File: test_nn_module.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (33 lines) | stat: -rw-r--r-- 1,251 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Owner(s): ["oncall: package/deploy"]

import torch


class TestNnModule(torch.nn.Module):
    def __init__(self, nz=6, ngf=9, nc=3):
        super(TestNnModule, self).__init__()
        self.main = torch.nn.Sequential(
            # input is Z, going into a convolution
            torch.nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
            torch.nn.BatchNorm2d(ngf * 8),
            torch.nn.ReLU(True),
            # state size. (ngf*8) x 4 x 4
            torch.nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            torch.nn.BatchNorm2d(ngf * 4),
            torch.nn.ReLU(True),
            # state size. (ngf*4) x 8 x 8
            torch.nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            torch.nn.BatchNorm2d(ngf * 2),
            torch.nn.ReLU(True),
            # state size. (ngf*2) x 16 x 16
            torch.nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
            torch.nn.BatchNorm2d(ngf),
            torch.nn.ReLU(True),
            # state size. (ngf) x 32 x 32
            torch.nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
            torch.nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)