1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
# Owner(s): ["oncall: quantization"]
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.intrinsic.quantized as nniq
import torch.ao.nn.quantized as nnq
from torch.ao.quantization import default_qconfig
from torch.ao.quantization.observer import MinMaxObserver, PerChannelMinMaxObserver
from torch.ao.quantization.quantize_fx import prepare_fx, convert_fx
from torch.ao.quantization.fx._equalize import (
_InputEqualizationObserver,
_WeightEqualizationObserver,
calculate_equalization_scale,
default_equalization_qconfig,
_convert_equalization_ref,
get_layer_sqnr_dict,
get_equalization_qconfig_dict,
)
from torch.testing._internal.common_quantization import (
NodeSpec as ns,
QuantizationTestCase,
SingleLayerLinearModel,
TwoLayerLinearModel,
LinearAddModel,
SingleLayerFunctionalLinearModel,
TwoLayerFunctionalLinearModel,
FunctionalLinearAddModel,
ConvModel,
TwoLayerConvModel,
SingleLayerFunctionalConvModel,
TwoLayerFunctionalConvModel,
skipIfNoFBGEMM,
LinearReluModel,
LinearReluLinearModel,
LinearReluAddModel,
FunctionalLinearReluModel,
FunctionalLinearReluLinearModel,
ConvReluModel,
ConvReluConvModel,
ConvReluAddModel,
FunctionalConvReluModel,
FunctionalConvReluConvModel,
)
# Standard Libraries
import copy
import numpy as np
# Testing utils
from hypothesis import given
from hypothesis import strategies as st
default_qconfig_dict = {"": default_qconfig}
specific_qconfig_dict = {
"": None,
"object_type": [(nn.Linear, default_qconfig),
(F.linear, default_qconfig),
(nn.ReLU, default_qconfig),
(F.relu, default_qconfig),
(nn.Conv2d, default_qconfig),
(F.conv2d, default_qconfig)]
}
default_equalization_qconfig_dict = {
"": None,
"object_type": [(nn.Linear, default_equalization_qconfig),
(F.linear, default_equalization_qconfig),
(nn.ReLU, default_equalization_qconfig),
(F.relu, default_equalization_qconfig),
(nn.Conv2d, default_equalization_qconfig),
(F.conv2d, default_equalization_qconfig)]
}
class TestEqualizeFx(QuantizationTestCase):
def channel_minmax(self, input, axis=1):
''' Finds the min/max of inputs associated with a specific channel
'''
size_of_tensor_dim = input.ndim
axis_list = list(range(size_of_tensor_dim))
axis_list.remove(axis)
axis_list.sort(reverse=True)
mins = input.copy()
maxs = input.copy()
for a in axis_list:
mins = mins.min(a)
maxs = maxs.max(a)
return (mins, maxs)
@given(ndim=st.sampled_from((2, 3, 4, 5)),
input_qdtype=st.sampled_from((torch.qint8, torch.quint8)),
input_qscheme=st.sampled_from((torch.per_tensor_affine, torch.per_tensor_symmetric)),
weight_qdtype=st.sampled_from((torch.qint8, torch.quint8)),
weight_qscheme=st.sampled_from((torch.per_channel_affine, torch.per_channel_symmetric,
torch.per_channel_affine_float_qparams)))
def test_input_weight_eq_observer(self, ndim, input_qdtype, input_qscheme, weight_qdtype, weight_qscheme):
sizes = []
for _ in range((ndim - 1) * 2):
sizes.append(np.random.randint(2, 10))
channel = np.random.randint(1, 10)
if ndim == 2:
x = np.random.random(size=(sizes[0], channel))
w = np.random.random(size=(sizes[1], channel))
elif ndim == 3:
x = np.random.random(size=(sizes[0], channel, sizes[1]))
w = np.random.random(size=(sizes[2], channel, sizes[3]))
elif ndim == 4:
x = np.random.random(size=(sizes[0], channel, sizes[1], sizes[2]))
w = np.random.random(size=(sizes[3], channel, sizes[4], sizes[5]))
elif ndim == 5:
x = np.random.random(size=(sizes[0], channel, sizes[1], sizes[2], sizes[3]))
w = np.random.random(size=(sizes[4], channel, sizes[5], sizes[6], sizes[7]))
x = (x * 10).round(decimals=2).astype(np.float32)
w = (w * 10).round(decimals=2).astype(np.float32)
