1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
|
# -*- coding: utf-8 -*-
# Owner(s): ["oncall: quantization"]
import torch
import torch.nn as nn
import torch.ao.quantization.quantize_fx as quantize_fx
import torch.nn.functional as F
from torch.ao.quantization import QConfig, QConfigMapping
from torch.ao.quantization.fx._model_report.detector import (
DynamicStaticDetector,
InputWeightEqualizationDetector,
PerChannelDetector,
OutlierDetector,
)
from torch.ao.quantization.fx._model_report.model_report_observer import ModelReportObserver
from torch.ao.quantization.fx._model_report.model_report_visualizer import ModelReportVisualizer
from torch.ao.quantization.fx._model_report.model_report import ModelReport
from torch.ao.quantization.observer import (
HistogramObserver,
default_per_channel_weight_observer,
default_observer
)
from torch.nn.intrinsic.modules.fused import ConvReLU2d, LinearReLU
from torch.testing._internal.common_quantization import (
ConvModel,
QuantizationTestCase,
SingleLayerLinearModel,
TwoLayerLinearModel,
skipIfNoFBGEMM,
skipIfNoQNNPACK,
override_quantized_engine,
)
"""
Partition of input domain:
Model contains: conv or linear, both conv and linear
Model contains: ConvTransposeNd (not supported for per_channel)
Model is: post training quantization model, quantization aware training model
Model is: composed with nn.Sequential, composed in class structure
QConfig utilizes per_channel weight observer, backend uses non per_channel weight observer
QConfig_dict uses only one default qconfig, Qconfig dict uses > 1 unique qconfigs
Partition on output domain:
There are possible changes / suggestions, there are no changes / suggestions
"""
# Default output for string if no optimizations are possible
DEFAULT_NO_OPTIMS_ANSWER_STRING = (
"Further Optimizations for backend {}: \nNo further per_channel optimizations possible."
)
# Example Sequential Model with multiple Conv and Linear with nesting involved
NESTED_CONV_LINEAR_EXAMPLE = torch.nn.Sequential(
torch.nn.Conv2d(3, 3, 2, 1),
torch.nn.Sequential(torch.nn.Linear(9, 27), torch.nn.ReLU()),
torch.nn.Linear(27, 27),
torch.nn.ReLU(),
torch.nn.Conv2d(3, 3, 2, 1),
)
# Example Sequential Model with Conv sub-class example
LAZY_CONV_LINEAR_EXAMPLE = torch.nn.Sequential(
torch.nn.LazyConv2d(3, 3, 2, 1),
torch.nn.Sequential(torch.nn.Linear(5, 27), torch.nn.ReLU()),
torch.nn.ReLU(),
torch.nn.Linear(27, 27),
torch.nn.ReLU(),
torch.nn.LazyConv2d(3, 3, 2, 1),
)
# Example Sequential Model with Fusion directly built into model
FUSION_CONV_LINEAR_EXAMPLE = torch.nn.Sequential(
ConvReLU2d(torch.nn.Conv2d(3, 3, 2, 1), torch.nn.ReLU()),
torch.nn.Sequential(LinearReLU(torch.nn.Linear(9, 27), torch.nn.ReLU())),
LinearReLU(torch.nn.Linear(27, 27), torch.nn.ReLU()),
torch.nn.Conv2d(3, 3, 2, 1),
)
# Test class
# example model to use for tests
class ThreeOps(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
self.bn = nn.BatchNorm2d(3)
self.relu = nn.ReLU()
def forward(self, x):
x = self.linear(x)
x = self.bn(x)
x = self.relu(x)
return x
def get_example_inputs(self):
return (torch.randn(1, 3, 3, 3),)
class TwoThreeOps(nn.Module):
def __init__(self):
super().__init__()
self.block1 = ThreeOps()
self.block2 = ThreeOps()
def forward(self, x):
x = self.block1(x)
y = self.block2(x)
z = x + y
z = F.relu(z)
return z
def get_example_inputs(self):
return (torch.randn(1, 3, 3, 3),)
class TestFxModelReportDetector(QuantizationTestCase):
"""Prepares and callibrate the model"""
def _prepare_model_and_run_input(self, model, q_config_mapping, input):
model_prep = torch.ao.quantization.quantize_fx.prepare_fx(model, q_config_mapping, input) # prep model
model_prep(input).sum() # callibrate the model
return model_prep
"""Case includes:
one conv or linear
post training quantiztion
composed as module
qconfig uses per_channel weight observer
Only 1 qconfig in qconfig dict
Output has no changes / suggestions
"""
@skipIfNoFBGEMM
def test_simple_conv(self):
with override_quantized_engine('fbgemm'):
torch.backends.quantized.engine = "fbgemm"
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
