1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
# Owner(s): ["oncall: quantization"]
# Torch
import torch
import torch.ao.nn.quantized.functional as qF
import torch.nn.functional as F
# Standard library
import numpy as np
# Testing utils
from hypothesis import assume, given
from hypothesis import strategies as st
from torch.testing._internal.common_quantization import (
QuantizationTestCase,
_make_conv_test_input,
)
from torch.testing._internal.common_quantized import override_quantized_engine
from torch.testing._internal.common_utils import (
IS_PPC,
TEST_WITH_UBSAN,
)
class TestQuantizedFunctionalOps(QuantizationTestCase):
def test_relu_api(self):
X = torch.arange(-5, 5, dtype=torch.float)
scale = 2.0
zero_point = 1
qX = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
qY = torch.relu(qX)
qY_hat = F.relu(qX)
self.assertEqual(qY, qY_hat)
def _test_conv_api_impl(
self, qconv_fn, conv_fn, batch_size, in_channels_per_group,
input_feature_map_size, out_channels_per_group, groups, kernel_size,
stride, padding, dilation, X_scale, X_zero_point, W_scale, W_zero_point,
Y_scale, Y_zero_point, use_bias, use_channelwise,
):
for i in range(len(kernel_size)):
assume(input_feature_map_size[i] + 2 * padding[i]
>= dilation[i] * (kernel_size[i] - 1) + 1)
(X, X_q, W, W_q, b) = _make_conv_test_input(
batch_size, in_channels_per_group, input_feature_map_size,
out_channels_per_group, groups, kernel_size, X_scale,
X_zero_point, W_scale, W_zero_point, use_bias, use_channelwise)
Y_exp = conv_fn(X, W, b, stride, padding, dilation, groups)
Y_exp = torch.quantize_per_tensor(
Y_exp, scale=Y_scale, zero_point=Y_zero_point, dtype=torch.quint8)
Y_act = qconv_fn(
X_q, W_q, b, stride, padding, dilation, groups,
padding_mode="zeros", scale=Y_scale, zero_point=Y_zero_point)
# Make sure the results match
# assert_array_almost_equal compares using the following formula:
# abs(desired-actual) < 1.5 * 10**(-decimal)
# (https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_almost_equal.html)
# We use decimal = 0 to ignore off-by-1 differences between reference
# and test. Off-by-1 differences arise due to the order of round and
# zero_point addition operation, i.e., if addition followed by round is
# used by reference and round followed by addition is used by test, the
# results may differ by 1.
# For example, the result of round(2.5) + 1 is 3 while round(2.5 + 1) is
# 4 assuming the rounding mode is round-to-nearest, ties-to-even.
np.testing.assert_array_almost_equal(
Y_exp.int_repr().numpy(), Y_act.int_repr().numpy(), decimal=0)
@given(batch_size=st.integers(1, 3),
in_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
L=st.integers(4, 16),
out_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
groups=st.integers(1, 4),
kernel=st.integers(1, 7),
stride=st.integers(1, 2),
pad=st.integers(0, 2),
dilation=st.integers(1, 2),
X_scale=st.floats(1.2, 1.6),
X_zero_point=st.integers(0, 4),
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
Y_scale=st.floats(4.2, 5.6),
Y_zero_point=st.integers(0, 4),
use_bias=st.booleans(),
use_channelwise=st.booleans(),
qengine=st.sampled_from(("qnnpack", "fbgemm")))
def test_conv1d_api(
self, batch_size, in_channels_per_group, L, out_channels_per_group,
groups, kernel, stride, pad, dilation,
X_scale, X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point,
use_bias, use_channelwise, qengine,
):
# Tests the correctness of the conv1d function.
if qengine not in torch.backends.quantized.supported_engines:
return
if qengine == 'qnnpack':
if IS_PPC or TEST_WITH_UBSAN:
return
use_channelwise = False
input_feature_map_size = (L, )
kernel_size = (kernel, )
stride = (stride, )
padding = (pad, )
dilation = (dilation, )
with override_quantized_engine(qengine):
qconv_fn = qF.conv1d
conv_fn = F.conv1d
self._test_conv_api_impl(
qconv_fn, conv_fn, batch_size, in_channels_per_group,
input_feature_map_size, out_channels_per_group, groups,
kernel_size, stride, padding, dilation, X_scale, X_zero_point,
W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
use_channelwise)
@given(batch_size=st.integers(1, 3),
in_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
H=st.integers(4, 16),
W=st.integers(4, 16),
out_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
groups=st.integers(1, 4),
kernel_h=st.integers(1, 7),
kernel_w=st.integers(1, 7),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
X_scale=st.floats(1.2, 1.6),
X_zero_point=st.integers(0, 4),
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
Y_scale=st.floats(4.2, 5.6),
Y_zero_point=st.integers(0, 4),
use_bias=st.booleans(),
use_channelwise=st.booleans(),
qengine=st.sampled_from(("qnnpack", "fbgemm")))
def test_conv2d_api(
self, batch_size, in_channels_per_group, H, W, out_channels_per_group,
groups, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation,
X_scale, X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point,
use_bias, use_channelwise, qengine,
):