input_eq_obs = _InputEqualizationObserver(dtype=input_qdtype, qscheme=input_qscheme)
weight_eq_obs = _WeightEqualizationObserver(dtype=weight_qdtype, qscheme=weight_qscheme)
ret_x = input_eq_obs(torch.tensor(x))
ret_w = weight_eq_obs(torch.tensor(w))
self.assertEqual((ret_x, ret_w), (x, w))
# Check the min/max input columns are correct
ref_min_inputs, ref_max_inputs = self.channel_minmax(x)
min_inputs, max_inputs = input_eq_obs.get_input_minmax()
self.assertEqual(min_inputs, torch.tensor(ref_min_inputs, dtype=torch.float32))
self.assertEqual(max_inputs, torch.tensor(ref_max_inputs, dtype=torch.float32))
# Check the min/max weight columns are correct
ref_min_weights_col, ref_max_weights_col = self.channel_minmax(w)
min_weights_col, max_weights_col = weight_eq_obs.get_weight_col_minmax()
self.assertEqual(min_weights_col, torch.tensor(ref_min_weights_col, dtype=torch.float32))
self.assertEqual(max_weights_col, torch.tensor(ref_max_weights_col, dtype=torch.float32))
# Check the equalization scale is correct
equalization_scale = calculate_equalization_scale(input_eq_obs, weight_eq_obs)
ref_equalization_scale = np.sqrt((ref_max_weights_col - ref_min_weights_col) /
(ref_max_inputs - ref_min_inputs))
self.assertEqual(equalization_scale, torch.tensor(ref_equalization_scale, dtype=torch.float32))
input_eq_obs.set_equalization_scale(equalization_scale)
weight_eq_obs.set_equalization_scale(equalization_scale)
# Check the input scale/zero-point values
min_input_scaled, max_input_scaled = input_eq_obs.calculate_scaled_minmax()
input_quant_obs = MinMaxObserver(dtype=input_qdtype, qscheme=input_qscheme)
input_quant_obs.min_val = min_input_scaled
input_quant_obs.max_val = max_input_scaled
input_qparams = input_quant_obs.calculate_qparams()
ref_min_input_scaled = np.min(ref_min_inputs * ref_equalization_scale)
ref_min_input_scaled = min(0, ref_min_input_scaled)
ref_max_input_scaled = np.max(ref_max_inputs * ref_equalization_scale)
ref_max_input_scaled = max(0, ref_max_input_scaled)
if input_qscheme == torch.per_tensor_symmetric:
ref_scale = 2 * max(abs(ref_min_input_scaled), ref_max_input_scaled) / 255
ref_zero_point = 0 if input_qdtype is torch.qint8 else 128
else:
ref_scale = (ref_max_input_scaled - ref_min_input_scaled) / 255
quant_min = -128 if input_qdtype is torch.qint8 else 0
quant_max = 127 if input_qdtype is torch.qint8 else 255
ref_zero_point = quant_min - np.round(ref_min_input_scaled / ref_scale)
np.clip(ref_zero_point, quant_min, quant_max)
self.assertEqual(input_qparams[0].item(), ref_scale, atol=1e-5, rtol=0)
self.assertEqual(input_qparams[1].item(), ref_zero_point)
# During input-weight equalization, we will scale the weights so that
# the following weight quantized observer will have the correct scaled qparams
# Check the weight scale/zero-point values of the quantized observer
weight_quant_obs = PerChannelMinMaxObserver(ch_axis=1, dtype=weight_qdtype, qscheme=weight_qscheme)
# Scale the weights for input-weight equalization
new_shape = [1] * w.ndim
new_shape[1] = w.shape[1]
ref_w_scaled = w * np.reciprocal(ref_equalization_scale.reshape(tuple(new_shape)))
w = torch.tensor(w)
new_shape[1] = w.size(1)
w_scaled = torch.mul(w, torch.reciprocal(equalization_scale.view(new_shape)))
self.assertEqual(w_scaled, ref_w_scaled)
# Call forward on the weight quantization observer
weight_quant_obs(w_scaled)
# Check the min/max weight rows are correct
ref_min_weights_scaled, ref_max_weights_scaled = self.channel_minmax(ref_w_scaled)
self.assertEqual(weight_quant_obs.min_val, torch.tensor(ref_min_weights_scaled, dtype=torch.float32))