input = torch.randn(1, 3, 10, 10)
prepared_model = self._prepare_model_and_run_input(ConvModel(), q_config_mapping, input)
# run the detector
per_channel_detector = PerChannelDetector(torch.backends.quantized.engine)
optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model)
# no optims possible and there should be nothing in per_channel_status
self.assertEqual(
optims_str,
DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine),
)
# there shoud only be one conv there in this model
self.assertEqual(per_channel_info["conv"]["backend"], torch.backends.quantized.engine)
self.assertEqual(len(per_channel_info), 1)
self.assertEqual(list(per_channel_info)[0], "conv")
self.assertEqual(
per_channel_info["conv"]["per_channel_quantization_supported"],
True,
)
self.assertEqual(per_channel_info["conv"]["per_channel_quantization_used"], True)
"""Case includes:
Multiple conv or linear
post training quantization
composed as module
qconfig doesn't use per_channel weight observer
Only 1 qconfig in qconfig dict
Output has possible changes / suggestions
"""
@skipIfNoQNNPACK
def test_multi_linear_model_without_per_channel(self):
with override_quantized_engine('qnnpack'):
torch.backends.quantized.engine = "qnnpack"
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
prepared_model = self._prepare_model_and_run_input(
TwoLayerLinearModel(),
q_config_mapping,
TwoLayerLinearModel().get_example_inputs()[0],
)
# run the detector
per_channel_detector = PerChannelDetector(torch.backends.quantized.engine)
optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model)
# there should be optims possible
self.assertNotEqual(
optims_str,
DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine),
)
# pick a random key to look at
rand_key: str = list(per_channel_info.keys())[0]
self.assertEqual(per_channel_info[rand_key]["backend"], torch.backends.quantized.engine)
self.assertEqual(len(per_channel_info), 2)
# for each linear layer, should be supported but not used
for linear_key in per_channel_info.keys():
module_entry = per_channel_info[linear_key]
self.assertEqual(module_entry["per_channel_quantization_supported"], True)
self.assertEqual(module_entry["per_channel_quantization_used"], False)
"""Case includes:
Multiple conv or linear
post training quantization
composed as Module
qconfig doesn't use per_channel weight observer
More than 1 qconfig in qconfig dict
Output has possible changes / suggestions
"""
@skipIfNoQNNPACK
def test_multiple_q_config_options(self):
with override_quantized_engine('qnnpack'):
torch.backends.quantized.engine = "qnnpack"
# qconfig with support for per_channel quantization
per_channel_qconfig = QConfig(
activation=HistogramObserver.with_args(reduce_range=True),
weight=default_per_channel_weight_observer,
)
# we need to design the model
class ConvLinearModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(3, 3, 2, 1)
self.fc1 = torch.nn.Linear(9, 27)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(27, 27)
self.conv2 = torch.nn.Conv2d(3, 3, 2, 1)
def forward(self, x):
x = self.conv1(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.conv2(x)
return x
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(
torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine)
).set_object_type(torch.nn.Conv2d, per_channel_qconfig)
prepared_model = self._prepare_model_and_run_input(
ConvLinearModel(),
q_config_mapping,
torch.randn(1, 3, 10, 10),
)
# run the detector
per_channel_detector = PerChannelDetector(torch.backends.quantized.engine)
optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model)
# the only suggestions should be to linear layers
# there should be optims possible
self.assertNotEqual(
optims_str,
DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine),
)
# to ensure it got into the nested layer
self.assertEqual(len(per_channel_info), 4)
# for each layer, should be supported but not used
for key in per_channel_info.keys():
module_entry = per_channel_info[key]
self.assertEqual(module_entry["per_channel_quantization_supported"], True)
# if linear False, if conv2d true cuz it uses different config
if "fc" in key:
