1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
# -*- coding: utf-8 -*-
# Owner(s): ["oncall: quantization"]
import sys
import os
import unittest
from typing import Set
# torch
import torch
import torch.nn as nn
import torch.ao.nn.quantized as nnq
import torch.ao.nn.quantized.dynamic as nnqd
import torch.nn.intrinsic.quantized as nniq
from torch.fx import GraphModule
# Testing utils
from torch.testing._internal.common_utils import TestCase, IS_AVX512_VNNI_SUPPORTED
from torch.testing._internal.common_quantized import override_qengines, qengine_is_fbgemm
from torch.testing._internal.common_quantization import skipIfNoFBGEMM
from torch.testing._internal.quantization_torch_package_models import LinearReluFunctional
from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver
import torch.ao.quantization.quantize_fx as quantize_fx
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
def get_filenames(self, subname):
# NB: we take __file__ from the module that defined the test
# class, so we place the expect directory where the test script
# lives, NOT where test/common_utils.py lives.
module_id = self.__class__.__module__
munged_id = remove_prefix(self.id(), module_id + ".")
test_file = os.path.realpath(sys.modules[module_id].__file__)
base_name = os.path.join(os.path.dirname(test_file),
"../serialized",
munged_id)
subname_output = ""
if subname:
base_name += "_" + subname
subname_output = " ({})".format(subname)
input_file = base_name + ".input.pt"
state_dict_file = base_name + ".state_dict.pt"
scripted_module_file = base_name + ".scripted.pt"
traced_module_file = base_name + ".traced.pt"
expected_file = base_name + ".expected.pt"
package_file = base_name + ".package.pt"
get_attr_targets_file = base_name + ".get_attr_targets.pt"
return input_file, state_dict_file, scripted_module_file, \
traced_module_file, expected_file, package_file, get_attr_targets_file
class TestSerialization(TestCase):
""" Test backward compatiblity for serialization and numerics
"""
# Copy and modified from TestCase.assertExpected
def _test_op(self, qmodule, subname=None, input_size=None, input_quantized=True,
generate=False, prec=None, new_zipfile_serialization=False):
r""" Test quantized modules serialized previously can be loaded
with current code, make sure we don't break backward compatibility for the
serialization of quantized modules
"""
input_file, state_dict_file, scripted_module_file, traced_module_file, \
expected_file, _package_file, _get_attr_targets_file = \
get_filenames(self, subname)
# only generate once.
if generate and qengine_is_fbgemm():
input_tensor = torch.rand(*input_size).float()
if input_quantized:
input_tensor = torch.quantize_per_tensor(input_tensor, 0.5, 2, torch.quint8)
torch.save(input_tensor, input_file)
# Temporary fix to use _use_new_zipfile_serialization until #38379 lands.
torch.save(qmodule.state_dict(), state_dict_file, _use_new_zipfile_serialization=new_zipfile_serialization)
torch.jit.save(torch.jit.script(qmodule), scripted_module_file)
torch.jit.save(torch.jit.trace(qmodule, input_tensor), traced_module_file)
torch.save(qmodule(input_tensor), expected_file)
input_tensor = torch.load(input_file)
qmodule.load_state_dict(torch.load(state_dict_file))
qmodule_scripted = torch.jit.load(scripted_module_file)
qmodule_traced = torch.jit.load(traced_module_file)
expected = torch.load(expected_file)
self.assertEqual(qmodule(input_tensor), expected, atol=prec)
self.assertEqual(qmodule_scripted(input_tensor), expected, atol=prec)
self.assertEqual(qmodule_traced(input_tensor), expected, atol=prec)
def _test_op_graph(self, qmodule, subname=None, input_size=None, input_quantized=True,
generate=False, prec=None, new_zipfile_serialization=False):
r"""
Input: a floating point module
If generate == True, traces and scripts the module and quantizes the results with
PTQ, and saves the results.
If generate == False, traces and scripts the module and quantizes the results with
PTQ, and compares to saved results.
