1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
|
# Owner(s): ["oncall: package/deploy"]
from io import BytesIO
from textwrap import dedent
from unittest import skipIf
import torch
from torch.package import PackageExporter, PackageImporter
from torch.testing._internal.common_utils import IS_FBCODE, IS_SANDCASTLE, run_tests
try:
from .common import PackageTestCase
except ImportError:
# Support the case where we run this file directly.
from common import PackageTestCase
try:
from torchvision.models import resnet18
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = skipIf(not HAS_TORCHVISION, "no torchvision")
class TestPackageScript(PackageTestCase):
"""Tests for compatibility with TorchScript."""
def test_package_interface(self):
"""Packaging an interface class should work correctly."""
import package_a.fake_interface as fake
uses_interface = fake.UsesInterface()
scripted = torch.jit.script(uses_interface)
scripted.proxy_mod = torch.jit.script(fake.NewModule())
buffer = BytesIO()
with PackageExporter(buffer) as pe:
pe.intern("**")
pe.save_pickle("model", "model.pkl", uses_interface)
buffer.seek(0)
package_importer = PackageImporter(buffer)
loaded = package_importer.load_pickle("model", "model.pkl")
scripted_loaded = torch.jit.script(loaded)
scripted_loaded.proxy_mod = torch.jit.script(fake.NewModule())
input = torch.tensor(1)
self.assertEqual(scripted(input), scripted_loaded(input))
def test_different_package_interface(self):
"""Test a case where the interface defined in the package is
different than the one defined in the loading environment, to make
sure TorchScript can distinguish between the two.
"""
# Import one version of the interface
import package_a.fake_interface as fake
# Simulate a package that contains a different version of the
# interface, with the exact same name.
buffer = BytesIO()
with PackageExporter(buffer) as pe:
pe.save_source_string(
fake.__name__,
dedent(
"""\
import torch
from torch import Tensor
@torch.jit.interface
class ModuleInterface(torch.nn.Module):
def one(self, inp1: Tensor) -> Tensor:
pass
class ImplementsInterface(torch.nn.Module):
def one(self, inp1: Tensor) -> Tensor:
return inp1 + 1
class UsesInterface(torch.nn.Module):
proxy_mod: ModuleInterface
def __init__(self):
super().__init__()
self.proxy_mod = ImplementsInterface()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.one(input)
"""
),
)
buffer.seek(0)
package_importer = PackageImporter(buffer)
diff_fake = package_importer.import_module(fake.__name__)
# We should be able to script successfully.
torch.jit.script(diff_fake.UsesInterface())
def test_package_script_class(self):
import package_a.fake_script_class as fake
buffer = BytesIO()
with PackageExporter(buffer) as pe:
pe.save_module(fake.__name__)
buffer.seek(0)
package_importer = PackageImporter(buffer)
loaded = package_importer.import_module(fake.__name__)
input = torch.tensor(1)
self.assertTrue(
torch.allclose(
fake.uses_script_class(input), loaded.uses_script_class(input)
)
)
def test_package_script_class_referencing_self(self):
import package_a.fake_script_class as fake
obj = fake.UsesIdListFeature()
# intentionally script here to fill the compilation cache, to make sure
# there is no false sharing between scripted types coming from the
# package vs. outside environment.
torch.jit.script(obj)
buffer = BytesIO()
with PackageExporter(buffer) as exporter:
exporter.intern("**")
exporter.save_pickle("obj", "obj.pkl", obj)
buffer.seek(0)
importer = PackageImporter(buffer)
obj_loaded = importer.load_pickle("obj", "obj.pkl")
scripted_obj_loaded = torch.jit.script(obj_loaded)
# Make sure the scripted object can be serialized without error.
buffer2 = scripted_obj_loaded.save_to_buffer()
torch.jit.load(BytesIO(buffer2))
def test_different_package_script_class(self):
"""Test a case where the script class defined in the package is
different than the one defined in the loading environment, to make
sure TorchScript can distinguish between the two.