self.assertEqual(module_entry["per_channel_quantization_used"], False)
elif "conv" in key:
self.assertEqual(module_entry["per_channel_quantization_used"], True)
else:
raise ValueError("Should only contain conv and linear layers as key values")
"""Case includes:
Multiple conv or linear
post training quantization
composed as sequential
qconfig doesn't use per_channel weight observer
Only 1 qconfig in qconfig dict
Output has possible changes / suggestions
"""
@skipIfNoQNNPACK
def test_sequential_model_format(self):
with override_quantized_engine('qnnpack'):
torch.backends.quantized.engine = "qnnpack"
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
prepared_model = self._prepare_model_and_run_input(
NESTED_CONV_LINEAR_EXAMPLE,
q_config_mapping,
torch.randn(1, 3, 10, 10),
)
# run the detector
per_channel_detector = PerChannelDetector(torch.backends.quantized.engine)
optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model)
# there should be optims possible
self.assertNotEqual(
optims_str,
DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine),
)
# to ensure it got into the nested layer
self.assertEqual(len(per_channel_info), 4)
# for each layer, should be supported but not used
for key in per_channel_info.keys():
module_entry = per_channel_info[key]
self.assertEqual(module_entry["per_channel_quantization_supported"], True)
self.assertEqual(module_entry["per_channel_quantization_used"], False)
"""Case includes:
Multiple conv or linear
post training quantization
composed as sequential
qconfig doesn't use per_channel weight observer
Only 1 qconfig in qconfig dict
Output has possible changes / suggestions
"""
@skipIfNoQNNPACK
def test_conv_sub_class_considered(self):
with override_quantized_engine('qnnpack'):
torch.backends.quantized.engine = "qnnpack"
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
prepared_model = self._prepare_model_and_run_input(
LAZY_CONV_LINEAR_EXAMPLE,
q_config_mapping,
torch.randn(1, 3, 10, 10),
)
# run the detector
per_channel_detector = PerChannelDetector(torch.backends.quantized.engine)
optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model)
# there should be optims possible
self.assertNotEqual(
optims_str,
DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine),
)
# to ensure it got into the nested layer and it considered the lazyConv2d
self.assertEqual(len(per_channel_info), 4)
# for each layer, should be supported but not used
for key in per_channel_info.keys():
module_entry = per_channel_info[key]
self.assertEqual(module_entry["per_channel_quantization_supported"], True)
self.assertEqual(module_entry["per_channel_quantization_used"], False)
"""Case includes:
Multiple conv or linear
post training quantization
composed as sequential
qconfig uses per_channel weight observer
Only 1 qconfig in qconfig dict
Output has no possible changes / suggestions
"""
@skipIfNoFBGEMM
def test_fusion_layer_in_sequential(self):
with override_quantized_engine('fbgemm'):
torch.backends.quantized.engine = "fbgemm"
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
prepared_model = self._prepare_model_and_run_input(
FUSION_CONV_LINEAR_EXAMPLE,
q_config_mapping,
torch.randn(1, 3, 10, 10),
)
# run the detector
per_channel_detector = PerChannelDetector(torch.backends.quantized.engine)
optims_str, per_channel_info = per_channel_detector.generate_detector_report(prepared_model)
# no optims possible and there should be nothing in per_channel_status
self.assertEqual(
optims_str,
DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine),
)
# to ensure it got into the nested layer and it considered all the nested fusion components
self.assertEqual(len(per_channel_info), 4)
# for each layer, should be supported but not used
for key in per_channel_info.keys():
module_entry = per_channel_info[key]
self.assertEqual(module_entry["per_channel_quantization_supported"], True)
self.assertEqual(module_entry["per_channel_quantization_used"], True)
"""Case includes:
Multiple conv or linear
quantitative aware training
composed as model
qconfig does not use per_channel weight observer
Only 1 qconfig in qconfig dict
