1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
# Owner(s): ["oncall: quantization"]
import torch
import torch.nn.intrinsic as nni
import torch.nn.qat as nnqat
import torch.nn.quantized._reference as nnqr
from torch.testing._internal.common_quantization import QuantizationTestCase
from torch.ao.quantization.backend_config import (
BackendConfig,
BackendPatternConfig,
DTypeConfig,
DTypeWithConstraints,
ObservationType,
)
from torch.ao.quantization.fake_quantize import FixedQParamsFakeQuantize
from torch.ao.quantization.fuser_method_mappings import reverse_sequential_wrapper2
from torch.ao.quantization.fx.quantization_patterns import _default_root_node_getter
from torch.ao.quantization.observer import default_fixed_qparams_range_0to1_observer
class TestBackendConfig(QuantizationTestCase):
# =============
# DTypeConfig
# =============
dtype_config1 = DTypeConfig(
input_dtype=torch.quint8,
output_dtype=torch.quint8,
weight_dtype=torch.qint8,
bias_dtype=torch.float
)
dtype_config2 = DTypeConfig(
input_dtype=torch.float16,
output_dtype=torch.float,
is_dynamic=True
)
activation_dtype_with_constraints = DTypeWithConstraints(
dtype=torch.quint8,
quant_min_lower_bound=0,
quant_max_upper_bound=127,
scale_min_lower_bound=2 ** -12,
)
weight_dtype_with_constraints = DTypeWithConstraints(
dtype=torch.qint8,
quant_min_lower_bound=-128,
quant_max_upper_bound=127,
scale_min_lower_bound=2 ** -12,
)
dtype_config3 = DTypeConfig(
input_dtype=activation_dtype_with_constraints,
output_dtype=activation_dtype_with_constraints,
weight_dtype=weight_dtype_with_constraints,
)
dtype_config_dict1_legacy = {
"input_dtype": torch.quint8,
"output_dtype": torch.quint8,
"weight_dtype": torch.qint8,
"bias_dtype": torch.float,
}
dtype_config_dict2_legacy = {
"input_dtype": torch.float16,
"output_dtype": torch.float,
"is_dynamic": True,
}
dtype_config_dict1 = {
"input_dtype": DTypeWithConstraints(dtype=torch.quint8),
"output_dtype": DTypeWithConstraints(torch.quint8),
"weight_dtype": DTypeWithConstraints(torch.qint8),
"bias_dtype": torch.float,
}
dtype_config_dict2 = {
"input_dtype": DTypeWithConstraints(dtype=torch.float16),
"output_dtype": DTypeWithConstraints(dtype=torch.float),
"is_dynamic": True,
}
dtype_config_dict3 = {
"input_dtype": activation_dtype_with_constraints,
"output_dtype": activation_dtype_with_constraints,
"weight_dtype": weight_dtype_with_constraints,
}
def test_dtype_config_from_dict(self):
self.assertEqual(DTypeConfig.from_dict(self.dtype_config_dict1_legacy), self.dtype_config1)
self.assertEqual(DTypeConfig.from_dict(self.dtype_config_dict2_legacy), self.dtype_config2)
self.assertEqual(DTypeConfig.from_dict(self.dtype_config_dict1), self.dtype_config1)
self.assertEqual(DTypeConfig.from_dict(self.dtype_config_dict2), self.dtype_config2)
self.assertEqual(DTypeConfig.from_dict(self.dtype_config_dict3), self.dtype_config3)
def test_dtype_config_to_dict(self):
self.assertEqual(self.dtype_config1.to_dict(), self.dtype_config_dict1)
self.assertEqual(self.dtype_config2.to_dict(), self.dtype_config_dict2)
self.assertEqual(self.dtype_config3.to_dict(), self.dtype_config_dict3)
# ======================
# BackendPatternConfig
# ======================
_fuser_method = reverse_sequential_wrapper2(nni.LinearReLU)
_num_tensor_args_to_observation_type = {
0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
}
_input_type_to_index = {
"bias": 0,
"input": 1,
"weight": 2,
}
_fake_quantize = FixedQParamsFakeQuantize.with_args(observer=default_fixed_qparams_range_0to1_observer)
