1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
# Owner(s): ["oncall: quantization"]
import torch
from torch.testing._internal.common_quantization import (
QuantizationTestCase,
ModelMultipleOps,
ModelMultipleOpsNoAvgPool,
)
from torch.testing._internal.common_quantized import (
override_quantized_engine,
supported_qengines,
)
class TestModelNumericsEager(QuantizationTestCase):
def test_float_quant_compare_per_tensor(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
torch.manual_seed(42)
my_model = ModelMultipleOps().to(torch.float32)
my_model.eval()
calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32)
out_ref = my_model(eval_data)
qModel = torch.ao.quantization.QuantWrapper(my_model)
qModel.eval()
qModel.qconfig = torch.ao.quantization.default_qconfig
torch.ao.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']], inplace=True)
torch.ao.quantization.prepare(qModel, inplace=True)
qModel(calib_data)
torch.ao.quantization.convert(qModel, inplace=True)
out_q = qModel(eval_data)
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q))
# Quantized model output should be close to floating point model output numerically
# Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired
# output
self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB')
def test_float_quant_compare_per_channel(self):
# Test for per-channel Quant
torch.manual_seed(67)
my_model = ModelMultipleOps().to(torch.float32)
my_model.eval()
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
out_ref = my_model(eval_data)
q_model = torch.ao.quantization.QuantWrapper(my_model)
q_model.eval()
q_model.qconfig = torch.ao.quantization.default_per_channel_qconfig
torch.ao.quantization.fuse_modules(q_model.module, [['conv1', 'bn1', 'relu1']], inplace=True)
torch.ao.quantization.prepare(q_model)
q_model(calib_data)
torch.ao.quantization.convert(q_model)
out_q = q_model(eval_data)
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q))
# Quantized model output should be close to floating point model output numerically
# Setting target SQNR to be 35 dB
self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB')
def test_fake_quant_true_quant_compare(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
torch.manual_seed(67)
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
my_model.eval()
out_ref = my_model(eval_data)
fq_model = torch.ao.quantization.QuantWrapper(my_model)
fq_model.train()
fq_model.qconfig = torch.ao.quantization.default_qat_qconfig
torch.ao.quantization.fuse_modules_qat(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True)
torch.ao.quantization.prepare_qat(fq_model)
fq_model.eval()
fq_model.apply(torch.ao.quantization.disable_fake_quant)
fq_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
fq_model(calib_data)
fq_model.apply(torch.ao.quantization.enable_fake_quant)
fq_model.apply(torch.ao.quantization.disable_observer)
out_fq = fq_model(eval_data)
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq))
# Quantized model output should be close to floating point model output numerically
# Setting target SQNR to be 35 dB
self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB')
torch.ao.quantization.convert(fq_model)
out_q = fq_model(eval_data)
SQNRdB = 20 * torch.log10(torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10))
self.assertGreater(SQNRdB, 60, msg='Fake quant and true quant numerics diverge, expect SQNR > 60 dB')
# Test to compare weight only quantized model numerics and
# activation only quantized model numerics with float
def test_weight_only_activation_only_fakequant(self):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
torch.manual_seed(67)
calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32)
eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32)
qconfigset = set([torch.ao.quantization.default_weight_only_qconfig,
torch.ao.quantization.default_activation_only_qconfig])
SQNRTarget = [35, 45]
for idx, qconfig in enumerate(qconfigset):
my_model = ModelMultipleOpsNoAvgPool().to(torch.float32)
my_model.eval()
out_ref = my_model(eval_data)
fq_model = torch.ao.quantization.QuantWrapper(my_model)
fq_model.train()
fq_model.qconfig = qconfig
torch.ao.quantization.fuse_modules_qat(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True)
torch.ao.quantization.prepare_qat(fq_model)
fq_model.eval()
fq_model.apply(torch.ao.quantization.disable_fake_quant)
fq_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)
fq_model(calib_data)
fq_model.apply(torch.ao.quantization.enable_fake_quant)
fq_model.apply(torch.ao.quantization.disable_observer)
out_fq = fq_model(eval_data)
SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq))
self.assertGreater(SQNRdB, SQNRTarget[idx], msg='Quantized model numerics diverge from float')
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_quantization.py TESTNAME\n\n"
"instead.")
|