Output has possible changes / suggestions
"""
@skipIfNoQNNPACK
def test_qat_aware_model_example(self):
# first we want a QAT model
class QATConvLinearReluModel(torch.nn.Module):
def __init__(self):
super(QATConvLinearReluModel, self).__init__()
# QuantStub converts tensors from floating point to quantized
self.quant = torch.quantization.QuantStub()
self.conv = torch.nn.Conv2d(1, 1, 1)
self.bn = torch.nn.BatchNorm2d(1)
self.relu = torch.nn.ReLU()
# DeQuantStub converts tensors from quantized to floating point
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
x = self.dequant(x)
return x
with override_quantized_engine('qnnpack'):
# create a model instance
model_fp32 = QATConvLinearReluModel()
model_fp32.qconfig = torch.quantization.get_default_qat_qconfig("qnnpack")
# model must be in eval mode for fusion
model_fp32.eval()
model_fp32_fused = torch.quantization.fuse_modules(model_fp32, [["conv", "bn", "relu"]])
# model must be set to train mode for QAT logic to work
model_fp32_fused.train()
# prepare the model for QAT, different than for post training quantization
model_fp32_prepared = torch.quantization.prepare_qat(model_fp32_fused)
# run the detector
per_channel_detector = PerChannelDetector(torch.backends.quantized.engine)
optims_str, per_channel_info = per_channel_detector.generate_detector_report(model_fp32_prepared)
# there should be optims possible
self.assertNotEqual(
optims_str,
DEFAULT_NO_OPTIMS_ANSWER_STRING.format(torch.backends.quantized.engine),
)
# make sure it was able to find the single conv in the fused model
self.assertEqual(len(per_channel_info), 1)
# for the one conv, it should still give advice to use different qconfig
for key in per_channel_info.keys():
module_entry = per_channel_info[key]
self.assertEqual(module_entry["per_channel_quantization_supported"], True)
self.assertEqual(module_entry["per_channel_quantization_used"], False)
"""
Partition on Domain / Things to Test
- All zero tensor
- Multiple tensor dimensions
- All of the outward facing functions
- Epoch min max are correctly updating
- Batch range is correctly averaging as expected
- Reset for each epoch is correctly resetting the values
Partition on Output
- the calcuation of the ratio is occurring correctly
"""
class TestFxModelReportObserver(QuantizationTestCase):
class NestedModifiedSingleLayerLinear(torch.nn.Module):
def __init__(self):
super().__init__()
self.obs1 = ModelReportObserver()
self.mod1 = SingleLayerLinearModel()
self.obs2 = ModelReportObserver()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.obs1(x)
x = self.mod1(x)
x = self.obs2(x)
x = self.fc1(x)
x = self.relu(x)
return x
def run_model_and_common_checks(self, model, ex_input, num_epochs, batch_size):
# split up data into batches
split_up_data = torch.split(ex_input, batch_size)
for epoch in range(num_epochs):
# reset all model report obs
model.apply(
lambda module: module.reset_batch_and_epoch_values()
if isinstance(module, ModelReportObserver)
else None
)
# quick check that a reset occurred
self.assertEqual(
getattr(model, "obs1").average_batch_activation_range,
torch.tensor(float(0)),
)
self.assertEqual(getattr(model, "obs1").epoch_activation_min, torch.tensor(float("inf")))
self.assertEqual(getattr(model, "obs1").epoch_activation_max, torch.tensor(float("-inf")))
# loop through the batches and run through
for index, batch in enumerate(split_up_data):
num_tracked_so_far = getattr(model, "obs1").num_batches_tracked
self.assertEqual(num_tracked_so_far, index)
# get general info about the batch and the model to use later
batch_min, batch_max = torch.aminmax(batch)
current_average_range = getattr(model, "obs1").average_batch_activation_range
current_epoch_min = getattr(model, "obs1").epoch_activation_min
current_epoch_max = getattr(model, "obs1").epoch_activation_max
# run input through
model(ex_input)
# check that average batch activation range updated correctly
correct_updated_value = (current_average_range * num_tracked_so_far + (batch_max - batch_min)) / (
num_tracked_so_far + 1
)
self.assertEqual(
getattr(model, "obs1").average_batch_activation_range,
correct_updated_value,