"""
import package_a.fake_script_class as fake
# Simulate a package that contains a different version of the
# script class ,with the attribute `bar` instead of `foo`
buffer = BytesIO()
with PackageExporter(buffer) as pe2:
pe2.save_source_string(
fake.__name__,
dedent(
"""\
import torch
@torch.jit.script
class MyScriptClass:
def __init__(self, x):
self.bar = x
"""
),
)
buffer.seek(0)
package_importer = PackageImporter(buffer)
diff_fake = package_importer.import_module(fake.__name__)
input = torch.rand(2, 3)
loaded_script_class = diff_fake.MyScriptClass(input)
orig_script_class = fake.MyScriptClass(input)
self.assertEqual(loaded_script_class.bar, orig_script_class.foo)
def test_save_scriptmodule(self):
"""
Test basic saving of ScriptModule.
"""
from package_a.test_module import ModWithTensor
scripted_mod = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3)))
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("res", "mod.pkl", scripted_mod)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod = importer.load_pickle("res", "mod.pkl", map_location="cpu")
input = torch.rand(1, 2, 3)
self.assertEqual(loaded_mod(input), scripted_mod(input))
@skipIf(
IS_FBCODE or IS_SANDCASTLE,
"Tests that use temporary files are disabled in fbcode",
)
def test_save_scriptmodule_file(self):
"""
Test basic saving of ScriptModule in file.
"""
from package_a.test_module import ModWithTensor
scripted_mod = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3)))
filename = self.temp()
with PackageExporter(filename) as e:
e.save_pickle("res", "mod.pkl", scripted_mod)
importer = PackageImporter(filename)
loaded_mod = importer.load_pickle("res", "mod.pkl")
input = torch.rand(1, 2, 3)
self.assertEqual(loaded_mod(input), scripted_mod(input))
def test_save_scriptmodule_with_submods(self):
"""
Test basic saving of ScriptModule with submodule.
"""
from package_a.test_module import ModWithSubmod, ModWithTensor
scripted_mod = torch.jit.script(
ModWithSubmod(ModWithTensor(torch.rand(1, 2, 3)))
)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("res", "mod.pkl", scripted_mod)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod = importer.load_pickle("res", "mod.pkl", map_location="cpu")
input = torch.rand(1, 2, 3)
self.assertEqual(loaded_mod(input), scripted_mod(input))
def test_save_scriptmodules_submod_redefinition(self):
"""
Test to verify saving multiple ScriptModules with same top module
but different submodules works. Submodule is redefined to between
the defintion of the top module to check that the different concrete
types of the modules are thoroughly recognized by serializaiton code.
"""
class Submod(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input: str):
input = input + "_submod"
return input
class TopMod(torch.nn.Module):
def __init__(self):
super().__init__()
self.modB = Submod()
def forward(self, input: str):
return self.modB(input)
scripted_mod_0 = torch.jit.script(TopMod())
# redefinition is intentional, change single inner string
# string attribute, should trigger new module type
class Submod(torch.nn.Module): # noqa: F811
def __init__(self):
super().__init__()
def forward(self, input: str):
input = input + "_submod(changed)"
return input
scripted_mod_1 = torch.jit.script(TopMod())
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("res", "mod1.pkl", scripted_mod_0)
e.save_pickle("res", "mod2.pkl", scripted_mod_1)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod_0 = importer.load_pickle("res", "mod1.pkl")
loaded_mod_1 = importer.load_pickle("res", "mod2.pkl")
self.assertEqual(loaded_mod_0("input"), scripted_mod_0("input"))
self.assertEqual(loaded_mod_1("input"), scripted_mod_1("input"))
self.assertNotEqual(loaded_mod_0("input"), loaded_mod_1("input"))
def test_save_independent_scriptmodules(self):
"""
Test to verify saving multiple ScriptModules with completely
separate code works.
