File: test_backward_compatibility.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (382 lines) | stat: -rw-r--r-- 16,665 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# -*- coding: utf-8 -*-
# Owner(s): ["oncall: quantization"]

import sys
import os
import unittest
from typing import Set

# torch
import torch
import torch.nn as nn
import torch.ao.nn.quantized as nnq
import torch.ao.nn.quantized.dynamic as nnqd
import torch.nn.intrinsic.quantized as nniq
from torch.fx import GraphModule

# Testing utils
from torch.testing._internal.common_utils import TestCase, IS_AVX512_VNNI_SUPPORTED
from torch.testing._internal.common_quantized import override_qengines, qengine_is_fbgemm
from torch.testing._internal.common_quantization import skipIfNoFBGEMM
from torch.testing._internal.quantization_torch_package_models import LinearReluFunctional

from torch.ao.quantization import MinMaxObserver, PerChannelMinMaxObserver
import torch.ao.quantization.quantize_fx as quantize_fx

def remove_prefix(text, prefix):
    if text.startswith(prefix):
        return text[len(prefix):]
    return text

def get_filenames(self, subname):
    # NB: we take __file__ from the module that defined the test
    # class, so we place the expect directory where the test script
    # lives, NOT where test/common_utils.py lives.
    module_id = self.__class__.__module__
    munged_id = remove_prefix(self.id(), module_id + ".")
    test_file = os.path.realpath(sys.modules[module_id].__file__)
    base_name = os.path.join(os.path.dirname(test_file),
                             "../serialized",
                             munged_id)

    subname_output = ""
    if subname:
        base_name += "_" + subname
        subname_output = " ({})".format(subname)

    input_file = base_name + ".input.pt"
    state_dict_file = base_name + ".state_dict.pt"
    scripted_module_file = base_name + ".scripted.pt"
    traced_module_file = base_name + ".traced.pt"
    expected_file = base_name + ".expected.pt"
    package_file = base_name + ".package.pt"
    get_attr_targets_file = base_name + ".get_attr_targets.pt"

    return input_file, state_dict_file, scripted_module_file, \
        traced_module_file, expected_file, package_file, get_attr_targets_file


class TestSerialization(TestCase):
    """ Test backward compatiblity for serialization and numerics
    """
    # Copy and modified from TestCase.assertExpected
    def _test_op(self, qmodule, subname=None, input_size=None, input_quantized=True,
                 generate=False, prec=None, new_zipfile_serialization=False):
        r""" Test quantized modules serialized previously can be loaded
        with current code, make sure we don't break backward compatibility for the
        serialization of quantized modules
        """
        input_file, state_dict_file, scripted_module_file, traced_module_file, \
            expected_file, _package_file, _get_attr_targets_file = \
            get_filenames(self, subname)

        # only generate once.
        if generate and qengine_is_fbgemm():
            input_tensor = torch.rand(*input_size).float()
            if input_quantized:
                input_tensor = torch.quantize_per_tensor(input_tensor, 0.5, 2, torch.quint8)
            torch.save(input_tensor, input_file)
            # Temporary fix to use _use_new_zipfile_serialization until #38379 lands.
            torch.save(qmodule.state_dict(), state_dict_file, _use_new_zipfile_serialization=new_zipfile_serialization)
            torch.jit.save(torch.jit.script(qmodule), scripted_module_file)
            torch.jit.save(torch.jit.trace(qmodule, input_tensor), traced_module_file)
            torch.save(qmodule(input_tensor), expected_file)

        input_tensor = torch.load(input_file)
        qmodule.load_state_dict(torch.load(state_dict_file))
        qmodule_scripted = torch.jit.load(scripted_module_file)
        qmodule_traced = torch.jit.load(traced_module_file)
        expected = torch.load(expected_file)
        self.assertEqual(qmodule(input_tensor), expected, atol=prec)
        self.assertEqual(qmodule_scripted(input_tensor), expected, atol=prec)
        self.assertEqual(qmodule_traced(input_tensor), expected, atol=prec)

    def _test_op_graph(self, qmodule, subname=None, input_size=None, input_quantized=True,
                       generate=False, prec=None, new_zipfile_serialization=False):
        r"""
        Input: a floating point module

        If generate == True, traces and scripts the module and quantizes the results with
        PTQ, and saves the results.

