1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
|
# Owner(s): ["oncall: quantization"]
# Torch
import torch
from torch.ao.quantization import (
MinMaxObserver,
PerChannelMinMaxObserver,
MovingAverageMinMaxObserver,
MovingAveragePerChannelMinMaxObserver,
HistogramObserver,
RecordingObserver,
PlaceholderObserver,
NoopObserver,
FakeQuantize,
FixedQParamsObserver,
default_debug_qconfig,
default_observer,
default_histogram_observer,
default_per_channel_weight_observer,
get_observer_dict,
prepare,
prepare_qat,
convert,
QConfig,
FusedMovingAvgObsFakeQuantize,
get_embedding_qat_module_mappings,
get_embedding_static_quant_module_mappings,
)
import torch.nn as nn
# Standard library
import copy
import io
import itertools
import unittest
import math
import numpy as np
# Testing utils
from hypothesis import given, settings
from hypothesis import strategies as st
import torch.testing._internal.hypothesis_utils as hu
hu.assert_deadline_disabled()
from torch.testing._internal.common_cuda import TEST_MULTIGPU, TEST_CUDA
from torch.testing._internal.common_utils import TestCase
from torch.testing._internal.common_quantization import (
QuantizationTestCase,
AnnotatedSingleLayerLinearModel,
test_only_eval_fn,
SingleLayerLinearModel,
)
from torch.testing._internal.common_quantized import (
override_quantized_engine,
supported_qengines,
override_qengines,
_fake_quantize_per_channel_affine_reference,
_fake_quantize_per_channel_affine_grad_reference,
to_tensor,
)
from torch.testing._internal.common_quantization import (
DeFusedEmbeddingBagLinear,
)
NP_RANDOM_SEED = 19
tolerance = 1e-6
class TestObserver(QuantizationTestCase):
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8, torch.qint32)),
qscheme=st.sampled_from((torch.per_tensor_affine, torch.per_tensor_symmetric)),
reduce_range=st.booleans())
def test_per_tensor_observers(self, qdtype, qscheme, reduce_range):
# reduce_range cannot be true for symmetric quantization with uint8
if (qdtype == torch.quint8 and qscheme == torch.per_tensor_symmetric) or qdtype == torch.qint32:
reduce_range = False
ObserverList = [MinMaxObserver(dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range),
MovingAverageMinMaxObserver(averaging_constant=0.5,
dtype=qdtype,
qscheme=qscheme,
reduce_range=reduce_range)]
def _get_ref_params(reduce_range, qscheme, dtype, input_scale, min_val, max_val):
eps = torch.tensor([tolerance])
if dtype == torch.qint8:
if reduce_range:
quant_min, quant_max = -64, 63
else:
quant_min, quant_max = -128, 127
elif dtype == torch.quint8:
if reduce_range:
quant_min, quant_max = 0, 127
else:
quant_min, quant_max = 0, 255
elif dtype == torch.qint32:
quant_min, quant_max = -1 * (2 ** 31), (2 ** 31) - 1
min_val_neg = torch.tensor([0.])
max_val_pos = torch.tensor([input_scale * max_val]) if qdtype is torch.qint32 else torch.tensor([max_val])
scale, zero_point = 1.0, 0
if qscheme == torch.per_tensor_symmetric or qscheme == torch.per_channel_symmetric:
scale = torch.max(-min_val_neg, max_val_pos) / (float(quant_max - quant_min) / 2)
scale = torch.max(scale, eps)
if dtype == torch.quint8:
zero_point = 128
else:
scale = torch.max((max_val_pos - min_val_neg) / float(quant_max - quant_min), eps)
zero_point = quant_min - torch.round(min_val_neg / scale).to(torch.int)
zero_point = torch.clamp(zero_point, quant_min, quant_max)
return scale, zero_point
for myobs in ObserverList:
# Calculate Qparams should return with a warning for observers with no data
qparams = myobs.calculate_qparams()
input_scale = 2**16 if qdtype is torch.qint32 else 1
if type(myobs) == MinMaxObserver:
x = torch.tensor([1.0, 2.0, 2.0, 3.0, 4.0, 5.0, 6.0]) * input_scale
y = torch.tensor([4.0, 5.0, 5.0, 6.0, 7.0, 8.0]) * input_scale
else:
# Moving average of min/max for x and y matches that of
# extreme values for x/y used for minmax observer
x = torch.tensor([0.0, 2.0, 2.0, 3.0, 4.0, 5.0, 6.0]) * input_scale
y = torch.tensor([2.0, 5.0, 5.0, 6.0, 7.0, 10.0]) * input_scale
result = myobs(x)
result = myobs(y)
self.assertEqual(result, y)
self.assertEqual(myobs.min_val, 1.0 * input_scale)
self.assertEqual(myobs.max_val, 8.0 * input_scale)
qparams = myobs.calculate_qparams()
ref_scale, ref_zero_point = _get_ref_params(reduce_range, qscheme, qdtype, input_scale, 1.0, 8.0)
self.assertEqual(qparams[1].item(), ref_zero_point)
self.assertEqual(qparams[0].item(), ref_scale, atol=1e-5, rtol=0)
state_dict = myobs.state_dict()
b = io.BytesIO()
torch.save(state_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
for key in state_dict:
self.assertEqual(state_dict[key], loaded_dict[key])
loaded_obs = MinMaxObserver(dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range)
loaded_obs.load_state_dict(loaded_dict)
