1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
# Owner(s): ["oncall: quantization"]
import copy
import torch
import torch.nn as nn
import torch.ao.nn.quantized as nnq
import torch.nn.intrinsic as nni
import torch.nn.intrinsic.quantized as nniq
import torch.nn.intrinsic.qat as nniqat
from torch.ao.quantization import (
quantize,
prepare,
convert,
prepare_qat,
quantize_qat,
fuse_modules,
fuse_modules_qat,
QConfig,
default_qconfig,
default_qat_qconfig,
)
from torch.testing._internal.common_quantization import (
QuantizationTestCase,
ModelForFusion,
ModelWithSequentialFusion,
ModelForLinearBNFusion,
ModelForFusionWithBias,
ModelForConvTransposeBNFusion,
test_only_eval_fn,
test_only_train_fn,
skipIfNoFBGEMM,
)
from torch.testing._internal.common_quantized import (
override_quantized_engine,
supported_qengines,
)
@skipIfNoFBGEMM
class TestFuseEager(QuantizationTestCase):
def test_fuse_module_train(self):
model = ModelForFusion(default_qat_qconfig).train()
# Test step by step fusion
model = fuse_modules_qat(model, ['conv1', 'bn1', 'relu1'])
model = fuse_modules_qat(model, ['sub1.conv', 'sub1.bn'])
self.assertEqual(type(model.conv1), nni.ConvBnReLU2d,
msg="Fused Conv + BN + Relu first layer")
self.assertEqual(type(model.bn1), torch.nn.Identity,
msg="Fused Conv + BN + Relu (skipped BN)")
self.assertEqual(type(model.relu1), torch.nn.Identity,
msg="Fused Conv + BN + Relu (skipped Relu)")
self.assertEqual(type(model.sub1.conv), nni.ConvBn2d,
msg="Fused submodule Conv + BN")
self.assertEqual(type(model.sub1.bn), torch.nn.Identity,
msg="Fused submodule Conv + BN (skipped BN)")
self.assertEqual(type(model.sub2.conv), torch.nn.Conv2d,
msg="Non-fused submodule Conv")
self.assertEqual(type(model.sub2.relu), torch.nn.ReLU,
msg="Non-fused submodule ReLU")
model = prepare_qat(model)
self.checkObservers(model)
def checkQAT(model):
self.assertEqual(type(model.conv1), nniqat.ConvBnReLU2d)
self.assertEqual(type(model.bn1), nn.Identity)
self.assertEqual(type(model.relu1), nn.Identity)
self.assertEqual(type(model.sub1.conv), nniqat.ConvBn2d)
self.assertEqual(type(model.sub1.bn), nn.Identity)
self.assertEqual(type(model.sub2.conv), nn.Conv2d)
self.assertEqual(type(model.sub2.relu), nn.ReLU)
checkQAT(model)
test_only_train_fn(model, self.img_data_1d_train)
model = convert(model)
def checkQuantized(model):
self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
self.assertEqual(type(model.bn1), nn.Identity)
self.assertEqual(type(model.relu1), nn.Identity)
self.assertEqual(type(model.sub1.conv), nnq.Conv2d)
self.assertEqual(type(model.sub1.bn), nn.Identity)
self.assertEqual(type(model.sub2.conv), nn.Conv2d)
self.assertEqual(type(model.sub2.relu), nn.ReLU)
test_only_eval_fn(model, self.img_data_1d)
self.checkNoQconfig(model)
with self.assertRaisesRegex(RuntimeError, "Could not run 'aten::native_batch_norm' with arguments from the 'QuantizedCPU'"):
checkQuantized(model)
model = ModelForFusion(default_qat_qconfig).train()
model = fuse_modules_qat(
model,
[['conv1', 'bn1', 'relu1'],
['sub1.conv', 'sub1.bn']])
model = quantize_qat(model, test_only_train_fn, [self.img_data_1d_train])
with self.assertRaisesRegex(RuntimeError, "Could not run 'aten::native_batch_norm' with arguments from the 'QuantizedCPU'"):
checkQuantized(model)
def test_fuse_module_eval(self):
model = ModelForFusion(default_qconfig)
model.eval()
model = fuse_modules(
model,
[['conv3', 'bn3', 'relu4'],
['conv1', 'bn1', 'relu1'],
['conv2', 'relu2'],
['bn2', 'relu3'],
['sub1.conv', 'sub1.bn']])
self.assertEqual(type(model.conv1), nni.ConvReLU2d,