"""
from package_a.test_module import ModWithTensor, SimpleTest
scripted_mod_0 = torch.jit.script(SimpleTest())
scripted_mod_1 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3)))
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("res", "mod1.pkl", scripted_mod_0)
e.save_pickle("res", "mod2.pkl", scripted_mod_1)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod_0 = importer.load_pickle("res", "mod1.pkl")
loaded_mod_1 = importer.load_pickle("res", "mod2.pkl")
input = torch.rand(1, 2, 3)
self.assertEqual(loaded_mod_0(input), scripted_mod_0(input))
self.assertEqual(loaded_mod_1(input), scripted_mod_1(input))
def test_save_repeat_scriptmodules(self):
"""
Test to verify saving multiple different modules and
repeats of same scriptmodule in package works. Also tests that
PyTorchStreamReader isn't having code hidden from
PyTorchStreamWriter writing ScriptModule code files multiple times.
"""
from package_a.test_module import (
ModWithSubmodAndTensor,
ModWithTensor,
SimpleTest,
)
scripted_mod_0 = torch.jit.script(SimpleTest())
scripted_mod_1 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3)))
scripted_mod_2 = torch.jit.script(
ModWithSubmodAndTensor(
torch.rand(1, 2, 3), ModWithTensor(torch.rand(1, 2, 3))
)
)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("res", "mod0.pkl", scripted_mod_0)
e.save_pickle("res", "mod1.pkl", scripted_mod_1)
e.save_pickle("res", "mod2.pkl", scripted_mod_0)
e.save_pickle("res", "mod3.pkl", scripted_mod_1)
e.save_pickle("res", "mod4.pkl", scripted_mod_2)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod_0 = importer.load_pickle("res", "mod0.pkl")
loaded_mod_1 = importer.load_pickle("res", "mod3.pkl")
loaded_mod_2 = importer.load_pickle("res", "mod4.pkl")
input = torch.rand(1, 2, 3)
self.assertEqual(loaded_mod_0(input), scripted_mod_0(input))
self.assertEqual(loaded_mod_1(input), scripted_mod_1(input))
self.assertEqual(loaded_mod_2(input), scripted_mod_2(input))
def test_scriptmodules_repeat_save(self):
"""
Test to verify saving and loading same ScriptModule object works
across multiple packages.
"""
from package_a.test_module import ModWithSubmodAndTensor, ModWithTensor
scripted_mod_0 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3)))
scripted_mod_1 = torch.jit.script(
ModWithSubmodAndTensor(
torch.rand(1, 2, 3), ModWithTensor(torch.rand(1, 2, 3))
)
)
buffer_0 = BytesIO()
with PackageExporter(buffer_0) as e:
e.save_pickle("res", "mod1.pkl", scripted_mod_0)
buffer_0.seek(0)
importer_0 = PackageImporter(buffer_0)
loaded_module_0 = importer_0.load_pickle("res", "mod1.pkl")
buffer_1 = BytesIO()
with PackageExporter(buffer_1) as e:
e.save_pickle("res", "mod1.pkl", scripted_mod_1)
e.save_pickle("res", "mod2.pkl", loaded_module_0)
buffer_1.seek(0)
importer_1 = PackageImporter(buffer_1)
loaded_module_1 = importer_1.load_pickle("res", "mod1.pkl")
reloaded_module_0 = importer_1.load_pickle("res", "mod2.pkl")
input = torch.rand(1, 2, 3)
self.assertEqual(loaded_module_0(input), scripted_mod_0(input))
self.assertEqual(loaded_module_0(input), reloaded_module_0(input))
self.assertEqual(loaded_module_1(input), scripted_mod_1(input))
@skipIfNoTorchVision
def test_save_scriptmodule_only_necessary_code(self):
"""
Test to verify when saving multiple packages with same CU
that packages don't include unnecessary torchscript code files.
The TorchVision code should only be saved in the package that
relies on it.