self.assertEqual(weight_quant_obs.max_val, torch.tensor(ref_max_weights_scaled, dtype=torch.float32))
weight_qparams = weight_quant_obs.calculate_qparams()
if weight_qscheme == torch.per_channel_symmetric:
ref_min_weights_scaled = np.minimum(np.zeros(ref_min_weights_scaled.shape), ref_min_weights_scaled)
ref_max_weights_scaled = np.maximum(np.zeros(ref_max_weights_scaled.shape), ref_max_weights_scaled)
ref_scales = 2 * np.maximum(np.abs(ref_min_weights_scaled), ref_max_weights_scaled) / 255
ref_zero_points = np.zeros_like(
ref_scales) if weight_qdtype is torch.qint8 else np.ones_like(ref_scales) * 128
elif weight_qscheme == torch.per_channel_affine_float_qparams:
ref_scales = (ref_max_weights_scaled - ref_min_weights_scaled) / 255
ref_scales = np.where(ref_scales > 1e-7, ref_scales, np.ones_like(ref_scales))
ref_zero_points = -1 * ref_min_weights_scaled / ref_scales
else:
ref_min_weights_scaled = np.minimum(np.zeros_like(ref_min_weights_scaled), ref_min_weights_scaled)
ref_max_weights_scaled = np.maximum(np.zeros_like(ref_max_weights_scaled), ref_max_weights_scaled)
ref_scales = (ref_max_weights_scaled - ref_min_weights_scaled) / 255
ref_zero_points = -128 if weight_qdtype is torch.qint8 else 0
ref_zero_points = ref_zero_points - np.round(ref_min_weights_scaled / ref_scales)
self.assertEqual(weight_qparams[0], torch.tensor(
ref_scales, dtype=weight_qparams[0].dtype), rtol=1e-5, atol=0.0001)
self.assertEqual(weight_qparams[1], torch.tensor(
ref_zero_points, dtype=weight_qparams[1].dtype), rtol=1e-5, atol=1)
def test_input_weight_equalization_prepare(self):
""" Tests that graphs created after prepare_fx is as expected
"""
single_nn_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 1,
ns.call_module(MinMaxObserver): 2,
}
two_nn_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 2,
ns.call_module(MinMaxObserver): 3,
}
single_F_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 1,
ns.call_module(_WeightEqualizationObserver): 1,
ns.call_module(MinMaxObserver): 3,
}
two_F_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 2,
ns.call_module(_WeightEqualizationObserver): 2,
ns.call_module(MinMaxObserver): 5,
}
fp_F_layer_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 2,
ns.call_module(_WeightEqualizationObserver): 2,
ns.call_module(MinMaxObserver): 6,
}
tests = [(SingleLayerLinearModel, single_nn_layer_node_occurrence),
(TwoLayerLinearModel, two_nn_layer_node_occurrence),
(TwoLayerFunctionalLinearModel, two_F_layer_node_occurrence),
(FunctionalLinearAddModel, fp_F_layer_node_occurrence),
(LinearReluModel, single_nn_layer_node_occurrence),
(LinearReluLinearModel, two_nn_layer_node_occurrence),
(FunctionalLinearReluModel, single_F_layer_node_occurrence),
(FunctionalLinearReluLinearModel, two_F_layer_node_occurrence),
(ConvModel, single_nn_layer_node_occurrence),
(TwoLayerConvModel, two_nn_layer_node_occurrence),
(TwoLayerFunctionalConvModel, two_F_layer_node_occurrence),
(ConvReluModel, single_nn_layer_node_occurrence),
(ConvReluConvModel, two_nn_layer_node_occurrence),
(FunctionalConvReluModel, single_F_layer_node_occurrence),
(FunctionalConvReluConvModel, two_F_layer_node_occurrence)]
for (M, node_occurrence) in tests:
m = M().eval()
example_inputs = m.get_example_inputs()
prepared = prepare_fx(
m,
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
self.checkGraphModuleNodes(prepared, expected_node_occurrence=node_occurrence)
def test_input_weight_equalization_branching(self):
""" Tests that graphs containing branches are prepared correctly.
Specifically, equalization observers should not be inserted in front of
branches in which both initial layers in the branches plan to be
quantized.