def _extra_inputs_getter(self, p):
return (torch.rand(3, 3),)
def _get_backend_op_config1(self):
return BackendPatternConfig((torch.nn.ReLU, torch.nn.Linear)) \
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
.add_dtype_config(self.dtype_config1) \
.add_dtype_config(self.dtype_config2) \
.set_root_module(torch.nn.Linear) \
.set_qat_module(nnqat.Linear) \
.set_reference_quantized_module(nnqr.Linear) \
.set_fused_module(nni.LinearReLU) \
.set_fuser_method(self._fuser_method)
def _get_backend_op_config2(self):
return BackendPatternConfig(torch.add) \
.add_dtype_config(self.dtype_config2) \
._set_root_node_getter(_default_root_node_getter) \
._set_extra_inputs_getter(self._extra_inputs_getter) \
._set_num_tensor_args_to_observation_type(self._num_tensor_args_to_observation_type) \
._set_input_type_to_index(self._input_type_to_index) \
._set_input_output_observed(False) \
._set_overwrite_output_fake_quantize(self._fake_quantize) \
._set_overwrite_output_observer(default_fixed_qparams_range_0to1_observer)
def _get_backend_pattern_config_dict1(self):
return {
"pattern": (torch.nn.ReLU, torch.nn.Linear),
"observation_type": ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
"dtype_configs": [self.dtype_config_dict1, self.dtype_config_dict2],
"root_module": torch.nn.Linear,
"qat_module": nnqat.Linear,
"reference_quantized_module_for_root": nnqr.Linear,
"fused_module": nni.LinearReLU,
"fuser_method": self._fuser_method,
}
def _get_backend_pattern_config_dict2(self):
return {
"pattern": torch.add,
"observation_type": ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
"dtype_configs": [self.dtype_config_dict2],
"root_node_getter": _default_root_node_getter,
"extra_inputs_getter": self._extra_inputs_getter,
"num_tensor_args_to_observation_type": self._num_tensor_args_to_observation_type,
"input_type_to_index": self._input_type_to_index,
"input_output_observed": False,
"overwrite_output_fake_quantize": self._fake_quantize,
"overwrite_output_observer": default_fixed_qparams_range_0to1_observer
}
def test_backend_op_config_set_observation_type(self):
conf = BackendPatternConfig(torch.nn.Linear)
self.assertEqual(conf.observation_type, ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT)
conf.set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
self.assertEqual(conf.observation_type, ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
def test_backend_op_config_add_dtype_config(self):
conf = BackendPatternConfig(torch.nn.Linear)
self.assertEqual(len(conf.dtype_configs), 0)
conf.add_dtype_config(self.dtype_config1)
conf.add_dtype_config(self.dtype_config2)
self.assertEqual(len(conf.dtype_configs), 2)
self.assertEqual(conf.dtype_configs[0], self.dtype_config1)
self.assertEqual(conf.dtype_configs[1], self.dtype_config2)
def test_backend_op_config_set_root_module(self):
conf = BackendPatternConfig(nni.LinearReLU)
self.assertTrue(conf.root_module is None)
conf.set_root_module(torch.nn.Linear)
self.assertEqual(conf.root_module, torch.nn.Linear)
def test_backend_op_config_set_qat_module(self):
conf = BackendPatternConfig(torch.nn.Linear)
self.assertTrue(conf.qat_module is None)
conf.set_qat_module(nnqat.Linear)
self.assertEqual(conf.qat_module, nnqat.Linear)
def test_backend_op_config_set_reference_quantized_module(self):
conf = BackendPatternConfig(torch.nn.Linear)
self.assertTrue(conf.reference_quantized_module is None)
conf.set_reference_quantized_module(nnqr.Linear)
self.assertEqual(conf.reference_quantized_module, nnqr.Linear)
