File: test_quantized_functional.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (240 lines) | stat: -rw-r--r-- 10,443 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Owner(s): ["oncall: quantization"]

# Torch
import torch
import torch.ao.nn.quantized.functional as qF
import torch.nn.functional as F

# Standard library
import numpy as np

# Testing utils
from hypothesis import assume, given
from hypothesis import strategies as st
from torch.testing._internal.common_quantization import (
    QuantizationTestCase,
    _make_conv_test_input,
)
from torch.testing._internal.common_quantized import override_quantized_engine
from torch.testing._internal.common_utils import (
    IS_PPC,
    TEST_WITH_UBSAN,
)

class TestQuantizedFunctionalOps(QuantizationTestCase):
    def test_relu_api(self):
        X = torch.arange(-5, 5, dtype=torch.float)
        scale = 2.0
        zero_point = 1
        qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
        qY = torch.relu(qX)
        qY_hat = F.relu(qX)
        self.assertEqual(qY, qY_hat)

    def _test_conv_api_impl(
        self, qconv_fn, conv_fn, batch_size, in_channels_per_group,
        input_feature_map_size, out_channels_per_group, groups, kernel_size,
        stride, padding, dilation, X_scale, X_zero_point, W_scale, W_zero_point,
        Y_scale, Y_zero_point, use_bias, use_channelwise,
    ):
        for i in range(len(kernel_size)):
            assume(input_feature_map_size[i] + 2 * padding[i]
                   >= dilation[i] * (kernel_size[i] - 1) + 1)
        (X, X_q, W, W_q, b) = _make_conv_test_input(
            batch_size, in_channels_per_group, input_feature_map_size,
            out_channels_per_group, groups, kernel_size, X_scale,
            X_zero_point, W_scale, W_zero_point, use_bias, use_channelwise)

        Y_exp = conv_fn(X, W, b, stride, padding, dilation, groups)
        Y_exp = torch.quantize_per_tensor(
            Y_exp, scale=Y_scale, zero_point=Y_zero_point, dtype=torch.quint8)
        Y_act = qconv_fn(
            X_q, W_q, b, stride, padding, dilation, groups,
            padding_mode="zeros", scale=Y_scale, zero_point=Y_zero_point)

        # Make sure the results match
        # assert_array_almost_equal compares using the following formula:
        #     abs(desired-actual) < 1.5 * 10**(-decimal)
        # (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html)
        # We use decimal = 0 to ignore off-by-1 differences between reference
        # and test. Off-by-1 differences arise due to the order of round and
        # zero_point addition operation, i.e., if addition followed by round is
        # used by reference and round followed by addition is used by test, the
        # results may differ by 1.
        # For example, the result of round(2.5) + 1 is 3 while round(2.5 + 1) is
        # 4 assuming the rounding mode is round-to-nearest, ties-to-even.
        np.testing.assert_array_almost_equal(
            Y_exp.int_repr().numpy(), Y_act.int_repr().numpy(), decimal=0)

    @given(batch_size=st.integers(1, 3),
           in_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
           L=st.integers(4, 16),
           out_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
           groups=st.integers(1, 4),
           kernel=st.integers(1, 7),
           stride=st.integers(1, 2),
           pad=st.integers(0, 2),
           dilation=st.integers(1, 2),
           X_scale=st.floats(1.2, 1.6),
           X_zero_point=st.integers(0, 4),
           W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
           W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
           Y_scale=st.floats(4.2, 5.6),
           Y_zero_point=st.integers(0, 4),
           use_bias=st.booleans(),
           use_channelwise=st.booleans(),
           qengine=st.sampled_from(("qnnpack", "fbgemm")))
    def test_conv1d_api(
        self, batch_size, in_channels_per_group, L, out_channels_per_group,
        groups, kernel, stride, pad, dilation,
        X_scale, X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point,
        use_bias, use_channelwise, qengine,
    ):
        # Tests the correctness of the conv1d function.
        if qengine not in torch.backends.quantized.supported_engines:
            return
        if qengine == 'qnnpack':
            if IS_PPC or TEST_WITH_UBSAN:
                return
            use_channelwise = False

        input_feature_map_size = (L, )
        kernel_size = (kernel, )
        stride = (stride, )
        padding = (pad, )
        dilation = (dilation, )

        with override_quantized_engine(qengine):
            qconv_fn = qF.conv1d
            conv_fn = F.conv1d
            self._test_conv_api_impl(
                qconv_fn, conv_fn, batch_size, in_channels_per_group,
                input_feature_map_size, out_channels_per_group, groups,
                kernel_size, stride, padding, dilation, X_scale, X_zero_point,
                W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
                use_channelwise)