loaded_qparams = loaded_obs.calculate_qparams()
self.assertEqual(myobs.min_val, loaded_obs.min_val)
self.assertEqual(myobs.max_val, loaded_obs.max_val)
self.assertEqual(myobs.calculate_qparams(), loaded_obs.calculate_qparams())
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)),
qscheme=st.sampled_from((torch.per_channel_affine, torch.per_channel_symmetric, torch.per_channel_affine_float_qparams)),
ch_axis=st.sampled_from((0, 1, 2, 3)), reduce_range=st.booleans())
def test_per_channel_observers(self, qdtype, qscheme, ch_axis, reduce_range):
# reduce_range cannot be true for symmetric quantization with uint8
if qscheme == torch.per_channel_affine_float_qparams:
reduce_range = False
if qdtype == torch.quint8 and qscheme == torch.per_channel_symmetric:
reduce_range = False
ObserverList = [PerChannelMinMaxObserver(reduce_range=reduce_range,
ch_axis=ch_axis,
dtype=qdtype,
qscheme=qscheme),
MovingAveragePerChannelMinMaxObserver(averaging_constant=0.5,
reduce_range=reduce_range,
ch_axis=ch_axis,
dtype=qdtype,
qscheme=qscheme)]
for myobs in ObserverList:
# Calculate qparams should work for empty observers
qparams = myobs.calculate_qparams()
x = torch.tensor(
[
[[[1.0, 2.0], [2.0, 2.5]], [[3.0, 4.0], [4.5, 6.0]]],
[[[-4.0, -3.0], [5.0, 5.0]], [[6.0, 3.0], [7.0, 8.0]]],
]
)
if type(myobs) == MovingAveragePerChannelMinMaxObserver:
# Scaling the input tensor to model change in min/max values
# across batches
result = myobs(0.5 * x)
result = myobs(1.5 * x)
self.assertEqual(result, 1.5 * x)
else:
result = myobs(x)
self.assertEqual(result, x)
qparams = myobs.calculate_qparams()
ref_min_vals = [[1.0, -4.0], [-4.0, 3.0], [-4.0, 2.0], [-4.0, -3.0]]
ref_max_vals = [[6.0, 8.0], [5.0, 8.0], [6.0, 8.0], [7.0, 8.0]]
per_channel_symmetric_ref_scales = [
[0.04705882, 0.06274509],
[0.03921569, 0.0627451],
[0.04705882, 0.0627451],
[0.05490196, 0.0627451],
]
per_channel_affine_ref_scales = [
[0.02352941, 0.04705882],
[0.03529412, 0.03137255],
[0.03921569, 0.03137255],
[0.04313726, 0.04313726],
]
per_channel_affine_qint8_zp = [
[-128, -43],
[-15, -128],
[-26, -128],
[-35, -58],
]
per_channel_affine_float_qparams_ref_scales = [
[0.0196, 0.0471],
[0.0353, 0.0196],
[0.0392, 0.0235],
[0.0431, 0.0431],
]
per_channel_affine_quint8_zp = [[0, 85], [113, 0], [102, 0], [93, 70]]
self.assertEqual(myobs.min_val, ref_min_vals[ch_axis])
self.assertEqual(myobs.max_val, ref_max_vals[ch_axis])
if qscheme == torch.per_channel_symmetric:
ref_scales = per_channel_symmetric_ref_scales[ch_axis]
ref_zero_points = [0, 0] if qdtype is torch.qint8 else [128, 128]
elif qscheme == torch.per_channel_affine_float_qparams:
ref_scales = per_channel_affine_float_qparams_ref_scales[ch_axis]
ref_zero_points = [-1 * ref_min_vals[ch_axis][i] / ref_scales[i] for i in range(len(ref_scales))]
else:
ref_scales = per_channel_affine_ref_scales[ch_axis]
ref_zero_points = (
per_channel_affine_qint8_zp[ch_axis]
if qdtype is torch.qint8
else per_channel_affine_quint8_zp[ch_axis]
)
if reduce_range:
ref_scales = [s * 255 / 127 for s in ref_scales]
ref_zero_points = [math.floor(z / 2) for z in ref_zero_points]
self.assertEqual(qparams[0], torch.tensor(ref_scales, dtype=qparams[0].dtype), rtol=1e-5, atol=0.0001)
if qscheme == torch.per_channel_affine_float_qparams:
self.assertEqual(qparams[1], torch.tensor(ref_zero_points, dtype=qparams[1].dtype), rtol=1e-5, atol=1)
else:
self.assertEqual(qparams[1], torch.tensor(ref_zero_points, dtype=qparams[1].dtype))
# Test for serializability
state_dict = myobs.state_dict()
b = io.BytesIO()
torch.save(state_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
for key in state_dict:
self.assertEqual(state_dict[key], loaded_dict[key])
loaded_obs = PerChannelMinMaxObserver(reduce_range=reduce_range, ch_axis=ch_axis, dtype=qdtype, qscheme=qscheme)
loaded_obs.load_state_dict(loaded_dict)
loaded_qparams = loaded_obs.calculate_qparams()
self.assertEqual(myobs.min_val, loaded_obs.min_val)
self.assertEqual(myobs.max_val, loaded_obs.max_val)
self.assertEqual(myobs.calculate_qparams(), loaded_obs.calculate_qparams())
def test_observer_scriptable(self):
obs_list = [MinMaxObserver(), MovingAverageMinMaxObserver()]
for obs in obs_list:
scripted = torch.jit.script(obs)
x = torch.rand(3, 4)
obs(x)
scripted(x)
self.assertEqual(obs.calculate_qparams(), scripted.calculate_qparams())
buf = io.BytesIO()
torch.jit.save(scripted, buf)
buf.seek(0)
loaded = torch.jit.load(buf)
self.assertEqual(obs.calculate_qparams(), loaded.calculate_qparams())
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
@override_qengines
def test_state_dict_respects_device_affinity(self):
"""
Tests that loading from a state dict loads buffers to the correct
device.