        If generate == False, traces and scripts the module and quantizes the results with
        PTQ, and compares to saved results.
        """
        input_file, state_dict_file, scripted_module_file, traced_module_file, \
            expected_file, _package_file, _get_attr_targets_file = \
            get_filenames(self, subname)

        # only generate once.
        if generate and qengine_is_fbgemm():
            input_tensor = torch.rand(*input_size).float()
            torch.save(input_tensor, input_file)

            # convert to TorchScript
            scripted = torch.jit.script(qmodule)
            traced = torch.jit.trace(qmodule, input_tensor)

            # quantize

            def _eval_fn(model, data):
                model(data)

            qconfig_dict = {'': torch.ao.quantization.default_qconfig}
            scripted_q = torch.ao.quantization.quantize_jit(
                scripted, qconfig_dict, _eval_fn, [input_tensor])
            traced_q = torch.ao.quantization.quantize_jit(
                traced, qconfig_dict, _eval_fn, [input_tensor])

            torch.jit.save(scripted_q, scripted_module_file)
            torch.jit.save(traced_q, traced_module_file)
            torch.save(scripted_q(input_tensor), expected_file)

        input_tensor = torch.load(input_file)
        qmodule_scripted = torch.jit.load(scripted_module_file)
        qmodule_traced = torch.jit.load(traced_module_file)
        expected = torch.load(expected_file)
        self.assertEqual(qmodule_scripted(input_tensor), expected, atol=prec)
        self.assertEqual(qmodule_traced(input_tensor), expected, atol=prec)

    def _test_obs(self, obs, input_size, subname=None, generate=False, check_numerics=True):
        """
        Test observer code can be loaded from state_dict.
        """
        input_file, state_dict_file, _, traced_module_file, expected_file, \
            _package_file, _get_attr_targets_file = get_filenames(self, None)
        if generate:
            input_tensor = torch.rand(*input_size).float()
            torch.save(input_tensor, input_file)
            torch.save(obs(input_tensor), expected_file)
            torch.save(obs.state_dict(), state_dict_file)

        input_tensor = torch.load(input_file)
        obs.load_state_dict(torch.load(state_dict_file))
        expected = torch.load(expected_file)
        if check_numerics:
            self.assertEqual(obs(input_tensor), expected)

    def _test_package(self, fp32_module, input_size, generate=False):
        """
        Verifies that files created in the past with torch.package
        work on today's FX graph mode quantization transforms.
        """
        input_file, state_dict_file, _scripted_module_file, _traced_module_file, \
            expected_file, package_file, get_attr_targets_file = \
            get_filenames(self, None)

        package_name = 'test'
        resource_name_model = 'test.pkl'

        def _do_quant_transforms(
            m: torch.nn.Module,
            input_tensor: torch.Tensor,
        ) -> torch.nn.Module:
            example_inputs = (input_tensor,)
            # do the quantizaton transforms and save result
            qconfig = torch.quantization.get_default_qconfig('fbgemm')
            mp = quantize_fx.prepare_fx(m, {'': qconfig}, example_inputs=example_inputs)
            mp(input_tensor)
            mq = quantize_fx.convert_fx(mp)
            return mq

        def _get_get_attr_target_strings(m: GraphModule) -> Set[str]:
            results = set()
            for node in m.graph.nodes:
                if node.op == 'get_attr':
                    results.add(node.target)
            return results

        if generate and qengine_is_fbgemm():
            input_tensor = torch.randn(*input_size)
            torch.save(input_tensor, input_file)

            # save the model with torch.package
            with torch.package.PackageExporter(package_file) as exp:
                exp.intern('torch.testing._internal.quantization_torch_package_models')
                exp.save_pickle(package_name, resource_name_model, fp32_module)

            # do the quantization transforms and save the result
            mq = _do_quant_transforms(fp32_module, input_tensor)
            get_attrs = _get_get_attr_target_strings(mq)
            torch.save(get_attrs, get_attr_targets_file)
            q_result = mq(input_tensor)
            torch.save(q_result, expected_file)

        # load input tensor
        input_tensor = torch.load(input_file)
        expected_output_tensor = torch.load(expected_file)
        expected_get_attrs = torch.load(get_attr_targets_file)

        # load model from package and verify output and get_attr targets match
        imp = torch.package.PackageImporter(package_file)
        m = imp.load_pickle(package_name, resource_name_model)
        mq = _do_quant_transforms(m, input_tensor)

        get_attrs = _get_get_attr_target_strings(mq)
        self.assertTrue(
            get_attrs == expected_get_attrs,
            f'get_attrs: expected {expected_get_attrs}, got {get_attrs}')
        output_tensor = mq(input_tensor)
        self.assertTrue(torch.allclose(output_tensor, expected_output_tensor))

    @override_qengines
    def test_linear(self):
        module = nnq.Linear(3, 1, bias_=True, dtype=torch.qint8)
        self._test_op(module, input_size=[1, 3], generate=False)

    @override_qengines
    def test_linear_relu(self):
        module = nniq.LinearReLU(3, 1, bias=True, dtype=torch.qint8)
        self._test_op(module, input_size=[1, 3], generate=False)

    @override_qengines
    def test_linear_dynamic(self):
        module_qint8 = nnqd.Linear(3, 1, bias_=True, dtype=torch.qint8)
        self._test_op(module_qint8, "qint8", input_size=[1, 3], input_quantized=False, generate=False)
        if qengine_is_fbgemm():
            module_float16 = nnqd.Linear(3, 1, bias_=True, dtype=torch.float16)
            self._test_op(module_float16, "float16", input_size=[1, 3], input_quantized=False, generate=False)