msg="Fused Conv + BN + Relu first layer (BN is folded)")
self.assertEqual(type(model.conv1[0]), nn.Conv2d,
msg="Fused Conv + BN + Relu (Conv + folded BN only)")
self.assertEqual(type(model.conv1[1]), nn.ReLU,
msg="Fused Conv + BN + Relu second layer (Relu only)")
self.assertEqual(type(model.bn1), nn.Identity,
msg="Fused Conv + BN + Relu second layer (Skipped BN)")
self.assertEqual(type(model.relu1), nn.Identity,
msg="Fused Conv + BN + Relu second layer (Skipped Relu)")
self.assertEqual(type(model.conv2), nni.ConvReLU3d,
msg="Fused Conv + BN + Relu first layer (BN is folded)")
self.assertEqual(type(model.bn2), nni.BNReLU3d,
msg="Fused BN + Relu first layer (Relu is folded))")
self.assertEqual(type(model.relu3), nn.Identity,
msg="Fused BN + Relu second layer (Skipped Relu)")
self.assertEqual(type(model.conv2[0]), nn.Conv3d,
msg="Fused Conv + BN + Relu (Conv + folded BN only)")
self.assertEqual(type(model.conv2[1]), nn.ReLU,
msg="Fused Conv + BN + Relu second layer (Relu only)")
self.assertEqual(type(model.relu2), nn.Identity,
msg="Fused Conv + BN + Relu second layer (Skipped Relu)")
self.assertEqual(type(model.conv3), nni.ConvReLU1d,
msg="Fused Conv + Relu for Conv1d (folded BN)")
self.assertEqual(type(model.conv3[0]), nn.Conv1d,
msg="Fused Conv + Relu for Conv1d ")
self.assertEqual(type(model.conv3[1]), nn.ReLU,
msg="Fused Conv + Relu for Conv1d")
self.assertEqual(type(model.bn3), nn.Identity,
msg="Fused Conv + BN + Relu for Conv1d (Skipped BN)")
self.assertEqual(type(model.sub1.conv), nn.Conv2d,
msg="Fused submodule Conv + folded BN")
self.assertEqual(type(model.sub1.bn), nn.Identity,
msg="Fused submodule (skipped BN)")
self.assertEqual(type(model.sub2.conv), nn.Conv2d,
msg="Non-fused submodule Conv")
self.assertEqual(type(model.sub2.relu), torch.nn.ReLU,
msg="Non-fused submodule ReLU")
model = prepare(model)
self.checkObservers(model)
test_only_eval_fn(model, self.img_data_1d)
model = convert(model)
def checkQuantized(model):
self.assertEqual(type(model.conv3), nniq.ConvReLU1d)
self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
self.assertEqual(type(model.bn1), nn.Identity)
self.assertEqual(type(model.relu1), nn.Identity)
self.assertEqual(type(model.sub1.conv), nnq.Conv2d)
self.assertEqual(type(model.sub1.bn), nn.Identity)
self.assertEqual(type(model.sub2.conv), nn.Conv2d)
self.assertEqual(type(model.sub2.relu), nn.ReLU)
self.assertEqual(type(model.bn2), nniq.BNReLU3d)
test_only_eval_fn(model, self.img_data_1d)
self.checkNoQconfig(model)
checkQuantized(model)
model = ModelForFusion(default_qconfig).eval()
model = fuse_modules(
model,
[['conv1', 'bn1', 'relu1'],
['conv2', 'relu2'],
['bn2', 'relu3'],
['sub1.conv', 'sub1.bn'],
['conv3', 'bn3', 'relu4']])
model = quantize(model, test_only_eval_fn, [self.img_data_1d])
checkQuantized(model)
def test_fusion_sequential_model_train(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = ModelWithSequentialFusion().train()
model.to(torch.float)
fuse_modules_qat(
model, [['conv1', 'relu1'] ,
['features.0.0', 'features.0.1', 'features.0.2'],
['features.1.0', 'features.1.1', 'features.1.2'],
['features.2.0', 'features.2.1', 'features.2.2'],
['classifier.0', 'classifier.1']],
inplace=True)
self.assertEqual(type(model.conv1), nni.ConvReLU2d,
msg="Fused Conv + Relu: nni.ConvReLU2d")
self.assertEqual(type(model.conv1[0]), nn.Conv2d,
msg="Fused Conv + Relu: Conv2d")
self.assertEqual(type(model.conv1[1]), nn.ReLU,
msg="Fused Conv + Relu: Relu")
self.assertEqual(type(model.relu1), nn.Identity,
msg="Fused Conv + Relu: Identity")
for i in range(3):
self.assertEqual(type(model.features[i][0]), nni.ConvBnReLU2d,