)
if current_epoch_max - current_epoch_min > 0:
self.assertEqual(
getattr(model, "obs1").get_batch_to_epoch_ratio(),
correct_updated_value / (current_epoch_max - current_epoch_min),
)
"""Case includes:
all zero tensor
dim size = 2
run for 1 epoch
run for 10 batch
tests input data observer
"""
def test_zero_tensor_errors(self):
# initialize the model
model = self.NestedModifiedSingleLayerLinear()
# generate the desired input
ex_input = torch.zeros((10, 1, 5))
# run it through the model and do general tests
self.run_model_and_common_checks(model, ex_input, 1, 1)
# make sure final values are all 0
self.assertEqual(getattr(model, "obs1").epoch_activation_min, 0)
self.assertEqual(getattr(model, "obs1").epoch_activation_max, 0)
self.assertEqual(getattr(model, "obs1").average_batch_activation_range, 0)
# we should get an error if we try to calculate the ratio
with self.assertRaises(ValueError):
ratio_val = getattr(model, "obs1").get_batch_to_epoch_ratio()
"""Case includes:
non-zero tensor
dim size = 2
run for 1 epoch
run for 1 batch
tests input data observer
"""
def test_single_batch_of_ones(self):
# initialize the model
model = self.NestedModifiedSingleLayerLinear()
# generate the desired input
ex_input = torch.ones((1, 1, 5))
# run it through the model and do general tests
self.run_model_and_common_checks(model, ex_input, 1, 1)
# make sure final values are all 0 except for range
self.assertEqual(getattr(model, "obs1").epoch_activation_min, 1)
self.assertEqual(getattr(model, "obs1").epoch_activation_max, 1)
self.assertEqual(getattr(model, "obs1").average_batch_activation_range, 0)
# we should get an error if we try to calculate the ratio
with self.assertRaises(ValueError):
ratio_val = getattr(model, "obs1").get_batch_to_epoch_ratio()
"""Case includes:
non-zero tensor
dim size = 2
run for 10 epoch
run for 15 batch
tests non input data observer
"""
def test_observer_after_relu(self):
# model specific to this test
class NestedModifiedObserverAfterRelu(torch.nn.Module):
def __init__(self):
super().__init__()
self.obs1 = ModelReportObserver()
self.mod1 = SingleLayerLinearModel()
self.obs2 = ModelReportObserver()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.obs1(x)
x = self.mod1(x)
x = self.fc1(x)
x = self.relu(x)
x = self.obs2(x)
return x
# initialize the model
model = NestedModifiedObserverAfterRelu()
# generate the desired input
ex_input = torch.randn((15, 1, 5))
# run it through the model and do general tests
self.run_model_and_common_checks(model, ex_input, 10, 15)
"""Case includes:
non-zero tensor
dim size = 2
run for multiple epoch
run for multiple batch
tests input data observer
"""
def test_random_epochs_and_batches(self):
# set up a basic model
class TinyNestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.obs1 = ModelReportObserver()
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
self.obs2 = ModelReportObserver()
def forward(self, x):
x = self.obs1(x)
x = self.fc1(x)
x = self.relu(x)
x = self.obs2(x)
return x
class LargerIncludeNestModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.obs1 = ModelReportObserver()
self.nested = TinyNestModule()
self.fc1 = SingleLayerLinearModel()
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.obs1(x)
x = self.nested(x)
x = self.fc1(x)
x = self.relu(x)
return x
class ModifiedThreeOps(torch.nn.Module):
def __init__(self, batch_norm_dim):
super(ModifiedThreeOps, self).__init__()
self.obs1 = ModelReportObserver()
self.linear = torch.nn.Linear(7, 3, 2)
self.obs2 = ModelReportObserver()
if batch_norm_dim == 2:
self.bn = torch.nn.BatchNorm2d(2)
elif batch_norm_dim == 3:
self.bn = torch.nn.BatchNorm3d(4)
else:
raise ValueError("Dim should only be 2 or 3")
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.obs1(x)
x = self.linear(x)
x = self.obs2(x)
x = self.bn(x)
x = self.relu(x)
return x
class HighDimensionNet(torch.nn.Module):
def __init__(self):
super(HighDimensionNet, self).__init__()
self.obs1 = ModelReportObserver()
self.fc1 = torch.nn.Linear(3, 7)
self.block1 = ModifiedThreeOps(3)
self.fc2 = torch.nn.Linear(3, 7)
self.block2 = ModifiedThreeOps(3)