"""
device_cpu = torch.device('cpu')
device_cuda = torch.device('cuda:0')
test_cases = itertools.product(
[device_cpu, device_cuda],
[device_cpu, device_cuda],
[MinMaxObserver, MovingAverageMinMaxObserver,
PerChannelMinMaxObserver,
MovingAveragePerChannelMinMaxObserver,
# TODO: enable this (separate PR)
# HistogramObserver,
PlaceholderObserver, RecordingObserver, NoopObserver,
FakeQuantize])
for device_source, device_target, obs_cls in test_cases:
# calibrated source model
model = obs_cls()
model.to(device_source)
model(torch.randn(4, 1, 4, 4, device=device_source))
# target model
model2 = obs_cls()
model2.to(device_target)
model2.load_state_dict(model.state_dict())
# verify that buffers stayed on model2's device
model_devices = {p.device for p in model2.parameters()} | \
{p.device for p in model2.buffers()}
# some observers do not have any buffers, so lessEqual instead of
# Equal
self.assertLessEqual(len(model_devices), 1)
if len(model_devices) == 1:
model_device = next(iter(model_devices))
self.assertEqual(model_device, device_target)
def test_histogram_observer_consistent_buffer_shape(self):
"""
Ensures that the buffer shapes do not change from uninitialized to
initialized states for HistogramObserver.
"""
obs = HistogramObserver()
min_shape_before = obs.min_val.shape
max_shape_before = obs.max_val.shape
for _ in range(2):
obs(torch.randn(4, 4, 4, 4))
self.assertEqual(min_shape_before, obs.min_val.shape)
self.assertEqual(max_shape_before, obs.max_val.shape)
def test_histogram_observer_save_load_state_dict(self):
"""
Smoke test on saving/loading state_dict
"""
obs1 = HistogramObserver()
obs1(torch.randn(4, 4, 4, 4))
obs2 = HistogramObserver()
obs2.load_state_dict(obs1.state_dict())
self.assertEqual(obs2.min_val.shape, torch.Size([]))
self.assertEqual(obs2.max_val.shape, torch.Size([]))
def test_save_load_state_dict_script(self):
"""
Tests that we can save and load state_dict for observers that are scripted
in a quantized model.
"""
obs_list = [MinMaxObserver, MovingAverageMinMaxObserver, HistogramObserver]
for obs in obs_list:
model = SingleLayerLinearModel().eval()
qconfig = QConfig(activation=default_observer, weight=obs)
qconfig_dict = {'' : qconfig}
scripted = torch.jit.script(model)
scripted = torch.ao.quantization.prepare_jit(scripted, qconfig_dict)
x = torch.rand(5, 5)
scripted(x)
obs_dict = torch.ao.quantization.get_observer_state_dict(scripted)
# Load stats
scripted_2 = torch.jit.script(model)
scripted_2 = torch.ao.quantization.prepare_jit(scripted_2, qconfig_dict)
torch.ao.quantization.load_observer_state_dict(scripted_2, obs_dict)
# Verify that state_dict matches exactly with original one.
self.assertEqual(scripted.state_dict(), scripted_2.state_dict())
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_observer_qparams_respects_device_affinity(self):
"""
Ensure that the scale and zero_point returned by the observer
are on the same device as the input tensor.
"""
observerList = [MinMaxObserver(),
MovingAverageMinMaxObserver(),
PerChannelMinMaxObserver(),
MovingAveragePerChannelMinMaxObserver()]
for obs in observerList:
device = torch.device('cuda:1')
x = torch.randn(1, 2, device=device)
obs.to(device)
result = obs(x)
scale, zero_point = obs.calculate_qparams()
self.assertEqual(x.device, scale.device)
self.assertEqual(x.device, zero_point.device)
def test_zero_numel(self):
obs_list = [MinMaxObserver, MovingAverageMinMaxObserver,
PerChannelMinMaxObserver,
MovingAveragePerChannelMinMaxObserver, HistogramObserver,
FakeQuantize, FixedQParamsObserver]
for obs_cls in obs_list:
if obs_cls is FixedQParamsObserver:
obs = obs_cls(0.1, 0)
else:
obs = obs_cls()
x = torch.tensor([])
# verify no crash
x = obs(x)
def _test_memoryless(self, obs_class):
obs = obs_class(averaging_constant=1)
x = torch.randn((3, 3))
obs(x)
params = obs.calculate_qparams()
for _ in range(20):
obs(10 * torch.randn((3, 3)))
self.assertNotEqual(params, obs.calculate_qparams())
obs(x)
self.assertEqual(params, obs.calculate_qparams())
def test_memoryless_minmaxobserver(self):
self._test_memoryless(MovingAverageMinMaxObserver)
def test_memoryless_perchannelminmaxobserver(self):
self._test_memoryless(MovingAveragePerChannelMinMaxObserver)
# HistogramObserver that works like it does on master
class _ReferenceHistogramObserver(HistogramObserver):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@torch.jit.ignore
def _non_linear_param_search(self):
r"""Non-linear parameter search.
An approximation for L2 error minimization for selecting min/max.
By selecting new min/max, we filter out outliers in input distribution.
This follows the implementation of NormMinimization::NonlinearQuantizationParamsSearch in
caffe2/quantization/server/norm_minimization.cc
"""
def _get_norm(delta_begin, delta_end, density, norm_type):
r"""
Compute the norm of the values uniformaly distributed between
delta_begin and delta_end.
norm = density * (integral_{begin, end} x^2)
= density * (end^3 - begin^3) / 3
"""
assert norm_type == "L2", "Only L2 norms are currently supported"
norm = 0.0
if norm_type == "L2":
norm = (
delta_end * delta_end * delta_end
- delta_begin * delta_begin * delta_begin
) / 3
return density * norm
def _compute_quantization_error(next_start_bin, next_end_bin, norm_type):
r"""
Compute the quantization error if we use start_bin to end_bin as the
min and max to do the quantization.