    @given(batch_size=st.integers(1, 3),
           in_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
           H=st.integers(4, 16),
           W=st.integers(4, 16),
           out_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
           groups=st.integers(1, 4),
           kernel_h=st.integers(1, 7),
           kernel_w=st.integers(1, 7),
           stride_h=st.integers(1, 2),
           stride_w=st.integers(1, 2),
           pad_h=st.integers(0, 2),
           pad_w=st.integers(0, 2),
           dilation=st.integers(1, 2),
           X_scale=st.floats(1.2, 1.6),
           X_zero_point=st.integers(0, 4),
           W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
           W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
           Y_scale=st.floats(4.2, 5.6),
           Y_zero_point=st.integers(0, 4),
           use_bias=st.booleans(),
           use_channelwise=st.booleans(),
           qengine=st.sampled_from(("qnnpack", "fbgemm")))
    def test_conv2d_api(
        self, batch_size, in_channels_per_group, H, W, out_channels_per_group,
        groups, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation,
        X_scale, X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point,
        use_bias, use_channelwise, qengine,
    ):
        # Tests the correctness of the conv2d function.

        if qengine not in torch.backends.quantized.supported_engines:
            return
        if qengine == 'qnnpack':
            if IS_PPC or TEST_WITH_UBSAN:
                return

        input_feature_map_size = (H, W)
        kernel_size = (kernel_h, kernel_w)
        stride = (stride_h, stride_w)
        padding = (pad_h, pad_w)
        dilation = (dilation, dilation)

        with override_quantized_engine(qengine):
            qconv_fn = qF.conv2d
            conv_fn = F.conv2d
            self._test_conv_api_impl(
                qconv_fn, conv_fn, batch_size, in_channels_per_group,
                input_feature_map_size, out_channels_per_group, groups,
                kernel_size, stride, padding, dilation, X_scale, X_zero_point,
                W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
                use_channelwise)

    @given(batch_size=st.integers(1, 3),
           in_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
           D=st.integers(4, 8),
           H=st.integers(4, 8),
           W=st.integers(4, 8),
           out_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
           groups=st.integers(1, 4),
           kernel_d=st.integers(1, 4),
           kernel_h=st.integers(1, 4),
           kernel_w=st.integers(1, 4),
           stride_d=st.integers(1, 2),
           stride_h=st.integers(1, 2),
           stride_w=st.integers(1, 2),
           pad_d=st.integers(0, 2),
           pad_h=st.integers(0, 2),
           pad_w=st.integers(0, 2),
           dilation=st.integers(1, 2),
           X_scale=st.floats(1.2, 1.6),
           X_zero_point=st.integers(0, 4),
           W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
           W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
           Y_scale=st.floats(4.2, 5.6),
           Y_zero_point=st.integers(0, 4),
           use_bias=st.booleans(),
           use_channelwise=st.booleans(),
           qengine=st.sampled_from(("fbgemm",)))
    def test_conv3d_api(
        self, batch_size, in_channels_per_group, D, H, W,
        out_channels_per_group, groups, kernel_d, kernel_h, kernel_w,
        stride_d, stride_h, stride_w, pad_d, pad_h, pad_w, dilation, X_scale,
        X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
        use_channelwise, qengine,
    ):
        # Tests the correctness of the conv3d function.
        # Currently conv3d only supports FbGemm engine

        if qengine not in torch.backends.quantized.supported_engines:
            return

        input_feature_map_size = (D, H, W)
        kernel_size = (kernel_d, kernel_h, kernel_w)
        stride = (stride_d, stride_h, stride_w)
        padding = (pad_d, pad_h, pad_w)
        dilation = (dilation, dilation, dilation)

        with override_quantized_engine(qengine):
            qconv_fn = qF.conv3d
            conv_fn = F.conv3d
            self._test_conv_api_impl(
                qconv_fn, conv_fn, batch_size, in_channels_per_group,
                input_feature_map_size, out_channels_per_group, groups,
                kernel_size, stride, padding, dilation, X_scale, X_zero_point,
                W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
                use_channelwise)

    @given(N=st.integers(1, 10),
           C=st.integers(1, 10),
           H=st.integers(4, 8),
           H_out=st.integers(4, 8),
           W=st.integers(4, 8),
           W_out=st.integers(4, 8),
           scale=st.floats(.1, 2),
           zero_point=st.integers(0, 4))
    def test_grid_sample(self, N, C, H, H_out, W, W_out, scale, zero_point):
        X = torch.rand(N, C, H, W)
        X_q = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
        grid = torch.rand(N, H_out, W_out, 2)

        out = F.grid_sample(X_q, grid)
        out_exp = torch.quantize_per_tensor(F.grid_sample(X, grid), scale=scale, zero_point=zero_point, dtype=torch.quint8)
        np.testing.assert_array_almost_equal(
            out.int_repr().numpy(), out_exp.int_repr().numpy(), decimal=0)