"""
# Tests that we do not add an equalization observer due to both initial
# nodes in the branch containing layers that need to be equalized.
# Note that this should print out 2 warning messages for not being able
# to equalize layers linear1 and linear1 because it is part of a branch
class TestBranchingWithoutEqualizationModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = nn.Linear(5, 5)
self.linear2 = nn.Linear(5, 5)
def forward(self, x):
y = self.linear1(x)
z = self.linear2(x)
return torch.add(y, z)
no_eq_branching_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 0,
ns.call_module(MinMaxObserver): 3,
}
m = TestBranchingWithoutEqualizationModel().eval()
example_inputs = (torch.rand(1, 5),)
prepared = prepare_fx(
m, specific_qconfig_dict, example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
self.checkGraphModuleNodes(prepared, expected_node_occurrence=no_eq_branching_node_occurrence)
# Tests that we will add an equalization observer because there is only
# one initial node in the branch that needs to be equalized
class TestBranchingWithEqualizationModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1 = nn.Linear(5, 5)
def forward(self, x):
y = self.linear1(x)
z = torch.add(x, 5)
return torch.add(y, z)
eq_branching_node_occurrence = {
ns.call_module(_InputEqualizationObserver): 1,
ns.call_module(MinMaxObserver): 2,
}
m = TestBranchingWithEqualizationModel().eval()
example_inputs = (torch.randn(1, 5),)
prepared = prepare_fx(
m, specific_qconfig_dict, example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
self.checkGraphModuleNodes(prepared, expected_node_occurrence=eq_branching_node_occurrence)
@skipIfNoFBGEMM
def test_input_weight_equalization_convert(self):
""" Tests that the modified model for equalization (before quantization)
returns the same output as the original model
"""
tests = [(SingleLayerLinearModel, 2), (LinearAddModel, 2), (TwoLayerLinearModel, 2),
(SingleLayerFunctionalLinearModel, 2), (FunctionalLinearAddModel, 2),
(TwoLayerFunctionalLinearModel, 2),
(LinearReluModel, 2), (LinearReluLinearModel, 2), (LinearReluAddModel, 2),
(FunctionalLinearReluModel, 2), (FunctionalLinearReluLinearModel, 2),
(ConvModel, 4), (TwoLayerConvModel, 4), (SingleLayerFunctionalConvModel, 4),
(TwoLayerFunctionalConvModel, 4),
(ConvReluModel, 4), (ConvReluConvModel, 4), (ConvReluAddModel, 4),
(FunctionalConvReluModel, 4), (FunctionalConvReluConvModel, 4)]
for (M, ndim) in tests:
m = M().eval()
if ndim == 2:
x = torch.rand((5, 5))
elif ndim == 4:
x = torch.rand((16, 3, 224, 224))
example_inputs = (x,)
prepared = prepare_fx(
copy.deepcopy(m),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict
)
output = prepared(x)
convert_ref = _convert_equalization_ref(prepared)
convert_ref_output = convert_ref(x)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(x)
convert_fx(prepared) # Check if compile
self.assertEqual(output, convert_ref_output)
def calculate_equalization_scale_ref(self, x, w):
""" Calculates the equalization scale based on the input and weight
"""
min_inputs = x.min(axis=0)
max_inputs = x.max(axis=0)
min_weights_col = w.min(axis=0)
max_weights_col = w.max(axis=0)
equalization_scale = np.sqrt((max_weights_col - min_weights_col) /
(max_inputs - min_inputs))
return equalization_scale
def get_expected_eq_scales(self, model, x):
""" For each module in the graph, we want to calculate the equalization
scale at that point. This only works for models containing single or
connected linear layers.
"""
exp_eq_scales = []
for _, module in model.named_children():
weight = module.weight.detach().numpy()
bias = module.bias.detach().numpy()
eq_scale = self.calculate_equalization_scale_ref(x, weight)
exp_eq_scales.append(eq_scale)
x = x @ weight.T + bias
return exp_eq_scales
def test_input_weight_equalization_equalization_scales(self):
""" After applying the equalization functions, check if the equalization
scales are the expected values
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel,
SingleLayerFunctionalLinearModel, TwoLayerFunctionalLinearModel]
x = torch.rand((5, 5))
for M in tests:
m = M().eval()
exp_eq_scales = self.get_expected_eq_scales(m, x.detach().numpy())
example_inputs = (x,)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(*example_inputs)
convert_ref = _convert_equalization_ref(prepared)
convert_ref(x)
counter = 0
for node in convert_ref.graph.nodes:
if 'equalization_scale' in node.name and node.op == 'get_attr':
self.assertEqual(convert_ref.get_buffer(str(node.target)).reshape(-1), exp_eq_scales[counter])
counter += 1
def get_expected_weights_bias(self, model, x, exp_eq_scales):
""" For each module in the graph, we want to calculate the expected
scaled weight and bias values. This only works for models containing
single or connected linear layers.
