1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
import torch
import torchvision
import torchvision.transforms.transforms as transforms
import os
import torch.quantization
from torchvision.models.quantization.resnet import resnet18
from torch.autograd import Variable
# Setup warnings
import warnings
warnings.filterwarnings(
action='ignore',
category=DeprecationWarning,
module=r'.*'
)
warnings.filterwarnings(
action='default',
module=r'torch.quantization'
)
"""
Define helper functions for APoT PTQ and QAT
"""
# Specify random seed for repeatable results
_ = torch.manual_seed(191009)
train_batch_size = 30
eval_batch_size = 50
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0.0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def evaluate(model, criterion, data_loader):
model.eval()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
with torch.no_grad():
for image, target in data_loader:
output = model(image)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
print('')
return top1, top5
def load_model(model_file):
model = resnet18(pretrained=False)
state_dict = torch.load(model_file)
model.load_state_dict(state_dict)
model.to("cpu")
return model
def print_size_of_model(model):
if isinstance(model, torch.jit.RecursiveScriptModule):
torch.jit.save(model, "temp.p")
else:
torch.jit.save(torch.jit.script(model), "temp.p")
print("Size (MB):", os.path.getsize("temp.p") / 1e6)
os.remove("temp.p")
def prepare_data_loaders(data_path):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
dataset = torchvision.datasets.ImageNet(data_path,
split="train",
transform=transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize]))
dataset_test = torchvision.datasets.ImageNet(data_path,
split="val",
transform=transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize]))
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=train_batch_size,
sampler=train_sampler)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=eval_batch_size,
sampler=test_sampler)
return data_loader, data_loader_test
def training_loop(model, criterion, data_loader):
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
model.train()
for i in range(10):
for data, target in data_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss = Variable(loss, requires_grad=True)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
|