1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
|
# Owner(s): ["oncall: quantization"]
import torch
import torch.nn as nn
from torch.testing._internal.common_quantization import QuantizationTestCase
from torch.testing._internal.common_quantization import skipIfNoFBGEMM
from torch.ao.quantization import default_qconfig
from torch.ao.quantization import QuantWrapper
import torch.ao.ns._numeric_suite as ns
from torch.ao.quantization._correct_bias import (
_supported_modules,
_supported_modules_quantized,
bias_correction,
get_module,
get_param,
parent_child_names
)
import copy
class TestBiasCorrectionEager(QuantizationTestCase):
def compute_sqnr(self, x, y):
Ps = torch.norm(x)
Pn = torch.norm(x - y)
return 20 * torch.log10(Ps / Pn)
def correct_artificial_bias_quantize(self, float_model, img_data):
''' Adding artificial bias and testing if bias persists after bias
correction. This test case changes the bias of a quantized submodule
'''
artificial_model = copy.deepcopy(float_model)
artificial_model.qconfig = default_qconfig
torch.ao.quantization.prepare(artificial_model, inplace=True)
for data in img_data:
artificial_model(data[0])
torch.ao.quantization.convert(artificial_model, inplace=True)
# manually changing bias
for name, submodule in artificial_model.named_modules():
if type(submodule) in _supported_modules:
x = get_param(submodule, 'bias')
weight = get_param(submodule, 'weight')
if x is not None:
submodule.set_weight_bias(weight, x.data * 3)
bias_correction(float_model, artificial_model, img_data, target_modules=_supported_modules_quantized)
# Trims off the shadow module,
for name, submodule in artificial_model.named_modules():
if isinstance(submodule, ns.Shadow):
parent_name, child_name = parent_child_names(name)
parent = get_module(artificial_model, parent_name)
parent._modules[child_name] = submodule.orig_module
for name, artificial_submodule in artificial_model.named_modules():
if type(artificial_submodule) in _supported_modules_quantized:
submodule = get_module(float_model, name)
float_bias = get_param(submodule, 'bias')
artificial_bias = get_param(artificial_submodule, 'bias')
self.assertTrue(self.compute_sqnr(float_bias, artificial_bias) > 30,
"Correcting quantized bias produced too much noise, sqnr score too low")
@skipIfNoFBGEMM
def test_linear_chain(self):
class LinearChain(nn.Module):
def __init__(self):
super(LinearChain, self).__init__()
self.linear1 = nn.Linear(3, 4)
self.linear2 = nn.Linear(4, 5)
self.linear3 = nn.Linear(5, 6)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
x = self.linear3(x)
return x
float_model = QuantWrapper(LinearChain())
img_data = [(torch.rand(10, 3, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long))
for _ in range(50)]
self.correct_artificial_bias_quantize(float_model, img_data)
@skipIfNoFBGEMM
def test_conv_chain(self):
class ConvChain(nn.Module):
def __init__(self):
super(ConvChain, self).__init__()
self.conv2d1 = nn.Conv2d(3, 4, 5, 5)
self.conv2d2 = nn.Conv2d(4, 5, 5, 5)
self.conv2d3 = nn.Conv2d(5, 6, 5, 5)
def forward(self, x):
x = self.conv2d1(x)
x = self.conv2d2(x)
x = self.conv2d3(x)
return x
float_model = QuantWrapper(ConvChain())
img_data = [(torch.rand(10, 3, 125, 125, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long))
for _ in range(50)]
self.correct_artificial_bias_quantize(float_model, img_data)
|