"""
exp_weights = []
exp_bias = []
for i, (_, module) in enumerate(model.named_children()):
weight = module.weight.detach().numpy()
bias = module.bias.detach().numpy()
scaled_weight = weight * np.reciprocal(exp_eq_scales[i])
scaled_bias = bias
if i + 1 < len(exp_eq_scales):
scaled_weight = (scaled_weight.T * exp_eq_scales[i + 1]).T
scaled_bias = (scaled_bias.T * exp_eq_scales[i + 1]).T
exp_weights.append(scaled_weight)
exp_bias.append(scaled_bias)
x = x @ weight.T + bias
return exp_weights, exp_bias
def test_input_weight_equalization_weights_bias(self):
""" After applying the equalization functions check if the weights and
biases are as expected
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel,
SingleLayerFunctionalLinearModel, TwoLayerFunctionalLinearModel]
x = torch.rand((5, 5))
for M in tests:
m = M().eval()
exp_eq_scales = self.get_expected_eq_scales(m, x.detach().numpy())
exp_weights, exp_bias = self.get_expected_weights_bias(m, x.detach().numpy(), exp_eq_scales)
example_inputs = (x,)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(x)
convert_ref = _convert_equalization_ref(prepared)
convert_ref(x)
modules = dict(convert_ref.named_modules(remove_duplicate=False))
counter = 0
for node in convert_ref.graph.nodes:
if node.op == 'call_module' and isinstance(modules[str(node.target)], nn.Linear):
self.assertEqual(modules[str(node.target)].weight, exp_weights[counter])
self.assertEqual(modules[str(node.target)].bias, exp_bias[counter])
counter += 1
def get_expected_inp_act_vals(self, model, x, exp_eq_scales, exp_weights, exp_bias):
""" For each module in the graph, we want to calculate the expected
min/max values for every input activation node. This only works for
models containing only single or connected linear layers.
"""
x = x * exp_eq_scales[0]
exp_inp_activation_vals = []
for i, _ in enumerate(model.named_children()):
exp_inp_activation_vals.append((x.min(), x.max()))
x = x @ exp_weights[i].T + exp_bias[i]
exp_inp_activation_vals.append((x.min(), x.max()))
return exp_inp_activation_vals
def get_expected_weight_act_vals(self, exp_weights):
""" For each module in the graph, we want to calculate the expected
min/max values for every weight activation node. This is assuming that
the weight observers are all MinMaxObservers.
"""
exp_weight_activation_vals = []
for w in exp_weights:
exp_weight_activation_vals.append((w.min(), w.max()))
return exp_weight_activation_vals
def test_input_weight_equalization_activation_values(self):
""" After applying the equalization functions check if the input
observer's min/max values are as expected
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel, SingleLayerFunctionalLinearModel]
x = torch.rand((5, 5))
torch.manual_seed(0)
for M in tests:
m = M().eval()
exp_eq_scales = self.get_expected_eq_scales(m, x.detach().numpy())
exp_weights, exp_bias = self.get_expected_weights_bias(m, x.detach().numpy(), exp_eq_scales)
exp_inp_act_vals = self.get_expected_inp_act_vals(m, x, exp_eq_scales, exp_weights, exp_bias)
exp_weight_act_vals = self.get_expected_weight_act_vals(exp_weights)
example_inputs = (x,)
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
prepared(x)
convert_ref = _convert_equalization_ref(prepared)
convert_ref(x)
modules = dict(convert_ref.named_modules(remove_duplicate=False))
inp_counter = 0
weight_counter = 0
for node in convert_ref.graph.nodes:
users = list(node.users)
if node.op == 'call_module' and isinstance(modules[str(node.target)], MinMaxObserver):
if len(users) == 1 and users[0].target == torch.nn.functional.linear and users[0].args[1] == node:
# Check min/max values of weight activation layers
exp_min_val, exp_max_val = exp_weight_act_vals[weight_counter]
self.assertEqual(modules[str(node.target)].min_val, exp_min_val)
self.assertEqual(modules[str(node.target)].max_val, exp_max_val)
weight_counter += 1
else:
# Check min/max values of input activation layers
exp_min_val, exp_max_val = exp_inp_act_vals[inp_counter]
self.assertEqual(modules[str(node.target)].min_val, exp_min_val)
self.assertEqual(modules[str(node.target)].max_val, exp_max_val)
inp_counter += 1
def check_orig_and_eq_graphs(self, orig_model, eq_model):
""" Given a non-equalized model and an equalized model, check that the
graphs are structured in the same way, except the equalized model has
additional 'equalization_scale' and 'mul' nodes.