"""
bin_width = (self.max_val.item() - self.min_val.item()) / self.bins
norm = 0.0
dst_bin_width = bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins
if dst_bin_width == 0.0:
return 0.0
for src_bin in range(self.bins):
# distances from the beginning of first dst_bin to the beginning and
# end of src_bin
src_bin_begin = (src_bin - next_start_bin) * bin_width
src_bin_end = src_bin_begin + bin_width
# which dst_bins the beginning and end of src_bin belong to?
dst_bin_of_begin = min(
self.dst_nbins - 1, max(0.0, math.floor(src_bin_begin / dst_bin_width))
)
dst_bin_of_end = min(
self.dst_nbins - 1, max(0.0, math.floor(src_bin_end / dst_bin_width))
)
dst_bin_of_begin_center = (
dst_bin_of_begin * dst_bin_width + dst_bin_width / 2
)
density = self.histogram[src_bin] / bin_width
if dst_bin_of_begin == dst_bin_of_end:
# if src_bin is entirely within 1 dst_bin
delta_begin = src_bin_begin - dst_bin_of_begin_center
delta_end = src_bin_end - dst_bin_of_begin_center
norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
else:
delta_begin = src_bin_begin - dst_bin_of_begin_center
delta_end = dst_bin_width / 2
norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
norm = norm + (dst_bin_of_end - dst_bin_of_begin - 1) * _get_norm(
-dst_bin_width / 2, dst_bin_width / 2, density, norm_type
)
dst_bin_of_end_center = (
dst_bin_of_end * dst_bin_width + dst_bin_width / 2
)
delta_begin = -dst_bin_width / 2
delta_end = src_bin_end - dst_bin_of_end_center
norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
return norm
assert self.histogram.size()[0] == self.bins, "bins mistmatch"
bin_width = (self.max_val - self.min_val) / self.bins
# cumulative sum
total = sum(self.histogram)
cSum = torch.cumsum(self.histogram, dim=0)
stepsize = 1e-5 # granularity
alpha = 0.0 # lower bound
beta = 1.0 # upper bound
start_bin = 0
end_bin = self.bins - 1
norm_min = float("inf")
while alpha < beta:
# Find the next step
next_alpha = alpha + stepsize
next_beta = beta - stepsize
# find the left and right bins between the quantile bounds
l = start_bin
r = end_bin
while l < end_bin and cSum[l] < next_alpha * total:
l = l + 1
while r > start_bin and cSum[r] > next_beta * total:
r = r - 1
# decide the next move
next_start_bin = start_bin
next_end_bin = end_bin
if (l - start_bin) > (end_bin - r):
# move the start bin
next_start_bin = l
alpha = next_alpha
else:
# move the end bin
next_end_bin = r
beta = next_beta
if next_start_bin == start_bin and next_end_bin == end_bin:
continue
# calculate the quantization error using next_start_bin and next_end_bin
norm = _compute_quantization_error(next_start_bin, next_end_bin, "L2")
if norm > norm_min:
break
norm_min = norm
start_bin = next_start_bin
end_bin = next_end_bin
new_min = self.min_val + bin_width * start_bin
new_max = self.min_val + bin_width * (end_bin + 1)
return new_min, new_max
class TestRecordHistogramObserver(QuantizationTestCase):
# TODO: move this to quantize.py
def test_record_observer(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = AnnotatedSingleLayerLinearModel()
model.qconfig = default_debug_qconfig
model = prepare(model)
# run the evaluation and dump all tensors
test_only_eval_fn(model, self.calib_data)
test_only_eval_fn(model, self.calib_data)
observer_dict = {}
get_observer_dict(model, observer_dict)
self.assertTrue('fc1.module.activation_post_process' in observer_dict.keys(),
'observer is not recorded in the dict')
self.assertEqual(len(observer_dict['fc1.module.activation_post_process'].get_tensor_value()),
2 * len(self.calib_data))
self.assertEqual(observer_dict['fc1.module.activation_post_process'].get_tensor_value()[0],
model(self.calib_data[0][0]))
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)))
def test_observer_scriptable(self, qdtype):
obs = RecordingObserver(dtype=qdtype)
scripted = torch.jit.script(obs)
x = torch.rand(3, 4)
obs(x)
scripted(x)
self.assertTrue(torch.equal(obs.get_tensor_value()[0], scripted.get_tensor_value()[0]))
buf = io.BytesIO()
torch.jit.save(scripted, buf)
buf.seek(0)
loaded = torch.jit.load(buf)
self.assertTrue(torch.equal(obs.get_tensor_value()[0], loaded.get_tensor_value()[0]))
class TestHistogramObserver(QuantizationTestCase):
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)),
qscheme=st.sampled_from(
(torch.per_tensor_affine, torch.per_tensor_symmetric))
)
def test_observer_scriptable(self, qdtype, qscheme):
ob_list = [
HistogramObserver(dtype=qdtype, qscheme=qscheme),
default_histogram_observer()
]
for obs in ob_list:
scripted = torch.jit.script(obs)
x = torch.rand(3, 4)
obs(x)
scripted(x)
self.assertTrue(torch.equal(obs.histogram, scripted.histogram))
buf = io.BytesIO()
torch.jit.save(scripted, buf)
buf.seek(0)
loaded = torch.jit.load(buf)
self.assertTrue(torch.equal(obs.histogram, scripted.histogram))
@given(qdtype=st.sampled_from((torch.qint8, torch.quint8)),
qscheme=st.sampled_from((torch.per_tensor_affine, torch.per_tensor_symmetric)),
reduce_range=st.booleans())
@settings(max_examples=10)
def test_histogram_observer(self, qdtype, qscheme, reduce_range):
myobs = HistogramObserver(bins=3, dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range)
# Calculate qparams should work for empty observers
qparams = myobs.calculate_qparams()
x = torch.tensor([2.0, 3.0, 4.0, 5.0], requires_grad=True)
y = torch.tensor([5.0, 6.0, 7.0, 8.0])
out_x = myobs(x)
self.assertTrue(out_x.requires_grad)
myobs(y)
self.assertEqual(myobs.min_val, 2.0)
self.assertEqual(myobs.max_val, 8.0)
self.assertEqual(myobs.histogram, [2., 3., 3.])