"""
from package_a.test_module import ModWithTensor
class ModWithTorchVision(torch.nn.Module):
def __init__(self, name: str):
super().__init__()
self.tvmod = resnet18()
def forward(self, input):
return input * 4
scripted_mod_0 = torch.jit.script(ModWithTorchVision("foo"))
scripted_mod_1 = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3)))
buffer_0 = BytesIO()
with PackageExporter(buffer_0) as e:
e.save_pickle("res", "mod1.pkl", scripted_mod_0)
buffer_0.seek(0)
importer_0 = importer = PackageImporter(buffer_0)
buffer_1 = BytesIO()
with PackageExporter(buffer_1) as e:
e.save_pickle("res", "mod1.pkl", scripted_mod_1)
buffer_1.seek(0)
importer_1 = PackageImporter(buffer_1)
self.assertTrue("torchvision" in str(importer_0.file_structure()))
self.assertFalse("torchvision" in str(importer_1.file_structure()))
def test_save_scriptmodules_in_container(self):
"""
Test saving of ScriptModules inside of container. Checks that relations
between shared modules are upheld.
"""
from package_a.test_module import ModWithSubmodAndTensor, ModWithTensor
scripted_mod_a = torch.jit.script(ModWithTensor(torch.rand(1, 2, 3)))
scripted_mod_b = torch.jit.script(
ModWithSubmodAndTensor(torch.rand(1, 2, 3), scripted_mod_a)
)
script_mods_list = [scripted_mod_a, scripted_mod_b]
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("res", "list.pkl", script_mods_list)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod_list = importer.load_pickle("res", "list.pkl")
input = torch.rand(1, 2, 3)
self.assertEqual(loaded_mod_list[0](input), scripted_mod_a(input))
self.assertEqual(loaded_mod_list[1](input), scripted_mod_b(input))
def test_save_eager_mods_sharing_scriptmodule(self):
"""
Test saving of single ScriptModule shared by multiple
eager modules (ScriptModule should be saved just once
even though is contained in multiple pickles).
"""
from package_a.test_module import ModWithSubmod, SimpleTest
scripted_mod = torch.jit.script(SimpleTest())
mod1 = ModWithSubmod(scripted_mod)
mod2 = ModWithSubmod(scripted_mod)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.intern("**")
e.save_pickle("res", "mod1.pkl", mod1)
e.save_pickle("res", "mod2.pkl", mod2)
buffer.seek(0)
importer = PackageImporter(buffer)
file_structure = importer.file_structure()
self.assertTrue(file_structure.has_file(".data/ts_code/0"))
self.assertFalse(file_structure.has_file(".data/ts_code/1"))
def test_load_shared_scriptmodules(self):
"""
Test loading of single ScriptModule shared by multiple eager
modules in single pickle (ScriptModule objects should be the same).
"""
from package_a.test_module import (
ModWithMultipleSubmods,
ModWithSubmod,
SimpleTest,
)
scripted_mod = torch.jit.script(SimpleTest())
mod1 = ModWithSubmod(scripted_mod)
mod2 = ModWithSubmod(scripted_mod)
mod_parent = ModWithMultipleSubmods(mod1, mod2)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.intern("**")
e.save_pickle("res", "mod.pkl", mod_parent)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod = importer.load_pickle("res", "mod.pkl")
self.assertTrue(
id(loaded_mod.mod1.script_mod) == id(loaded_mod.mod2.script_mod)
)
def test_save_shared_tensors(self):
"""
Test tensors shared across eager and ScriptModules are serialized once.
"""
from package_a.test_module import ModWithSubmodAndTensor, ModWithTensor
shared_tensor = torch.rand(2, 3, 4)
scripted_mod = torch.jit.script(ModWithTensor(shared_tensor))
mod1 = ModWithSubmodAndTensor(shared_tensor, scripted_mod)
mod2 = ModWithSubmodAndTensor(shared_tensor, scripted_mod)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.intern("**")
e.save_pickle("res", "tensor", shared_tensor)
e.save_pickle("res", "mod1.pkl", mod1)
e.save_pickle("res", "mod2.pkl", mod2)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod_1 = importer.load_pickle("res", "mod1.pkl")
# assert that there is only one storage stored in package
file_structure = importer.file_structure(include=".data/*.storage")
self.assertTrue(len(file_structure.children[".data"].children) == 1)
input = torch.rand(2, 3, 4)
self.assertEqual(loaded_mod_1(input), mod1(input))
def test_load_shared_tensors(self):
"""
Test tensors shared across eager and ScriptModules on load
are the same.