msg="Fused submodule Conv + folded BN")
self.assertEqual(type(model.features[i][1]), nn.Identity,
msg="Fused submodule (skipped BN)")
self.assertEqual(type(model.features[i][2]), nn.Identity,
msg="Non-fused submodule Conv")
self.assertEqual(type(model.classifier[0]), nni.LinearReLU)
self.assertEqual(type(model.classifier[1]), nn.Identity)
model.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
prepare_qat(model, inplace=True)
self.checkObservers(model)
model(self.img_data_2d[0][0])
def checkQAT(model):
self.assertEqual(type(model.conv1), nniqat.ConvReLU2d)
self.assertEqual(type(model.relu1), nn.Identity)
for i in range(3):
self.assertEqual(type(model.features[i][0]), nniqat.ConvBnReLU2d,
msg="Fused submodule Conv + folded BN")
self.assertEqual(type(model.features[i][1]), nn.Identity,
msg="Fused submodule (skipped BN)")
self.assertEqual(type(model.features[i][2]), nn.Identity,
msg="Non-fused submodule Conv")
self.assertEqual(type(model.classifier[0]), nniqat.LinearReLU)
self.assertEqual(type(model.classifier[1]), nn.Identity)
checkQAT(model)
model(self.img_data_2d[1][0])
convert(model, inplace=True)
model(self.img_data_2d[1][0])
self.checkModelWithSequentialQuantized(model)
def test_fusion_sequential_model_eval(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model = ModelWithSequentialFusion().eval()
model.to(torch.float)
fuse_modules(
model,
[['conv1', 'relu1'],
['features.0.0', 'features.0.1', 'features.0.2'],
['features.1.0', 'features.1.1', 'features.1.2'],
['features.2.0', 'features.2.1', 'features.2.2'],
['classifier.0', 'classifier.1']],
inplace=True)
self.assertEqual(type(model.conv1), nni.ConvReLU2d,
msg="Fused Conv + Relu: nni.ConvReLU2d")
self.assertEqual(type(model.conv1[0]), nn.Conv2d,
msg="Fused Conv + Relu: Conv2d")
self.assertEqual(type(model.conv1[1]), nn.ReLU,
msg="Fused Conv + Relu: Relu")
self.assertEqual(type(model.relu1), nn.Identity,
msg="Fused Conv + Relu: Identity")
for i in range(3):
self.assertEqual(type(model.features[i][0]), nni.ConvReLU2d,
msg="Fused submodule Conv + folded BN")
self.assertEqual(type(model.features[i][1]), nn.Identity,
msg="Fused submodule (skipped BN)")
self.assertEqual(type(model.features[i][2]), nn.Identity,
msg="Non-fused submodule Conv")
self.assertEqual(type(model.classifier[0]), nni.LinearReLU)
self.assertEqual(type(model.classifier[1]), nn.Identity)
model.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
prepare(model, inplace=True)
self.checkObservers(model)
model(self.img_data_2d[0][0])
convert(model, inplace=True)
model(self.img_data_2d[1][0])
self.checkModelWithSequentialQuantized(model)
def checkModelWithSequentialQuantized(self, model):
self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
self.assertEqual(type(model.relu1), nn.Identity)
for i in range(3):
self.assertEqual(type(model.features[i][0]), nniq.ConvReLU2d)
self.assertEqual(type(model.features[i][1]), nn.Identity)
self.assertEqual(type(model.features[i][2]), nn.Identity)
self.assertEqual(type(model.classifier[0]), nniq.LinearReLU)
self.assertEqual(type(model.classifier[1]), nn.Identity)
def test_fusion_conv_with_bias(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
model_orig = ModelForFusionWithBias().train()
# reference model
model_ref = copy.deepcopy(model_orig)
# output with no fusion.
out_ref = model_ref(self.img_data_2d[0][0])
# fused model
model_orig.qconfig = QConfig(activation=torch.nn.Identity,
weight=torch.nn.Identity)
model = fuse_modules_qat(
model_orig,
[["conv1", "bn1", "relu1"],
["conv2", "bn2"]])
prep_model = prepare_qat(model, inplace=False)