# Tests the correctness of the conv2d function.
if qengine not in torch.backends.quantized.supported_engines:
return
if qengine == 'qnnpack':
if IS_PPC or TEST_WITH_UBSAN:
return
input_feature_map_size = (H, W)
kernel_size = (kernel_h, kernel_w)
stride = (stride_h, stride_w)
padding = (pad_h, pad_w)
dilation = (dilation, dilation)
with override_quantized_engine(qengine):
qconv_fn = qF.conv2d
conv_fn = F.conv2d
self._test_conv_api_impl(
qconv_fn, conv_fn, batch_size, in_channels_per_group,
input_feature_map_size, out_channels_per_group, groups,
kernel_size, stride, padding, dilation, X_scale, X_zero_point,
W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
use_channelwise)
@given(batch_size=st.integers(1, 3),
in_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
D=st.integers(4, 8),
H=st.integers(4, 8),
W=st.integers(4, 8),
out_channels_per_group=st.sampled_from([2, 4, 5, 8, 16, 32]),
groups=st.integers(1, 4),
kernel_d=st.integers(1, 4),
kernel_h=st.integers(1, 4),
kernel_w=st.integers(1, 4),
stride_d=st.integers(1, 2),
stride_h=st.integers(1, 2),
stride_w=st.integers(1, 2),
pad_d=st.integers(0, 2),
pad_h=st.integers(0, 2),
pad_w=st.integers(0, 2),
dilation=st.integers(1, 2),
X_scale=st.floats(1.2, 1.6),
X_zero_point=st.integers(0, 4),
W_scale=st.lists(st.floats(0.2, 1.6), min_size=1, max_size=2),
W_zero_point=st.lists(st.integers(-5, 5), min_size=1, max_size=2),
Y_scale=st.floats(4.2, 5.6),
Y_zero_point=st.integers(0, 4),
use_bias=st.booleans(),
use_channelwise=st.booleans(),
qengine=st.sampled_from(("fbgemm",)))
def test_conv3d_api(
self, batch_size, in_channels_per_group, D, H, W,
out_channels_per_group, groups, kernel_d, kernel_h, kernel_w,
stride_d, stride_h, stride_w, pad_d, pad_h, pad_w, dilation, X_scale,
X_zero_point, W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
use_channelwise, qengine,
):
# Tests the correctness of the conv3d function.
# Currently conv3d only supports FbGemm engine
if qengine not in torch.backends.quantized.supported_engines:
return
input_feature_map_size = (D, H, W)
kernel_size = (kernel_d, kernel_h, kernel_w)
stride = (stride_d, stride_h, stride_w)
padding = (pad_d, pad_h, pad_w)
dilation = (dilation, dilation, dilation)
with override_quantized_engine(qengine):
qconv_fn = qF.conv3d
conv_fn = F.conv3d
self._test_conv_api_impl(
qconv_fn, conv_fn, batch_size, in_channels_per_group,
input_feature_map_size, out_channels_per_group, groups,
kernel_size, stride, padding, dilation, X_scale, X_zero_point,
W_scale, W_zero_point, Y_scale, Y_zero_point, use_bias,
use_channelwise)
@given(N=st.integers(1, 10),
C=st.integers(1, 10),
H=st.integers(4, 8),
H_out=st.integers(4, 8),
W=st.integers(4, 8),
W_out=st.integers(4, 8),
scale=st.floats(.1, 2),
zero_point=st.integers(0, 4))
def test_grid_sample(self, N, C, H, H_out, W, W_out, scale, zero_point):
X = torch.rand(N, C, H, W)
X_q = torch.quantize_per_tensor(X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
grid = torch.rand(N, H_out, W_out, 2)
out = F.grid_sample(X_q, grid)
out_exp = torch.quantize_per_tensor(F.grid_sample(X, grid), scale=scale, zero_point=zero_point, dtype=torch.quint8)
np.testing.assert_array_almost_equal(
out.int_repr().numpy(), out_exp.int_repr().numpy(), decimal=0)
|