qparams = myobs.calculate_qparams()
if reduce_range:
if qscheme == torch.per_tensor_symmetric:
ref_scale = 0.0470588 * 255 / 127
ref_zero_point = 0 if qdtype is torch.qint8 else 128
else:
ref_scale = 0.0235294 * 255 / 127
ref_zero_point = -64 if qdtype is torch.qint8 else 0
else:
if qscheme == torch.per_tensor_symmetric:
ref_scale = 0.0470588
ref_zero_point = 0 if qdtype is torch.qint8 else 128
else:
ref_scale = 0.0235294
ref_zero_point = -128 if qdtype is torch.qint8 else 0
self.assertEqual(qparams[1].item(), ref_zero_point)
self.assertEqual(qparams[0].item(), ref_scale, atol=1e-5, rtol=0)
# Test for serializability
state_dict = myobs.state_dict()
b = io.BytesIO()
torch.save(state_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
for key in state_dict:
self.assertEqual(state_dict[key], loaded_dict[key])
loaded_obs = HistogramObserver(bins=3, dtype=qdtype, qscheme=qscheme, reduce_range=reduce_range)
loaded_obs.load_state_dict(loaded_dict)
loaded_qparams = loaded_obs.calculate_qparams()
self.assertEqual(myobs.min_val, loaded_obs.min_val)
self.assertEqual(myobs.max_val, loaded_obs.max_val)
self.assertEqual(myobs.histogram, loaded_obs.histogram)
self.assertEqual(myobs.bins, loaded_obs.bins)
self.assertEqual(myobs.calculate_qparams(), loaded_obs.calculate_qparams())
def test_histogram_observer_one_sided(self):
myobs = HistogramObserver(bins=8, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True)
x = torch.tensor([0.0, 0.3, 1.2, 1.7])
y = torch.tensor([0.1, 1.3, 2.0, 2.7])
myobs(x)
myobs(y)
self.assertEqual(myobs.min_val, 0)
qparams = myobs.calculate_qparams()
self.assertEqual(qparams[1].item(), 0)
def test_histogram_observer_same_inputs(self):
myobs = HistogramObserver(bins=3, dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, reduce_range=False)
w = torch.ones(4, requires_grad=True)
x = torch.zeros(4, requires_grad=True)
y = torch.tensor([2.0, 3.0, 4.0, 5.0], requires_grad=True)
z = torch.tensor([5.0, 6.0, 7.0, 8.0])
myobs(w)
myobs(x)
myobs(x)
myobs(y)
myobs(z)
qparams = myobs.calculate_qparams()
self.assertEqual(myobs.min_val, 2.0)
self.assertEqual(myobs.max_val, 8.0)
self.assertEqual(myobs.histogram, [2., 3., 3.])
@given(N=st.sampled_from([10, 1000]),
bins=st.sampled_from([256, 512, 1024, 2048]),
dtype=st.sampled_from([torch.qint8, torch.quint8]),
qscheme=st.sampled_from([torch.per_tensor_affine, torch.per_tensor_symmetric]),
reduce_range=st.booleans())
def test_histogram_observer_against_reference(self, N, bins, dtype, qscheme, reduce_range):
ref_obs = _ReferenceHistogramObserver(bins=bins, dtype=dtype, qscheme=qscheme, reduce_range=reduce_range)
my_obs = HistogramObserver(bins=bins, dtype=dtype, qscheme=qscheme, reduce_range=reduce_range)
for _ in range(10):
X = torch.randn(N)
my_obs(X)
ref_obs(X)
ref_qparams = ref_obs.calculate_qparams()
my_qparams = my_obs.calculate_qparams()
self.assertEqual(ref_qparams, my_qparams)
class TestFakeQuantize(TestCase):
@given(device=st.sampled_from(['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu']),
X=hu.per_channel_tensor(shapes=hu.array_shapes(2, 5,),
qparams=hu.qparams(dtypes=torch.qint8)))
def test_fq_module_per_channel(self, device, X):
np.random.seed(NP_RANDOM_SEED)
X, (scale, zero_point, axis, torch_type) = X
quant_min = torch.iinfo(torch_type).min
quant_max = torch.iinfo(torch_type).max
X = to_tensor(X, device)
X.requires_grad_()
fq_module = FakeQuantize(default_per_channel_weight_observer, quant_min, quant_max, ch_axis=axis).to(device)
Y_prime = fq_module(X)
assert fq_module.scale is not None
assert fq_module.zero_point is not None
Y = _fake_quantize_per_channel_affine_reference(X, fq_module.scale,
fq_module.zero_point, axis, quant_min, quant_max)
np.testing.assert_allclose(Y.cpu().detach().numpy(), Y_prime.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
# Test backward
dout = torch.rand_like(X, dtype=torch.float, device=device)
Y_prime.backward(dout)
dX = _fake_quantize_per_channel_affine_grad_reference(dout, X, fq_module.scale,
fq_module.zero_point, axis, quant_min, quant_max)
np.testing.assert_allclose(dX.cpu().numpy(), X.grad.cpu().detach().numpy(), rtol=tolerance, atol=tolerance)
def test_fq_serializable_per_channel(self):
observer = default_per_channel_weight_observer
quant_min = -128
quant_max = 127
fq_module = FakeQuantize(observer, quant_min, quant_max)
X = torch.tensor([[-5, -3.5, -2, 0, 3, 5, 7], [1, 3, 2, 5, 6.5, 8, 10]], dtype=torch.float32)
y_ref = fq_module(X)
state_dict = fq_module.state_dict()
self.assertEqual(state_dict['scale'], [0.054902, 0.078431])
self.assertEqual(state_dict['zero_point'], [0, 0])
b = io.BytesIO()
torch.save(state_dict, b)
b.seek(0)
loaded_dict = torch.load(b)
for key in state_dict:
self.assertEqual(state_dict[key], loaded_dict[key])
def test_quant_min_max_override(self):
observer = default_per_channel_weight_observer
# test no override
fq_module = FakeQuantize(observer)
self.assertEqual(fq_module.activation_post_process.quant_min, -128)
self.assertEqual(fq_module.activation_post_process.quant_max, 127)
# test quant_min/quant_max override
fq_module = FakeQuantize(observer, quant_min=0, quant_max=127)
self.assertEqual(fq_module.activation_post_process.quant_min, 0)
self.assertEqual(fq_module.activation_post_process.quant_max, 127)
def _get_buffer_ids(module):
"""
Object addresses stay constant if and only if all modifications are in-place
"""
return [id(v) for k, v in module._buffers.items()]
class TestDistributed(QuantizationTestCase):
def test_observers_preserve_buffers(self):
"""
Tests that observers only modify buffers in place. Note: this is important
because nn.DataParallel depends on this assumption to work correctly.