"""
input_file, state_dict_file, scripted_module_file, traced_module_file, \
expected_file, _package_file, _get_attr_targets_file = \
get_filenames(self, subname)
# only generate once.
if generate and qengine_is_fbgemm():
input_tensor = torch.rand(*input_size).float()
torch.save(input_tensor, input_file)
# convert to TorchScript
scripted = torch.jit.script(qmodule)
traced = torch.jit.trace(qmodule, input_tensor)
# quantize
def _eval_fn(model, data):
model(data)
qconfig_dict = {'': torch.ao.quantization.default_qconfig}
scripted_q = torch.ao.quantization.quantize_jit(
scripted, qconfig_dict, _eval_fn, [input_tensor])
traced_q = torch.ao.quantization.quantize_jit(
traced, qconfig_dict, _eval_fn, [input_tensor])
torch.jit.save(scripted_q, scripted_module_file)
torch.jit.save(traced_q, traced_module_file)
torch.save(scripted_q(input_tensor), expected_file)
input_tensor = torch.load(input_file)
qmodule_scripted = torch.jit.load(scripted_module_file)
qmodule_traced = torch.jit.load(traced_module_file)
expected = torch.load(expected_file)
self.assertEqual(qmodule_scripted(input_tensor), expected, atol=prec)
self.assertEqual(qmodule_traced(input_tensor), expected, atol=prec)
def _test_obs(self, obs, input_size, subname=None, generate=False, check_numerics=True):
"""
Test observer code can be loaded from state_dict.
"""
input_file, state_dict_file, _, traced_module_file, expected_file, \
_package_file, _get_attr_targets_file = get_filenames(self, None)
if generate:
input_tensor = torch.rand(*input_size).float()
torch.save(input_tensor, input_file)
torch.save(obs(input_tensor), expected_file)
torch.save(obs.state_dict(), state_dict_file)
input_tensor = torch.load(input_file)
obs.load_state_dict(torch.load(state_dict_file))
expected = torch.load(expected_file)
if check_numerics:
self.assertEqual(obs(input_tensor), expected)
def _test_package(self, fp32_module, input_size, generate=False):
"""
Verifies that files created in the past with torch.package
work on today's FX graph mode quantization transforms.
"""
input_file, state_dict_file, _scripted_module_file, _traced_module_file, \
expected_file, package_file, get_attr_targets_file = \
get_filenames(self, None)
package_name = 'test'
resource_name_model = 'test.pkl'
def _do_quant_transforms(
m: torch.nn.Module,
input_tensor: torch.Tensor,
) -> torch.nn.Module:
example_inputs = (input_tensor,)
# do the quantizaton transforms and save result
qconfig = torch.quantization.get_default_qconfig('fbgemm')
mp = quantize_fx.prepare_fx(m, {'': qconfig}, example_inputs=example_inputs)
mp(input_tensor)
mq = quantize_fx.convert_fx(mp)
return mq
def _get_get_attr_target_strings(m: GraphModule) -> Set[str]:
results = set()
for node in m.graph.nodes:
if node.op == 'get_attr':
results.add(node.target)
return results
if generate and qengine_is_fbgemm():
input_tensor = torch.randn(*input_size)
torch.save(input_tensor, input_file)
# save the model with torch.package
with torch.package.PackageExporter(package_file) as exp:
exp.intern('torch.testing._internal.quantization_torch_package_models')
exp.save_pickle(package_name, resource_name_model, fp32_module)
# do the quantization transforms and save the result
mq = _do_quant_transforms(fp32_module, input_tensor)
get_attrs = _get_get_attr_target_strings(mq)
torch.save(get_attrs, get_attr_targets_file)
q_result = mq(input_tensor)
torch.save(q_result, expected_file)
# load input tensor
input_tensor = torch.load(input_file)
expected_output_tensor = torch.load(expected_file)
expected_get_attrs = torch.load(get_attr_targets_file)
# load model from package and verify output and get_attr targets match
imp = torch.package.PackageImporter(package_file)
m = imp.load_pickle(package_name, resource_name_model)
mq = _do_quant_transforms(m, input_tensor)
get_attrs = _get_get_attr_target_strings(mq)
self.assertTrue(
get_attrs == expected_get_attrs,
f'get_attrs: expected {expected_get_attrs}, got {get_attrs}')
output_tensor = mq(input_tensor)
self.assertTrue(torch.allclose(output_tensor, expected_output_tensor))
@override_qengines
def test_linear(self):
module = nnq.Linear(3, 1, bias_=True, dtype=torch.qint8)
self._test_op(module, input_size=[1, 3], generate=False)
@override_qengines
def test_linear_relu(self):
module = nniq.LinearReLU(3, 1, bias=True, dtype=torch.qint8)
self._test_op(module, input_size=[1, 3], generate=False)
@override_qengines
def test_linear_dynamic(self):
module_qint8 = nnqd.Linear(3, 1, bias_=True, dtype=torch.qint8)
self._test_op(module_qint8, "qint8", input_size=[1, 3], input_quantized=False, generate=False)