def test_backend_op_config_set_fused_module(self):
conf = BackendPatternConfig((torch.nn.ReLU, torch.nn.Linear))
self.assertTrue(conf.fused_module is None)
conf.set_fused_module(nni.LinearReLU)
self.assertEqual(conf.fused_module, nni.LinearReLU)
def test_backend_op_config_set_fuser_method(self):
conf = BackendPatternConfig((torch.nn.ReLU, torch.nn.Linear))
self.assertTrue(conf.fuser_method is None)
conf.set_fuser_method(self._fuser_method)
self.assertEqual(conf.fuser_method, self._fuser_method)
def test_backend_op_config_set_root_node_getter(self):
conf = BackendPatternConfig((torch.nn.ReLU, torch.nn.Linear))
self.assertTrue(conf._root_node_getter is None)
conf._set_root_node_getter(_default_root_node_getter)
self.assertEqual(conf._root_node_getter, _default_root_node_getter)
def test_backend_op_config_set_extra_inputs_getter(self):
conf = BackendPatternConfig(torch.nn.Linear)
self.assertTrue(conf._extra_inputs_getter is None)
conf._set_extra_inputs_getter(self._extra_inputs_getter)
self.assertEqual(conf._extra_inputs_getter, self._extra_inputs_getter)
def test_backend_op_config_set_num_tensor_args_to_observation_type(self):
conf = BackendPatternConfig(torch.add)
self.assertEqual(len(conf._num_tensor_args_to_observation_type), 0)
conf._set_num_tensor_args_to_observation_type(self._num_tensor_args_to_observation_type)
self.assertEqual(conf._num_tensor_args_to_observation_type, self._num_tensor_args_to_observation_type)
def test_backend_op_config_set_input_type_to_index(self):
conf = BackendPatternConfig(torch.addmm)
self.assertEqual(len(conf._input_type_to_index), 0)
conf._set_input_type_to_index(self._input_type_to_index)
self.assertEqual(conf._input_type_to_index, self._input_type_to_index)
def test_backend_op_config_set_input_output_observed(self):
conf = BackendPatternConfig(torch.nn.Embedding)
self.assertTrue(conf._input_output_observed is None)
conf._set_input_output_observed(False)
self.assertEqual(conf._input_output_observed, False)
def test_backend_op_config_set_overwrite_output_fake_quantize(self):
conf = BackendPatternConfig(torch.sigmoid)
self.assertTrue(conf._overwrite_output_fake_quantize is None)
conf._set_overwrite_output_fake_quantize(self._fake_quantize)
self.assertEqual(conf._overwrite_output_fake_quantize, self._fake_quantize)
def test_backend_op_config_set_overwrite_output_observer(self):
conf = BackendPatternConfig(torch.sigmoid)
self.assertTrue(conf._overwrite_output_observer is None)
conf._set_overwrite_output_observer(default_fixed_qparams_range_0to1_observer)
self.assertEqual(conf._overwrite_output_observer, default_fixed_qparams_range_0to1_observer)
def test_backend_op_config_from_dict(self):
conf_dict1 = self._get_backend_pattern_config_dict1()
conf1 = BackendPatternConfig.from_dict(conf_dict1)
self.assertEqual(conf1.pattern, (torch.nn.ReLU, torch.nn.Linear))
self.assertEqual(conf1.observation_type, ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT)
self.assertEqual(conf1.root_module, torch.nn.Linear)
self.assertEqual(conf1.qat_module, nnqat.Linear)
self.assertEqual(conf1.reference_quantized_module, nnqr.Linear)
self.assertEqual(conf1.fused_module, nni.LinearReLU)
self.assertEqual(conf1.fuser_method, self._fuser_method)
self.assertTrue(conf1._root_node_getter is None)
self.assertTrue(conf1._extra_inputs_getter is None)
self.assertEqual(len(conf1._num_tensor_args_to_observation_type), 0)
self.assertEqual(len(conf1._input_type_to_index), 0)
self.assertTrue(conf1._input_output_observed is None)