self.fc3 = torch.nn.Linear(3, 7)
def forward(self, x):
x = self.obs1(x)
x = self.fc1(x)
x = self.block1(x)
x = self.fc2(x)
y = self.block2(x)
y = self.fc3(y)
z = x + y
z = F.relu(z)
return z
# the purpose of this test is to give the observers a variety of data examples
# initialize the model
models = [
self.NestedModifiedSingleLayerLinear(),
LargerIncludeNestModel(),
ModifiedThreeOps(2),
HighDimensionNet(),
]
# get some number of epochs and batches
num_epochs = 10
num_batches = 15
input_shapes = [(1, 5), (1, 5), (2, 3, 7), (4, 1, 8, 3)]
# generate the desired inputs
inputs = []
for shape in input_shapes:
ex_input = torch.randn((num_batches, *shape))
inputs.append(ex_input)
# run it through the model and do general tests
for index, model in enumerate(models):
self.run_model_and_common_checks(model, inputs[index], num_epochs, num_batches)
"""
Partition on domain / things to test
There is only a single test case for now.
This will be more thoroughly tested with the implementation of the full end to end tool coming soon.
"""
class TestFxModelReportDetectDynamicStatic(QuantizationTestCase):
@skipIfNoFBGEMM
def test_nested_detection_case(self):
class SingleLinear(torch.nn.Module):
def __init__(self):
super(SingleLinear, self).__init__()
self.linear = torch.nn.Linear(3, 3)
def forward(self, x):
x = self.linear(x)
return x
class TwoBlockNet(torch.nn.Module):
def __init__(self):
super(TwoBlockNet, self).__init__()
self.block1 = SingleLinear()
self.block2 = SingleLinear()
def forward(self, x):
x = self.block1(x)
y = self.block2(x)
z = x + y
z = F.relu(z)
return z
with override_quantized_engine('fbgemm'):
# create model, example input, and qconfig mapping
torch.backends.quantized.engine = "fbgemm"
model = TwoBlockNet()
example_input = torch.randint(-10, 0, (1, 3, 3, 3))
example_input = example_input.to(torch.float)
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig("fbgemm"))
# prep model and select observer
model_prep = quantize_fx.prepare_fx(model, q_config_mapping, example_input)
obs_ctr = ModelReportObserver
# find layer to attach to and store
linear_fqn = "block2.linear" # fqn of target linear
target_linear = None
for node in model_prep.graph.nodes:
if node.target == linear_fqn:
target_linear = node
break
# insert into both module and graph pre and post
# set up to insert before target_linear (pre_observer)
with model_prep.graph.inserting_before(target_linear):
obs_to_insert = obs_ctr()
pre_obs_fqn = linear_fqn + ".model_report_pre_observer"
model_prep.add_submodule(pre_obs_fqn, obs_to_insert)
model_prep.graph.create_node(op="call_module", target=pre_obs_fqn, args=target_linear.args)
# set up and insert after the target_linear (post_observer)
with model_prep.graph.inserting_after(target_linear):
obs_to_insert = obs_ctr()
post_obs_fqn = linear_fqn + ".model_report_post_observer"
model_prep.add_submodule(post_obs_fqn, obs_to_insert)
model_prep.graph.create_node(op="call_module", target=post_obs_fqn, args=(target_linear,))
# need to recompile module after submodule added and pass input through
model_prep.recompile()
num_iterations = 10
for i in range(num_iterations):
if i % 2 == 0:
example_input = torch.randint(-10, 0, (1, 3, 3, 3)).to(torch.float)
else:
example_input = torch.randint(0, 10, (1, 3, 3, 3)).to(torch.float)
model_prep(example_input)
# run it through the dynamic vs static detector
dynamic_vs_static_detector = DynamicStaticDetector()
dynam_vs_stat_str, dynam_vs_stat_dict = dynamic_vs_static_detector.generate_detector_report(model_prep)
# one of the stats should be stationary, and the other non-stationary
# as a result, dynamic should be recommended
data_dist_info = [
dynam_vs_stat_dict[linear_fqn][DynamicStaticDetector.PRE_OBS_DATA_DIST_KEY],
dynam_vs_stat_dict[linear_fqn][DynamicStaticDetector.POST_OBS_DATA_DIST_KEY],
]
self.assertTrue("stationary" in data_dist_info)
self.assertTrue("non-stationary" in data_dist_info)
self.assertTrue(dynam_vs_stat_dict[linear_fqn]["dynamic_recommended"])
class TestFxModelReportClass(QuantizationTestCase):
@skipIfNoFBGEMM
def test_constructor(self):
"""
Tests the constructor of the ModelReport class.