However, DataParallel does not expose IDs of the replicas, so we test it
without DataParallel in order to easily access the object IDs.
"""
observer_types = [
torch.ao.quantization.MinMaxObserver.with_args(dtype=torch.qint8),
torch.ao.quantization.MovingAverageMinMaxObserver.with_args(dtype=torch.qint8),
torch.ao.quantization.PerChannelMinMaxObserver.with_args(dtype=torch.qint8),
torch.ao.quantization.MovingAveragePerChannelMinMaxObserver.with_args(dtype=torch.qint8),
torch.ao.quantization.HistogramObserver.with_args(dtype=torch.qint8),
torch.ao.quantization.RecordingObserver.with_args(dtype=torch.qint8),
torch.ao.quantization.PlaceholderObserver.with_args(dtype=torch.float16),
]
for observer_type in observer_types:
observer = observer_type()
buffer_ids_before = _get_buffer_ids(observer)
for _i in range(5):
inputs = torch.rand((4, 4, 4))
observer(inputs)
buffer_ids_after = _get_buffer_ids(observer)
self.assertEqual(
buffer_ids_before,
buffer_ids_after,
msg="{}: Buffers must be modified in place".format(str(observer)))
def test_fake_quant_preserves_buffers(self):
"""
Tests that fake quant only modifies buffers in place. Note: this is important
because nn.DataParallel depends on this assumption to work correctly.
However, DataParallel does not expose IDs of the replicas, so we test it
without DataParallel in order to easily access the object IDs.
"""
model = torch.ao.quantization.FakeQuantize()
buffer_ids_before = _get_buffer_ids(model)
for _i in range(5):
inputs = torch.rand((4, 4, 4))
model(inputs)
model.apply(torch.ao.quantization.enable_fake_quant)
model.apply(torch.ao.quantization.disable_fake_quant)
model.apply(torch.ao.quantization.enable_observer)
model.apply(torch.ao.quantization.disable_observer)
buffer_ids_after = _get_buffer_ids(model)
self.assertEqual(
buffer_ids_before,
buffer_ids_after,
msg="FakeQuant: Buffers must be modified in place")
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_qat_data_parallel(self):
"""
Tests that doing QAT in nn.DataParallel does not crash.
"""
if 'fbgemm' not in torch.backends.quantized.supported_engines:
return
with override_quantized_engine('fbgemm'):
device = torch.device('cuda')
model = nn.Sequential(
torch.ao.quantization.QuantStub(),
nn.Conv2d(3, 1, 1, bias=False),
nn.BatchNorm2d(1),
nn.ReLU(),
nn.Conv2d(1, 2, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(2),
nn.AvgPool2d(14),
nn.Sigmoid(),
torch.ao.quantization.DeQuantStub(),
)
torch.ao.quantization.fuse_modules_qat(model, [['1', '2', '3'], ['4', '5']], inplace=True)
model.qconfig = torch.ao.quantization.get_default_qat_qconfig('fbgemm')
torch.ao.quantization.prepare_qat(model, inplace=True)
model = nn.DataParallel(model, device_ids=[0, 1])
model.to(device)
model.train()
for epoch in range(3):
inputs = torch.rand(2, 3, 28, 28).to(device)
model(inputs)
if epoch >= 1:
model.apply(torch.ao.quantization.disable_observer)
if epoch >= 2:
model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
quant_model = copy.deepcopy(model.module)
quant_model = torch.ao.quantization.convert(quant_model.eval().cpu(), inplace=False)
with torch.no_grad():
out = quant_model(torch.rand(1, 3, 28, 28))
def test_qat_convbn_fused_syncbn_replacement(self):
"""
Tests that SyncBatchNorm replacement works for fused ConvBN.
"""
if 'fbgemm' not in torch.backends.quantized.supported_engines:
return
with override_quantized_engine('fbgemm'):
# create conv-bn
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv = nn.Conv2d(4, 1, 3, padding=1)
self.bn = nn.BatchNorm2d(1)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
model = Model()
# fuse it
fused_model = torch.ao.quantization.fuse_modules_qat(
model,
[['conv', 'bn']],
)
# convert to QAT
fused_model.qconfig = torch.ao.quantization.get_default_qconfig('fbgemm')
torch.ao.quantization.prepare_qat(fused_model, inplace=True)
# replace with DDP
fused_model = nn.SyncBatchNorm.convert_sync_batchnorm(fused_model)
self.assertTrue(
isinstance(fused_model.conv.bn, nn.SyncBatchNorm),
"Expected BN to be converted to SyncBN")
def test_syncbn_preserves_qconfig(self):
"""
Makes sure that if a BatchNorm is not fused and a qconfig exists,
convering the module to SyncBatchNorm preserves the qconfig.