"""
orig_idx = 0
orig_nodes = list(orig_model.graph.nodes)
orig_modules = dict(orig_model.named_modules(remove_duplicate=False))
eq_idx = 0
eq_nodes = list(eq_model.graph.nodes)
eq_modules = dict(eq_model.named_modules(remove_duplicate=False))
while orig_idx < len(orig_nodes) and eq_idx < len(eq_nodes):
if 'equalization_scale' in eq_nodes[eq_idx].name and 'mul' in eq_nodes[eq_idx + 1].name:
# Skip the equalization and mul nodes
eq_idx += 2
continue
elif orig_nodes[orig_idx].op != eq_nodes[eq_idx].op:
return False
elif orig_nodes[orig_idx].op == 'call_module':
# Check that the type of call_modules are the same (ex. nn.Linear, MinMaxObserver)
orig_node = orig_nodes[orig_idx]
eq_node = eq_nodes[eq_idx]
if type(orig_modules[orig_node.target]) is not type(eq_modules[eq_node.target]):
return False
elif orig_nodes[orig_idx].op == 'call_function':
# Check that the call_functions are the same (ex. F.linear)
orig_node = orig_nodes[orig_idx]
eq_node = eq_nodes[eq_idx]
if orig_node.target != eq_node.target:
return False
eq_idx += 1
orig_idx += 1
return True
@skipIfNoFBGEMM
def test_input_weight_equalization_graphs(self):
""" Tests that the modified model for equalization has the same graph
structure as the model without equalization (before and after
quantization).
"""
linear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
linearAdd_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize'),
ns.call_function(torch.add),
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
linear2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
functionalLinear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
functionalLinearAdd_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize'),
ns.call_function(torch.add),
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
functionalLinear2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
linearRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.LinearReLU),
ns.call_method('dequantize')
]
linearReluLinear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.LinearReLU),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
functionalLinearRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear_relu),
ns.call_method('dequantize')
]
functionalLinearReluLinear_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.linear_relu),
ns.call_function(torch.ops.quantized.linear),
ns.call_method('dequantize')
]
conv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Conv2d),
ns.call_method('dequantize')
]
conv2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Conv2d),
ns.call_module(nnq.Conv2d),
ns.call_method('dequantize')
]
functionalConv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_method('dequantize')
]
functionalConv2_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_method('dequantize')
]
convRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.ConvReLU2d),
ns.call_method('dequantize')
]
convReluConv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nniq.ConvReLU2d),
ns.call_module(nnq.Conv2d),
ns.call_method('dequantize')
]
functionalConvRelu_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d_relu),
ns.call_method('dequantize')
]
functionalConvReluConv_node_list = [
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_function(torch.ops.quantized.conv2d_relu),
ns.call_function(torch.ops.quantized.conv2d),
ns.call_method('dequantize')
]
tests = [(SingleLayerLinearModel, linear_node_list),
(LinearAddModel, linearAdd_node_list),
(TwoLayerLinearModel, linear2_node_list),
(SingleLayerFunctionalLinearModel, functionalLinear_node_list),
(FunctionalLinearAddModel, functionalLinearAdd_node_list),
(TwoLayerFunctionalLinearModel, functionalLinear2_node_list),
(LinearReluModel, linearRelu_node_list),
(LinearReluLinearModel, linearReluLinear_node_list),
(FunctionalLinearReluModel, functionalLinearRelu_node_list),
(FunctionalLinearReluLinearModel, functionalLinearReluLinear_node_list),
(ConvModel, conv_node_list),
(TwoLayerConvModel, conv2_node_list),
(SingleLayerFunctionalConvModel, functionalConv_node_list),
(TwoLayerFunctionalConvModel, functionalConv2_node_list),
(ConvReluModel, convRelu_node_list),
(ConvReluConvModel, convReluConv_node_list),
(FunctionalConvReluModel, functionalConvRelu_node_list),
(FunctionalConvReluConvModel, functionalConvReluConv_node_list)]
for (M, node_list) in tests:
m = M().eval()
example_inputs = m.get_example_inputs()
prepared = prepare_fx(
m, specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict)
equalized_quantized_model = convert_fx(prepared)
# Check the order of nodes in the graph
self.checkGraphModuleNodes(equalized_quantized_model, expected_node_list=node_list)
@skipIfNoFBGEMM
def test_input_weight_equalization_results(self):
""" Tests that for small models, the results of quantized models that
have been equalized are very close to models that have not been equalized.