Specifically looks at:
- The desired reports
- Ensures that the observers of interest are properly initialized
"""
with override_quantized_engine('fbgemm'):
# set the backend for this test
torch.backends.quantized.engine = "fbgemm"
backend = torch.backends.quantized.engine
# create a model
model = ThreeOps()
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
model_prep = quantize_fx.prepare_fx(model, q_config_mapping, model.get_example_inputs()[0])
# make an example set of detectors
test_detector_set = set([DynamicStaticDetector(), PerChannelDetector(backend)])
# initialize with an empty detector
model_report = ModelReport(model_prep, test_detector_set)
# make sure internal valid reports matches
detector_name_set = set([detector.get_detector_name() for detector in test_detector_set])
self.assertEqual(model_report.get_desired_reports_names(), detector_name_set)
# now attempt with no valid reports, should raise error
with self.assertRaises(ValueError):
model_report = ModelReport(model, set([]))
# number of expected obs of interest entries
num_expected_entries = len(test_detector_set)
self.assertEqual(len(model_report.get_observers_of_interest()), num_expected_entries)
for value in model_report.get_observers_of_interest().values():
self.assertEqual(len(value), 0)
@skipIfNoFBGEMM
def test_prepare_model_callibration(self):
"""
Tests model_report.prepare_detailed_calibration that prepares the model for callibration
Specifically looks at:
- Whether observers are properly inserted into regular nn.Module
- Whether the target and the arguments of the observers are proper
- Whether the internal representation of observers of interest is updated
"""
with override_quantized_engine('fbgemm'):
# create model report object
# create model
model = TwoThreeOps()
# make an example set of detectors
torch.backends.quantized.engine = "fbgemm"
backend = torch.backends.quantized.engine
test_detector_set = set([DynamicStaticDetector(), PerChannelDetector(backend)])
# initialize with an empty detector
# prepare the model
example_input = model.get_example_inputs()[0]
current_backend = torch.backends.quantized.engine
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
model_prep = quantize_fx.prepare_fx(model, q_config_mapping, example_input)
model_report = ModelReport(model_prep, test_detector_set)
# prepare the model for callibration
prepared_for_callibrate_model = model_report.prepare_detailed_calibration()
# see whether observers properly in regular nn.Module
# there should be 4 observers present in this case
modules_observer_cnt = 0
for fqn, module in prepared_for_callibrate_model.named_modules():
if isinstance(module, ModelReportObserver):
modules_observer_cnt += 1
self.assertEqual(modules_observer_cnt, 4)
model_report_str_check = "model_report"
# also make sure arguments for observers in the graph are proper
for node in prepared_for_callibrate_model.graph.nodes:
# not all node targets are strings, so check
if isinstance(node.target, str) and model_report_str_check in node.target:
# if pre-observer has same args as the linear (next node)
if "pre_observer" in node.target:
self.assertEqual(node.args, node.next.args)
# if post-observer, args are the target linear (previous node)
if "post_observer" in node.target:
self.assertEqual(node.args, (node.prev,))
# ensure model_report observers of interest updated
# there should be two entries
self.assertEqual(len(model_report.get_observers_of_interest()), 2)
for detector in test_detector_set:
self.assertTrue(detector.get_detector_name() in model_report.get_observers_of_interest().keys())
# get number of entries for this detector
detector_obs_of_interest_fqns = model_report.get_observers_of_interest()[detector.get_detector_name()]
# assert that the per channel detector has 0 and the dynamic static has 4
if isinstance(detector, PerChannelDetector):
self.assertEqual(len(detector_obs_of_interest_fqns), 0)
elif isinstance(detector, DynamicStaticDetector):
self.assertEqual(len(detector_obs_of_interest_fqns), 4)
# ensure that we can prepare for callibration only once
with self.assertRaises(ValueError):
prepared_for_callibrate_model = model_report.prepare_detailed_calibration()
def get_module_and_graph_cnts(self, callibrated_fx_module):
r"""
Calculates number of ModelReportObserver modules in the model as well as the graph structure.