"""
m = nn.Sequential(
nn.Conv2d(1, 1, 1),
nn.BatchNorm2d(1),
)
m[1].qconfig = torch.ao.quantization.default_qconfig
m = torch.nn.SyncBatchNorm.convert_sync_batchnorm(m)
self.assertTrue(
hasattr(m[1], "qconfig"),
"missing qconfig after SyncBatchNorm conversion")
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
@override_qengines
def test_device_affinity(self):
"""
Tests that converting a model to QAT respects device affinity
"""
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv = nn.Conv2d(1, 1, 1)
self.bn = nn.BatchNorm2d(1)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
model = Model()
model.qconfig = torch.ao.quantization.get_default_qat_qconfig(torch.backends.quantized.engine)
device = torch.device('cuda:0')
model.to(device)
torch.ao.quantization.prepare_qat(model, inplace=True)
model_devices = {p.device for p in model.parameters()} | \
{p.device for p in model.buffers()}
self.assertEqual(len(model_devices), 1)
model_device = next(iter(model_devices))
self.assertEqual(model_device, device)
# ensure that running an input on CUDA works without any needed changes
input = torch.randn(4, 1, 4, 4, device=device)
model(input)
class TestFusedObsFakeQuantModule(TestCase):
@given(
device=st.sampled_from(
["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]
)
)
@settings(deadline=None)
def test_fused_obs_fq_module(self, device):
# Set up the parameters
x = torch.randn(5, 5, device=device)
running_min_op = torch.tensor(float("inf"), device=device)
running_max_op = torch.tensor(float("-inf"), device=device)
avg_const = 0.01
scale = torch.tensor([1.0], device=device)
zero_point = torch.tensor([0], dtype=torch.int, device=device)
# Run the forward on the Module
mod = FusedMovingAvgObsFakeQuantize()
torch.ao.quantization.enable_fake_quant(mod)
torch.ao.quantization.enable_observer(mod)
mod.to(device)
out = mod(x)
# Run the operator directly
pt_op = torch.fused_moving_avg_obs_fake_quant
out_ref = pt_op(
x,
mod.observer_enabled,
mod.fake_quant_enabled,
running_min_op,
running_max_op,
scale,
zero_point,
avg_const,
0,
255,
0,
False,
)
# Compare params with reference
torch.testing.assert_allclose(out, out_ref)
torch.testing.assert_allclose(
running_min_op, mod.activation_post_process.min_val
)
torch.testing.assert_allclose(
running_max_op, mod.activation_post_process.max_val
)
@given(
device=st.sampled_from(
["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]
)
)
@settings(deadline=None)
def test_fused_obs_fq_moving_avg_module(self, device):
# Set up the parameters
running_min_op = torch.tensor(float("inf"), device=device)
running_max_op = torch.tensor(float("-inf"), device=device)
avg_const = 0.001
scale = torch.tensor([1.0], device=device)
zero_point = torch.tensor([0], dtype=torch.int, device=device)
mod = FusedMovingAvgObsFakeQuantize(averaging_constant=0.001)
mod.to(device)
mod.observer_enabled[0] = 0
mod.fake_quant_enabled[0] = 0
for i in range(10):
x = torch.randn(5, 5, device=device)
if i > 2:
mod.observer_enabled[0] = 1
if i > 4:
mod.fake_quant_enabled[0] = 1
# Run the forward on the Module
out = mod(x)
# Run the operator directly
pt_op = torch.fused_moving_avg_obs_fake_quant
out_ref = pt_op(
x,
mod.observer_enabled,
mod.fake_quant_enabled,
running_min_op,
running_max_op,
scale,
zero_point,
avg_const,
0,
255,
0,
False,
)
# Compare params with reference
torch.testing.assert_allclose(out, out_ref)
torch.testing.assert_allclose(
running_min_op, mod.activation_post_process.min_val
)
torch.testing.assert_allclose(
running_max_op, mod.activation_post_process.max_val
)
@given(
device=st.sampled_from(
["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]
)
)
@settings(deadline=None)
def test_compare_fused_obs_fq_oss_module(self, device):
mod = FusedMovingAvgObsFakeQuantize()
torch.ao.quantization.enable_fake_quant(mod)
torch.ao.quantization.enable_observer(mod)
mod.to(device)
mod_ref = FakeQuantize()
torch.ao.quantization.enable_fake_quant(mod_ref)
torch.ao.quantization.enable_observer(mod_ref)
mod_ref.to(device)
for i in range(10):
x = torch.randn(5, 5, device=device)
out = mod(x)
out_ref = mod_ref(x)
torch.testing.assert_allclose(out, out_ref)
torch.testing.assert_allclose(
mod_ref.activation_post_process.min_val,
mod.activation_post_process.min_val,
)
torch.testing.assert_allclose(
mod_ref.activation_post_process.max_val,
mod.activation_post_process.max_val,
)
def test_fused_mod_per_channel(self):
devices = ["cpu", "cuda"] if torch.cuda.is_available() else ["cpu"]
m = 5
n = 10
for device in devices:
running_min_op = torch.empty(m, device=device).fill_(float("inf"))
running_max_op = torch.empty(m, device=device).fill_(float("-inf"))
avg_const = 0.001
scale = torch.empty(m, device=device).fill_(0.1)
zero_point = torch.empty(m, dtype=torch.int, device=device).fill_(0)
obs = FusedMovingAvgObsFakeQuantize.with_args(
averaging_constant=avg_const,
observer=MovingAveragePerChannelMinMaxObserver,
)
mod = obs()
mod = torch.jit.script(mod)
mod.to(device)
for i in range(10):
x = torch.randn(m, n, device=device)
if i > 2:
mod.observer_enabled[0] = 1
if i > 4:
mod.fake_quant_enabled[0] = 1
# Run the forward on the Module
out = mod(x)
# Run the operator directly
pt_op = torch.fused_moving_avg_obs_fake_quant
out_ref = pt_op(
x,
mod.observer_enabled,
mod.fake_quant_enabled,
running_min_op,
running_max_op,
scale,
zero_point,
avg_const,
0,
255,
0,
True,
False,
)
# Compare params with reference
torch.testing.assert_allclose(out, out_ref)