    @override_qengines
    def test_conv2d(self):
        module = nnq.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                            groups=1, bias=True, padding_mode="zeros")
        self._test_op(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_nobias(self):
        module = nnq.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                            groups=1, bias=False, padding_mode="zeros")
        self._test_op(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_graph(self):
        module = nn.Sequential(
            torch.ao.quantization.QuantStub(),
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                      groups=1, bias=True, padding_mode="zeros"),
        )
        self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_nobias_graph(self):
        module = nn.Sequential(
            torch.ao.quantization.QuantStub(),
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                      groups=1, bias=False, padding_mode="zeros"),
        )
        self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_graph_v2(self):
        # tests the same thing as test_conv2d_graph, but for version 2 of
        # ConvPackedParams{n}d
        module = nn.Sequential(
            torch.ao.quantization.QuantStub(),
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                      groups=1, bias=True, padding_mode="zeros"),
        )
        self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_nobias_graph_v2(self):
        # tests the same thing as test_conv2d_nobias_graph, but for version 2 of
        # ConvPackedParams{n}d
        module = nn.Sequential(
            torch.ao.quantization.QuantStub(),
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                      groups=1, bias=False, padding_mode="zeros"),
        )
        self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_graph_v3(self):
        # tests the same thing as test_conv2d_graph, but for version 3 of
        # ConvPackedParams{n}d
        module = nn.Sequential(
            torch.ao.quantization.QuantStub(),
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                      groups=1, bias=True, padding_mode="zeros"),
        )
        self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_nobias_graph_v3(self):
        # tests the same thing as test_conv2d_nobias_graph, but for version 3 of
        # ConvPackedParams{n}d
        module = nn.Sequential(
            torch.ao.quantization.QuantStub(),
            nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                      groups=1, bias=False, padding_mode="zeros"),
        )
        self._test_op_graph(module, input_size=[1, 3, 6, 6], generate=False)

    @override_qengines
    def test_conv2d_relu(self):
        module = nniq.ConvReLU2d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                                 groups=1, bias=True, padding_mode="zeros")
        self._test_op(module, input_size=[1, 3, 6, 6], generate=False)
        # TODO: graph mode quantized conv2d module

    @override_qengines
    def test_conv3d(self):
        if qengine_is_fbgemm():
            module = nnq.Conv3d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                                groups=1, bias=True, padding_mode="zeros")
            self._test_op(module, input_size=[1, 3, 6, 6, 6], generate=False)
            # TODO: graph mode quantized conv3d module

    @override_qengines
    def test_conv3d_relu(self):
        if qengine_is_fbgemm():
            module = nniq.ConvReLU3d(3, 3, kernel_size=3, stride=1, padding=0, dilation=1,
                                     groups=1, bias=True, padding_mode="zeros")
            self._test_op(module, input_size=[1, 3, 6, 6, 6], generate=False)
            # TODO: graph mode quantized conv3d module

    @override_qengines
    @unittest.skipIf(IS_AVX512_VNNI_SUPPORTED, "This test fails on machines with AVX512_VNNI support. Ref: GH Issue 59098")
    def test_lstm(self):
        class LSTMModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.lstm = nnqd.LSTM(input_size=3, hidden_size=7, num_layers=1).to(dtype=torch.float)

            def forward(self, x):
                x = self.lstm(x)
                return x
        if qengine_is_fbgemm():
            mod = LSTMModule()
            self._test_op(mod, input_size=[4, 4, 3], input_quantized=False, generate=False, new_zipfile_serialization=True)

    def test_per_channel_observer(self):
        obs = PerChannelMinMaxObserver()
        self._test_obs(obs, input_size=[5, 5], generate=False)

    def test_per_tensor_observer(self):
        obs = MinMaxObserver()
        self._test_obs(obs, input_size=[5, 5], generate=False)

    def test_default_qat_qconfig(self):
        class Model(nn.Module):
            def __init__(self):
                super(Model, self).__init__()
                self.linear = nn.Linear(5, 5)
                self.relu = nn.ReLU()

            def forward(self, x):
                x = self.linear(x)
                x = self.relu(x)
                return x

        model = Model()
        model.linear.weight = torch.nn.Parameter(torch.randn(5, 5))
        model.qconfig = torch.ao.quantization.get_default_qat_qconfig("fbgemm")
        ref_model = torch.ao.quantization.QuantWrapper(model)
        ref_model = torch.ao.quantization.prepare_qat(ref_model)
        self._test_obs(ref_model, input_size=[5, 5], generate=False, check_numerics=False)

    @skipIfNoFBGEMM
    def test_linear_relu_package_quantization_transforms(self):
        m = LinearReluFunctional(4).eval()
        self._test_package(m, input_size=(1, 1, 4, 4), generate=False)