self.assertTrue(conf1._overwrite_output_fake_quantize is None)
self.assertTrue(conf1._overwrite_output_observer is None)
# Test temporary/internal keys
conf_dict2 = self._get_backend_pattern_config_dict2()
conf2 = BackendPatternConfig.from_dict(conf_dict2)
self.assertEqual(conf2.pattern, torch.add)
self.assertEqual(conf2.observation_type, ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT)
self.assertTrue(conf2.root_module is None)
self.assertTrue(conf2.qat_module is None)
self.assertTrue(conf2.reference_quantized_module is None)
self.assertTrue(conf2.fused_module is None)
self.assertTrue(conf2.fuser_method is None)
self.assertEqual(conf2._root_node_getter, _default_root_node_getter)
self.assertEqual(conf2._extra_inputs_getter, self._extra_inputs_getter)
self.assertEqual(conf2._num_tensor_args_to_observation_type, self._num_tensor_args_to_observation_type)
self.assertEqual(conf2._input_type_to_index, self._input_type_to_index)
self.assertEqual(conf2._input_output_observed, False)
self.assertEqual(conf2._overwrite_output_fake_quantize, self._fake_quantize)
self.assertEqual(conf2._overwrite_output_observer, default_fixed_qparams_range_0to1_observer)
def test_backend_op_config_to_dict(self):
conf1 = self._get_backend_op_config1()
conf2 = self._get_backend_op_config2()
conf_dict1 = self._get_backend_pattern_config_dict1()
conf_dict2 = self._get_backend_pattern_config_dict2()
self.assertEqual(conf1.to_dict(), conf_dict1)
self.assertEqual(conf2.to_dict(), conf_dict2)
# ===============
# BackendConfig
# ===============
def test_backend_config_set_name(self):
conf = BackendConfig("name1")
self.assertEqual(conf.name, "name1")
conf.set_name("name2")
self.assertEqual(conf.name, "name2")
def test_backend_config_set_backend_pattern_config(self):
conf = BackendConfig("name1")
self.assertEqual(len(conf.configs), 0)
backend_op_config1 = self._get_backend_op_config1()
backend_op_config2 = self._get_backend_op_config2()
conf.set_backend_pattern_config(backend_op_config1)
self.assertEqual(conf.configs, {
(torch.nn.ReLU, torch.nn.Linear): backend_op_config1,
})
conf.set_backend_pattern_config(backend_op_config2)
self.assertEqual(conf.configs, {
(torch.nn.ReLU, torch.nn.Linear): backend_op_config1,
torch.add: backend_op_config2
})
def test_backend_config_from_dict(self):
op1 = self._get_backend_op_config1()
op2 = self._get_backend_op_config2()
op_dict1 = self._get_backend_pattern_config_dict1()
op_dict2 = self._get_backend_pattern_config_dict2()
conf_dict = {
"name": "name1",
"configs": [op_dict1, op_dict2],
}
conf = BackendConfig.from_dict(conf_dict)
self.assertEqual(conf.name, "name1")
self.assertEqual(len(conf.configs), 2)
key1 = (torch.nn.ReLU, torch.nn.Linear)
key2 = torch.add
self.assertTrue(key1 in conf.configs)
self.assertTrue(key2 in conf.configs)
self.assertEqual(conf.configs[key1].to_dict(), op_dict1)
self.assertEqual(conf.configs[key2].to_dict(), op_dict2)
def test_backend_config_to_dict(self):
op1 = self._get_backend_op_config1()
op2 = self._get_backend_op_config2()
op_dict1 = self._get_backend_pattern_config_dict1()
op_dict2 = self._get_backend_pattern_config_dict2()
conf = BackendConfig("name1").set_backend_pattern_config(op1).set_backend_pattern_config(op2)
conf_dict = {
"name": "name1",
"configs": [op_dict1, op_dict2],
}
self.assertEqual(conf.to_dict(), conf_dict)
if __name__ == '__main__':
raise RuntimeError("This _test file is not meant to be run directly, use:\n\n"
"\tpython _test/_test_quantization.py TESTNAME\n\n"
"instead.")
|