if mod.observer_enabled[0]:
torch.testing.assert_allclose(
running_min_op, mod.activation_post_process.min_val
)
torch.testing.assert_allclose(
running_max_op, mod.activation_post_process.max_val
)
if mod.fake_quant_enabled:
torch.testing.assert_allclose(scale, mod.scale)
torch.testing.assert_allclose(zero_point, mod.zero_point)
torch.testing.assert_allclose(mod.state_dict()['activation_post_process.min_val'], running_min_op)
torch.testing.assert_allclose(mod.state_dict()['activation_post_process.max_val'], running_max_op)
def test_fused_mod_reduce_range(self):
obs = FusedMovingAvgObsFakeQuantize(quant_min=0, quant_max=255, dtype=torch.quint8, reduce_range=True)
self.assertEqual(obs.activation_post_process.quant_min, 0)
self.assertEqual(obs.activation_post_process.quant_max, 127)
def test_embedding_bag_qat_config(self):
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.emb1 = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
self.emb2 = torch.nn.EmbeddingBag(num_embeddings=10, embedding_dim=12,
include_last_offset=True, scale_grad_by_freq=False, mode='sum')
def forward(self, indices):
return torch.cat((self.emb1(indices), self.emb2(indices)))
qconfigs = [torch.ao.quantization.default_embedding_qat_qconfig,
torch.ao.quantization.default_embedding_qat_qconfig_4bit]
for qconfig in qconfigs:
model = Model().train()
indices = torch.randint(0, 10, (5, 12))
model.qconfig = qconfig
quant_model = prepare_qat(model,
mapping=get_embedding_qat_module_mappings())
count_fake_quant = 0
for name, mod in quant_model.named_modules():
if name.endswith('weight_fake_quant'):
count_fake_quant += 1
self.assertEqual(type(mod), FakeQuantize)
self.assertEqual(count_fake_quant, 2)
quant_model(indices)
# Ensure that EmbeddingBags have float zero_point values
self.assertEqual(quant_model.emb1.weight_fake_quant.zero_point.dtype, torch.float32)
self.assertEqual(quant_model.emb2.weight_fake_quant.zero_point.dtype, torch.float32)
inference_gm = convert(quant_model.eval().cpu(),
mapping=get_embedding_static_quant_module_mappings())
# Ensure that EmbeddingBags are now quantized with the appropriate bitwidth.
self.assertEqual(type(inference_gm.emb1), torch.ao.nn.quantized.EmbeddingBag)
self.assertEqual(type(inference_gm.emb2), torch.ao.nn.quantized.EmbeddingBag)
self.assertEqual(inference_gm.emb1.dtype, qconfig.weight().dtype)
self.assertEqual(inference_gm.emb2.dtype, qconfig.weight().dtype)
def test_embedding_qat_config(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = DeFusedEmbeddingBagLinear()
indices = torch.randint(0, 10, (5, 12))
quant_model = prepare_qat(model,
mapping=get_embedding_qat_module_mappings())
count_fake_quant = 0
count_activation_postproc = 0
for name, mod in quant_model.named_modules():
if name.endswith('weight_fake_quant'):
count_fake_quant += 1
if name.count('activation_post_process') == 1 and 'weight_fake_quant' not in name:
count_activation_postproc += 1
# One for embeddings, one for linear layer.
self.assertEqual(count_fake_quant, 2)
# One for embeddings (but it is a NoOp), One for quantize, one for linear layer.
self.assertEqual(count_activation_postproc, 3)
self.assertEqual(type(quant_model.emb.weight_fake_quant), FakeQuantize)
self.assertEqual(quant_model.emb.weight_fake_quant.zero_point.dtype, torch.float32)
self.assertEqual(type(quant_model.emb.activation_post_process), NoopObserver)
self.assertEqual(type(quant_model.linear.weight_fake_quant), FusedMovingAvgObsFakeQuantize)
self.assertEqual(type(quant_model.linear.activation_post_process), FusedMovingAvgObsFakeQuantize)
quant_model(indices)
inference_gm = convert(quant_model,
mapping=get_embedding_static_quant_module_mappings())
# Ensure that Embedding is now quantized
self.assertEqual(type(inference_gm.emb), torch.ao.nn.quantized.Embedding)
# Ensure that Linear is now quantized
self.assertEqual(type(inference_gm.linear), torch.ao.nn.quantized.Linear)
def test_default_fused_qat_config(self):
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear = nn.Linear(2, 2)
self.relu = nn.ReLU()
def forward(self, x):
x = self.linear(x)
x = self.relu(x)
return x
for qengine in ["fbgemm", "qnnpack"]:
model = Model()
model.linear.weight = torch.nn.Parameter(torch.randn(2, 2))
sample_input = torch.randn(2, 2)
model.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine, version=1)
ref_model = torch.ao.quantization.QuantWrapper(model)
ref_model = torch.ao.quantization.prepare_qat(ref_model)
ref_model(sample_input)
count_fake_quant = 0
for name, mod in ref_model.named_modules():
if name.endswith('weight_fake_quant'):
count_fake_quant += 1
self.assertEqual(type(mod), FusedMovingAvgObsFakeQuantize)
if name.count('activation_post_process') == 1 and 'weight_fake_quant' not in name:
count_fake_quant += 1
self.assertEqual(type(mod), FusedMovingAvgObsFakeQuantize)
self.assertEqual(count_fake_quant, 3)
if qengine == "fbgemm":
lower_bnd = 0
upper_bnd = 127
obs2match = MovingAveragePerChannelMinMaxObserver
else:
lower_bnd = 0
upper_bnd = 255
obs2match = MovingAverageMinMaxObserver
self.assertEqual(ref_model.quant.activation_post_process.activation_post_process.quant_min, lower_bnd)
self.assertEqual(ref_model.quant.activation_post_process.activation_post_process.quant_max, upper_bnd)
self.assertEqual(type(ref_model.module.linear.weight_fake_quant.activation_post_process),
obs2match)
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_quantization.py TESTNAME\n\n"
"instead.")
|