if qengine_is_fbgemm():
module_float16 = nnqd.Linear(3, 1, bias_=True, dtype=torch.float16)
self._test_op(module_float16, "float16", input_size=[1, 3], input_quantized=False, generate=False)
@override_qengines
def test_conv2d(self):
module = nnq.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=True, padding_mode="zeros")
self._test_op(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_nobias(self):
module = nnq.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=False, padding_mode="zeros")
self._test_op(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_graph(self):
module = nn.Sequential(
torch.ao.quantization.QuantStub(),
nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=True, padding_mode="zeros"),
)
self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_nobias_graph(self):
module = nn.Sequential(
torch.ao.quantization.QuantStub(),
nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=False, padding_mode="zeros"),
)
self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_graph_v2(self):
# tests the same thing as test_conv2d_graph, but for version 2 of
# ConvPackedParams{n}d
module = nn.Sequential(
torch.ao.quantization.QuantStub(),
nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=True, padding_mode="zeros"),
)
self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_nobias_graph_v2(self):
# tests the same thing as test_conv2d_nobias_graph, but for version 2 of
# ConvPackedParams{n}d
module = nn.Sequential(
torch.ao.quantization.QuantStub(),
nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=False, padding_mode="zeros"),
)
self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_graph_v3(self):
# tests the same thing as test_conv2d_graph, but for version 3 of
# ConvPackedParams{n}d
module = nn.Sequential(
torch.ao.quantization.QuantStub(),
nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=True, padding_mode="zeros"),
)
self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_nobias_graph_v3(self):
# tests the same thing as test_conv2d_nobias_graph, but for version 3 of
# ConvPackedParams{n}d
module = nn.Sequential(
torch.ao.quantization.QuantStub(),
nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=False, padding_mode="zeros"),
)
self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)
@override_qengines
def test_conv2d_relu(self):
module = nniq.ConvReLU2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=True, padding_mode="zeros")
self._test_op(module, input_size=[1, 3, 6, 6], generate=False)
# TODO: graph mode quantized conv2d module
@override_qengines
def test_conv3d(self):
if qengine_is_fbgemm():
module = nnq.Conv3d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=True, padding_mode="zeros")
self._test_op(module, input_size=[1, 3, 6, 6, 6], generate=False)
# TODO: graph mode quantized conv3d module
@override_qengines
def test_conv3d_relu(self):
if qengine_is_fbgemm():
module = nniq.ConvReLU3d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
groups=1, bias=True, padding_mode="zeros")
self._test_op(module, input_size=[1, 3, 6, 6, 6], generate=False)
# TODO: graph mode quantized conv3d module
@override_qengines
@unittest.skipIf(IS_AVX512_VNNI_SUPPORTED, "This test fails on machines with AVX512_VNNI support. Ref: GH Issue 59098")
def test_lstm(self):
class LSTMModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.lstm = nnqd.LSTM(input_size=3, hidden_size=7, num_layers=1).to(dtype=torch.float)
def forward(self, x):
x = self.lstm(x)
return x
if qengine_is_fbgemm():
mod = LSTMModule()
self._test_op(mod, input_size=[4, 4, 3], input_quantized=False, generate=False, new_zipfile_serialization=True)
def test_per_channel_observer(self):
obs = PerChannelMinMaxObserver()
self._test_obs(obs, input_size=[5, 5], generate=False)
def test_per_tensor_observer(self):
obs = MinMaxObserver()
self._test_obs(obs, input_size=[5, 5], generate=False)
def test_default_qat_qconfig(self):
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear = nn.Linear(5, 5)
self.relu = nn.ReLU()
def forward(self, x):
x = self.linear(x)
x = self.relu(x)
return x
model = Model()
model.linear.weight = torch.nn.Parameter(torch.randn(5, 5))
model.qconfig = torch.ao.quantization.get_default_qat_qconfig("fbgemm")
ref_model = torch.ao.quantization.QuantWrapper(model)
ref_model = torch.ao.quantization.prepare_qat(ref_model)
self._test_obs(ref_model, input_size=[5, 5], generate=False, check_numerics=False)
@skipIfNoFBGEMM
def test_linear_relu_package_quantization_transforms(self):
m = LinearReluFunctional(4).eval()
self._test_package(m, input_size=(1, 1, 4, 4), generate=False)
|