1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
# Owner(s): ["oncall: quantization"]
import torch
import unittest
from torch.ao.quantization.experimental.observer import APoTObserver
from torch.ao.quantization.experimental.quantizer import quantize_APoT, dequantize_APoT
from torch.ao.quantization.experimental.fake_quantize import APoTFakeQuantize
from torch.ao.quantization.experimental.fake_quantize_function import fake_quantize_function
forward_helper = fake_quantize_function.forward
backward = fake_quantize_function.backward
from torch.autograd import gradcheck
class TestFakeQuantize(unittest.TestCase):
r""" Tests fake quantize calculate_qparams() method
by comparing with result from observer calculate_qparams.
Uses hard-coded values: alpha=1.0, b=4, k=2.
"""
def test_fake_calc_qparams(self):
apot_fake = APoTFakeQuantize(b=4, k=2)
apot_fake.activation_post_process.min_val = torch.tensor([0.0])
apot_fake.activation_post_process.max_val = torch.tensor([1.0])
alpha, gamma, quantization_levels, level_indices = apot_fake.calculate_qparams(signed=False)
observer = APoTObserver(b=4, k=2)
observer.min_val = torch.tensor([0.0])
observer.max_val = torch.tensor([1.0])
qparams_expected = observer.calculate_qparams(signed=False)
self.assertEqual(alpha, qparams_expected[0])
self.assertTrue(torch.equal(gamma, qparams_expected[1]))
self.assertTrue(torch.equal(quantization_levels, qparams_expected[2]))
self.assertTrue(torch.equal(level_indices, qparams_expected[3]))
r""" Tests fake quantize forward() method
by comparing result with expected
quant_dequant_APoT mapping of input tensor.
Uses input tensor with random values from 0 -> 1000
and APoT observer with hard-coded values b=4, k=2
"""
def test_forward(self):
# generate a tensor of size 20 with random values
# between 0 -> 1000 to quantize -> dequantize
X = 1000 * torch.rand(20)
observer = APoTObserver(b=4, k=2)
observer.forward(X)
alpha, gamma, quantization_levels, level_indices = observer.calculate_qparams(signed=False)
apot_fake = APoTFakeQuantize(b=4, k=2)
apot_fake.enable_observer()
apot_fake.enable_fake_quant()
X_reduced_precision_fp = apot_fake.forward(torch.clone(X), False)
# get X_expected by converting fp -> apot -> fp to simulate quantize -> dequantize
X_to_apot = quantize_APoT(X, alpha, gamma, quantization_levels, level_indices)
X_expected = dequantize_APoT(X_to_apot)
self.assertTrue(torch.equal(X_reduced_precision_fp, X_expected))
r""" Tests fake quantize forward() method
throws error when qparams are None
"""
def test_forward_exception(self):
# generate a tensor of size 20 with random values
# between 0 -> 1000 to quantize -> dequantize
X = 1000 * torch.rand(20)
apot_fake = APoTFakeQuantize(b=4, k=2)
# disable observer so qparams not set, qparams are all None
apot_fake.disable_observer()
apot_fake.enable_fake_quant()
with self.assertRaises(Exception):
apot_fake.forward(torch.clone(X), False)
r""" Tests fake quantize helper backward() method
using torch.autograd.gradcheck function.
"""
def test_backward(self):
input = torch.randn(20, dtype=torch.double, requires_grad=True)
observer = APoTObserver(b=4, k=2)
observer(input)
alpha, gamma, quantization_levels, level_indices = observer.calculate_qparams(signed=False)
test = gradcheck(fake_quantize_function.apply, (input, alpha, gamma, quantization_levels, level_indices), atol=1e-4)
if __name__ == '__main__':
unittest.main()
|