# output with fusion but no observers.
out_fused = prep_model(self.img_data_2d[0][0])
self.assertEqual(out_ref, out_fused)
def checkBN(bn_ref, bn):
self.assertEqual(bn_ref.weight, bn.weight)
self.assertEqual(bn_ref.bias, bn.bias)
self.assertEqual(bn_ref.running_mean, bn.running_mean)
self.assertEqual(bn_ref.running_var, bn.running_var)
checkBN(model_ref.bn1, prep_model.conv1.bn)
checkBN(model_ref.bn2, prep_model.conv2.bn)
model.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
prepare_qat(model, inplace=True)
model(self.img_data_2d[0][0])
def checkQAT(model):
self.assertEqual(type(model.conv1), nniqat.ConvBnReLU2d)
self.assertEqual(type(model.bn1), nn.Identity)
self.assertEqual(type(model.relu1), nn.Identity)
self.assertEqual(type(model.conv2), nniqat.ConvBn2d)
self.assertEqual(type(model.bn2), nn.Identity)
checkQAT(model)
def test_fusion_linear_bn_eval(self):
model = ModelForLinearBNFusion().train()
inp1 = torch.randn(8, 20)
inp2 = torch.randn(8, 20)
# Get some interesting values into the running mean and variance.
model(inp1)
model.eval()
golden = model(inp2)
model = fuse_modules(model, [["fc", "bn"]])
self.assertEqual(type(model.bn), nn.Identity)
self.assertEqual(golden, model(inp2))
def test_fusion_convtranspose_bn_eval(self):
model = ModelForConvTransposeBNFusion().train()
inp1 = torch.randn(8, 3, 16)
inp2 = torch.randn(8, 3, 16)
# Get some interesting values into the running mean and variance.
model(inp1)
model.eval()
golden = model(inp2)
model = fuse_modules(model, [["conv1", "bn1"], ["conv2", "bn2"], ["conv3", "bn3"]])
self.assertEqual(type(model.bn1), nn.Identity)
self.assertEqual(type(model.bn2), nn.Identity)
self.assertEqual(type(model.bn3), nn.Identity)
self.assertEqual(golden, model(inp2))
def test_forward_hooks_preserved(self):
r"""Test case that checks whether forward pre hooks of the first module and
post forward hooks of the last module in modules list passed to fusion function preserved.
(e.g. before fusion: [nn.Conv2d (with pre forward hooks), nn.BatchNorm2d, nn.ReLU (with post forward hooks)]
after fusion: [nni.ConvBnReLU2d (with pre and post hooks), nn.Identity, nn.Identity])
"""
model = ModelForFusion(default_qat_qconfig).train()
counter = {
'pre_forwards': 0,
'forwards': 0,
}
fused = False
def fw_pre_hook(fused_module_class, h_module, input):
if fused:
self.assertEqual(type(h_module), fused_module_class,
"After fusion owner of the first module's forward pre hook is not a fused module")
counter['pre_forwards'] += 1
def fw_hook(fused_module_class, h_module, input, output):
if fused:
self.assertEqual(type(h_module), fused_module_class,
"After fusion owner of the last module's forward hook is not a fused module")
counter['forwards'] += 1
# Registering two pre and two post forward hooks, thus expecting counter increment by two each inference
model.conv1.register_forward_pre_hook(lambda *args: fw_pre_hook(nni.ConvBnReLU2d, *args))
model.sub1.conv.register_forward_pre_hook(lambda *args: fw_pre_hook(nni.ConvBn2d, *args))
model.relu1.register_forward_hook(lambda *args: fw_hook(nni.ConvBnReLU2d, *args))
model.sub1.bn.register_forward_hook(lambda *args: fw_hook(nni.ConvBn2d, *args))
test_only_eval_fn(model, self.img_data_1d)
self.assertEqual(counter['pre_forwards'], 2 * len(self.img_data_1d))
self.assertEqual(counter['forwards'], 2 * len(self.img_data_1d))
model = fuse_modules_qat(model, ['conv1', 'bn1', 'relu1'])
model = fuse_modules_qat(model, ['sub1.conv', 'sub1.bn'])
fused = True
before_fusion_pre_count = counter['pre_forwards']
before_fusion_post_count = counter['forwards']
test_only_eval_fn(model, self.img_data_1d)
self.assertEqual(counter['pre_forwards'] - before_fusion_pre_count, 2 * len(self.img_data_1d))
self.assertEqual(counter['forwards'] - before_fusion_post_count, 2 * len(self.img_data_1d))
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_quantization.py TESTNAME\n\n"
"instead.")
|