"""
from package_a.test_module import ModWithTensor, ModWithTwoSubmodsAndTensor
shared_tensor = torch.ones(3, 3)
scripted_mod_0 = torch.jit.script(ModWithTensor(shared_tensor))
scripted_mod_1 = torch.jit.script(ModWithTensor(shared_tensor))
mod1 = ModWithTwoSubmodsAndTensor(shared_tensor, scripted_mod_0, scripted_mod_1)
self.assertEqual(
shared_tensor.storage()._cdata,
scripted_mod_0.tensor.storage()._cdata,
)
self.assertEqual(
shared_tensor.storage()._cdata,
scripted_mod_1.tensor.storage()._cdata,
)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.intern("**")
e.save_pickle("res", "mod1.pkl", mod1)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_mod_1 = importer.load_pickle("res", "mod1.pkl")
self.assertEqual(
loaded_mod_1.tensor.storage()._cdata,
loaded_mod_1.sub_mod_0.tensor.storage()._cdata,
)
self.assertEqual(
loaded_mod_1.tensor.storage()._cdata,
loaded_mod_1.sub_mod_1.tensor.storage()._cdata,
)
loaded_mod_1.tensor.add_(torch.ones(3, 3))
self.assertTrue(
torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_0.tensor)
)
self.assertTrue(
torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_1.tensor)
)
def test_load_shared_tensors_repackaged(self):
"""
Test tensors shared across eager and ScriptModules on load
are the same across multiple package saves and loads. This is
an important test because not all of the tensor information is restored
in python between packages. The python identity is not maintained, but
the backing cpp TensorImpl is. We load/save storages based off of this
cpp TensorImpl and not the python identity.
"""
from package_a.test_module import ModWithTensor, ModWithTwoSubmodsAndTensor
shared_tensor = torch.ones(3, 3)
scripted_mod_0 = torch.jit.script(ModWithTensor(shared_tensor))
scripted_mod_1 = torch.jit.script(ModWithTensor(shared_tensor))
mod1 = ModWithTwoSubmodsAndTensor(shared_tensor, scripted_mod_0, scripted_mod_1)
buffer_0 = BytesIO()
with PackageExporter(buffer_0) as e:
e.intern("**")
e.save_pickle("res", "mod1.pkl", mod1)
buffer_0.seek(0)
importer_0 = PackageImporter(buffer_0)
loaded_mod_0 = importer_0.load_pickle("res", "mod1.pkl")
buffer_1 = BytesIO()
with PackageExporter(buffer_1, importer=importer_0) as e:
e.intern("**")
e.save_pickle("res", "mod1.pkl", loaded_mod_0)
buffer_1.seek(0)
importer = PackageImporter(buffer_1)
loaded_mod_1 = importer.load_pickle("res", "mod1.pkl")
self.assertEqual(
loaded_mod_1.tensor.storage()._cdata,
loaded_mod_1.sub_mod_0.tensor.storage()._cdata,
)
self.assertEqual(
loaded_mod_1.tensor.storage()._cdata,
loaded_mod_1.sub_mod_1.tensor.storage()._cdata,
)
loaded_mod_1.tensor.add_(
torch.ones(3, 3)
) # all tensors should reflect this change
self.assertTrue(
torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_0.tensor)
)
self.assertTrue(
torch.allclose(loaded_mod_1.tensor, loaded_mod_1.sub_mod_1.tensor)
)
def test_saving_and_scripting_packaged_mod(self):
"""
Test scripting a module loaded from a package
and saving it in a new package as a script object.
