(None, shape=(None, None, 16)))
@skipIfUnsupportedMinOpsetVersion(14)
def test_reshape_allowzero(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([3, 4, 0]))
constant = self.insert_tensor_constant(g, torch.tensor([0, 4, 3]))
output = g.op("Reshape", input, constant, allowzero_i=1)
self.run_test(g, output.node(), expect_tensor(None, shape=(0, 4, 3)))
def test_slice(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_sizes([None, None]))
start_input = g.addInput()
start_input.setType(start_input.type().with_sizes([None]))
end = self.insert_tensor_constant(g, torch.tensor([3]))
axis = self.insert_tensor_constant(g, torch.tensor([0]))
step = self.insert_tensor_constant(g, torch.tensor([1]))
slice = g.op("Slice", input, start_input, end, axis, step)
self.run_test(g, slice.node(), expect_tensor(None, shape=(None, None)))
def test_broadcast_matmul(self):
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 5, 1, 1)))
# test when first input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(3, 1, 2, 1))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(3, 1, 1)))
# test when second input is of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(5, 1, 2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=(5, 1)))
# test when both inputs are of rank 1
g = self.create_empty_graph()
constant = self.insert_tensor_constant(g, torch.ones(2))
constant_2 = self.insert_tensor_constant(g, torch.ones(2))
shape = g.op("MatMul", constant, constant_2)
self.run_test(g, shape.node(), expect_tensor("Float", shape=()))
def test_expand(self):
g = self.create_empty_graph()
input = g.addInput()
constant = self.insert_tensor_constant(g, torch.ones(2, 4))
input.setType(constant.type().with_sizes([None, None]))
shape = g.op("Shape", input)
expand = g.op("Expand", constant, shape)
self.run_test(g, expand.node(), expect_tensor("Float", shape=(None, None)))
def test_pad(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, 320, 100]))
constant = self.insert_tensor_constant(g, torch.ones(6, dtype=torch.long))
none = g.op("prim::Constant").setType(torch.NoneType.get())
pad = g.op("Pad", input, constant, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(5, 322, 102)))
def test_pad_with_dynamic_input_shape(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, None, None]))
constant = self.insert_tensor_constant(g, torch.ones(6, dtype=torch.long))
none = g.op("prim::Constant").setType(torch.NoneType.get())
pad = g.op("Pad", input, constant, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(5, None, None)))
def test_pad_with_dynamic_pad_size(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([3, 320, 100]))
pad_size = g.addInput()
pad_size.setType(pad_size.type().with_dtype(torch.long).with_sizes([6]))
none = g.op("prim::Constant").setType(torch.NoneType.get())
pad = g.op("Pad", input, pad_size, none, mode_s="constant")
self.run_test(g, pad.node(), expect_tensor("Float", shape=(None, None, None)))
def test_resize(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 32, 64, 64]))
none = g.op("prim::Constant").setType(torch.NoneType.get())
scales = self.insert_tensor_constant(
g, torch.tensor([1, 1, 2, 2], dtype=torch.float)
)
resize = g.op(
"Resize",
input,
none,
scales,
coordinate_transformation_mode_s="align_corners",
cubic_coeff_a_f=-0.75,
mode_s="linear",
nearest_mode_s="floor",
)
self.run_test(g, resize.node(), expect_tensor("Float", shape=(4, 32, 128, 128)))
def test_resize_after_concat(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.float).with_sizes([4, 32, 64, 64]))
none = g.op("prim::Constant").setType(torch.NoneType.get())
scale_1 = self.insert_tensor_constant(
g, torch.tensor([1, 1], dtype=torch.float)
)
scale_2 = self.insert_tensor_constant(
g, torch.tensor([2, 2], dtype=torch.float)
)
# `scales` values should be statically known due to constant folding in shape inference.
scales = g.op("Concat", scale_1, scale_2, axis_i=0)
resize = g.op(
"Resize",
input,
none,
scales,
coordinate_transformation_mode_s="align_corners",
cubic_coeff_a_f=-0.75,
mode_s="linear",
nearest_mode_s="floor",
)
self.run_test(g, resize.node(), expect_tensor("Float", shape=(4, 32, 128, 128)))
def test_reduce_prod_with_axes(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.long).with_sizes([2]))
reduce_prod = g.op("ReduceProd", input, axes_i=[0])
self.run_test(g, reduce_prod.node(), expect_tensor("Long", shape=(1,)))
def test_reduce_prod_without_axes(self):
g = self.create_empty_graph()
input = g.addInput()
input.setType(input.type().with_dtype(torch.long).with_sizes([2]))
reduce_prod = g.op("ReduceProd", input)
self.run_test(g, reduce_prod.node(), expect_tensor("Long", shape=(1,)))
if __name__ == "__main__":
common_utils.run_tests()
|