"""
tests = [SingleLayerLinearModel, TwoLayerLinearModel, LinearAddModel,
SingleLayerFunctionalLinearModel, TwoLayerFunctionalLinearModel]
x = torch.rand((5, 5))
for M in tests:
m = M().eval()
# No equalization
example_inputs = (x,)
prepared = prepare_fx(
copy.deepcopy(m),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config={})
prepared(x)
quantized = convert_fx(prepared) # Check if compile
quantized_output = quantized(x)
# With equalization
prepared = prepare_fx(
copy.deepcopy(m),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=default_equalization_qconfig_dict
)
prepared(x)
equalized_and_quantized = convert_fx(prepared) # Check if compile
equalized_and_quantized_output = equalized_and_quantized(x)
self.assertEqual(quantized_output, equalized_and_quantized_output, rtol=1e-5, atol=0.1)
@skipIfNoFBGEMM
def test_selective_equalization(self):
""" Tests that we are able to run numeric suite on the equalized model
and construct a valid equalization_config equalizing only the top
4 layers with the highest quantization errors.
"""
torch.manual_seed(1)
class M(nn.Module):
def __init__(self):
super().__init__()
self.bot = torch.nn.Sequential(torch.nn.Linear(5, 5))
self.top = torch.nn.Sequential(torch.nn.Linear(5, 5))
def forward(self, x):
x = self.bot(x)
x = torch.add(x, 5)
x = self.top(x)
return x
float_model = M().eval()
# Hard coded so that the top layer has a higher quantization error
x = torch.tensor([[0.0642, 0.7824, 0.4255, 0.7106, 0.5957],
[0.8373, 0.8851, 0.8229, 0.0212, 0.8987],
[0.9077, 0.7538, 0.4530, 0.5772, 0.1376],
[0.0690, 0.9002, 0.7998, 0.2768, 0.8985],
[0.0282, 0.5068, 0.6725, 0.1829, 0.5480]])
# Quantize the float model
example_inputs = (x,)
prepared_model = prepare_fx(
copy.deepcopy(float_model),
specific_qconfig_dict,
example_inputs=example_inputs
)
prepared_model(x)
quantized_model = convert_fx(copy.deepcopy(prepared_model))
# Get the SQNR between the float and quantized model
layer_to_sqnr_dict = get_layer_sqnr_dict(copy.deepcopy(prepared_model), quantized_model, x)
# Construct the equalization_qconfig_dict equalizing layers with the highest
# quantization errors
selective_equalization_qconfig_dict = get_equalization_qconfig_dict(layer_to_sqnr_dict, 1)
# Create the selectively equalized model
prepared_model = prepare_fx(
copy.deepcopy(float_model),
specific_qconfig_dict,
example_inputs=example_inputs,
_equalization_config=selective_equalization_qconfig_dict,
)
prepared_model(x)
equalized_model = convert_fx(prepared_model)
node_list = [
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize'),
ns.call_function(torch.add),
ns.call_function(torch.mul),
ns.call_function(torch.quantize_per_tensor),
ns.call_module(nnq.Linear),
ns.call_method('dequantize')
]
# Check the order of nodes in the graph
self.checkGraphModuleNodes(equalized_model, expected_node_list=node_list)
|