"""
from package_a.test_module import SimpleTest
orig_mod = SimpleTest()
buffer_0 = BytesIO()
with PackageExporter(buffer_0) as e:
e.intern("**")
e.save_pickle("model", "model.pkl", orig_mod)
buffer_0.seek(0)
importer_0 = PackageImporter(buffer_0)
loaded_mod = importer_0.load_pickle("model", "model.pkl")
input = torch.rand(2, 3)
self.assertEqual(loaded_mod(input), orig_mod(input))
scripted_mod = torch.jit.script(loaded_mod)
buffer_1 = BytesIO()
with PackageExporter(buffer_1, importer=importer_0) as e:
e.intern("**")
e.save_pickle("res", "scripted_mod.pkl", scripted_mod)
buffer_1.seek(0)
importer_1 = PackageImporter(buffer_1)
loaded_mod_scripted = importer_1.load_pickle("res", "scripted_mod.pkl")
self.assertEqual(loaded_mod_scripted(input), orig_mod(input))
def test_mixing_packaged_and_inline_modules(self):
"""
Test saving inline and imported modules in same package with
independent code.
"""
class InlineMod(torch.nn.Module):
def __init__(self, name: str):
super().__init__()
self.name = name
self.tensor = torch.rand(1, 2, 3)
def forward(self, input: str):
input = input + "_modInline:" + self.name
return input, (self.tensor * 4)
inline_mod = InlineMod("inline")
scripted_inline = torch.jit.script(inline_mod)
from package_a.test_module import SimpleTest
imported_mod = SimpleTest()
scripted_imported = torch.jit.script(imported_mod)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("model", "inline.pkl", scripted_inline)
e.save_pickle("model", "imported.pkl", scripted_imported)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_inline = importer.load_pickle("model", "inline.pkl")
loaded_imported = importer.load_pickle("model", "imported.pkl")
input = torch.rand(2, 3)
self.assertEqual(loaded_imported(input), imported_mod(input))
self.assertEqual(loaded_inline("input"), inline_mod("input"))
@skipIfNoTorchVision
def test_mixing_packaged_and_inline_modules_shared_code(self):
"""
Test saving inline and imported modules in same package that
share code.
"""
class TorchVisionTestInline(torch.nn.Module):
def __init__(self):
super().__init__()
self.tvmod = resnet18()
def forward(self, x):
x = a_non_torch_leaf(x, x)
return torch.relu(x + 3.0)
def a_non_torch_leaf(a, b):
return a + b
inline_mod = TorchVisionTestInline()
scripted_inline = torch.jit.script(inline_mod)
from package_c.test_module import TorchVisionTest
imported_mod = TorchVisionTest()
scripted_imported = torch.jit.script(imported_mod)
buffer = BytesIO()
with PackageExporter(buffer) as e:
e.save_pickle("model", "inline.pkl", scripted_inline)
e.save_pickle("model", "imported.pkl", scripted_imported)
buffer.seek(0)
importer = PackageImporter(buffer)
loaded_inline = importer.load_pickle("model", "inline.pkl")
loaded_imported = importer.load_pickle("model", "imported.pkl")
input = torch.rand(2, 3)
self.assertEqual(loaded_imported(input), imported_mod(input))
self.assertEqual(loaded_inline(input), inline_mod(input))
def test_tensor_sharing_pickle(self):
"""Test that saving a ScriptModule and a separately saving a tensor
object causes no issues.
"""
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.foo = torch.ones(2, 3)
def forward(self):
return self.foo
scripted_m = torch.jit.script(M())
original_tensor = torch.ones(0)
f = BytesIO()
with torch.package.PackageExporter(f) as exporter:
exporter.save_pickle("model", "model.pkl", scripted_m)
exporter.save_pickle("model", "input.pkl", original_tensor)
f.seek(0)
# Should be able to load correctly
importer = PackageImporter(f)
loaded_m = importer.load_pickle("model", "model.pkl")
loaded_tensor = importer.load_pickle("model", "input.pkl")
self.assertEqual(scripted_m.foo, loaded_m.foo)
self.assertEqual(original_tensor, loaded_tensor)
if __name__ == "__main__":
run_tests()
|