Returns a tuple of two elements:
int: The number of ModelReportObservers found in the model
int: The number of model_report nodes found in the graph
"""
# get the number of observers stored as modules
modules_observer_cnt = 0
for fqn, module in callibrated_fx_module.named_modules():
if isinstance(module, ModelReportObserver):
modules_observer_cnt += 1
# get number of observers in the graph
model_report_str_check = "model_report"
graph_observer_cnt = 0
# also make sure arguments for observers in the graph are proper
for node in callibrated_fx_module.graph.nodes:
# not all node targets are strings, so check
if isinstance(node.target, str) and model_report_str_check in node.target:
# increment if we found a graph observer
graph_observer_cnt += 1
return (modules_observer_cnt, graph_observer_cnt)
@skipIfNoFBGEMM
def test_generate_report(self):
"""
Tests model_report.generate_model_report to ensure report generation
Specifically looks at:
- Whether correct number of reports are being generated
- Whether observers are being properly removed if specified
- Whether correct blocking from generating report twice if obs removed
"""
with override_quantized_engine('fbgemm'):
# set the backend for this test
torch.backends.quantized.engine = "fbgemm"
# check whether the correct number of reports are being generated
filled_detector_set = set([DynamicStaticDetector(), PerChannelDetector(torch.backends.quantized.engine)])
single_detector_set = set([DynamicStaticDetector()])
# create our models
model_full = TwoThreeOps()
model_single = TwoThreeOps()
# prepare and callibrate two different instances of same model
# prepare the model
example_input = model_full.get_example_inputs()[0]
current_backend = torch.backends.quantized.engine
q_config_mapping = QConfigMapping()
q_config_mapping.set_global(torch.ao.quantization.get_default_qconfig(torch.backends.quantized.engine))
model_prep_full = quantize_fx.prepare_fx(model_full, q_config_mapping, example_input)
model_prep_single = quantize_fx.prepare_fx(model_single, q_config_mapping, example_input)
# initialize one with filled detector
model_report_full = ModelReport(model_prep_full, filled_detector_set)
# initialize another with a single detector set
model_report_single = ModelReport(model_prep_single, single_detector_set)
# prepare the models for callibration
prepared_for_callibrate_model_full = model_report_full.prepare_detailed_calibration()
prepared_for_callibrate_model_single = model_report_single.prepare_detailed_calibration()
# now callibrate the two models
num_iterations = 10
for i in range(num_iterations):
example_input = torch.tensor(torch.randint(100, (1, 3, 3, 3)), dtype=torch.float)
prepared_for_callibrate_model_full(example_input)
prepared_for_callibrate_model_single(example_input)
# now generate the reports
model_full_report = model_report_full.generate_model_report(True)
model_single_report = model_report_single.generate_model_report(False)
# check that sizes are appropriate
self.assertEqual(len(model_full_report), len(filled_detector_set))
self.assertEqual(len(model_single_report), len(single_detector_set))
# make sure observers are being properly removed for full report since we put flag in
modules_observer_cnt, graph_observer_cnt = self.get_module_and_graph_cnts(prepared_for_callibrate_model_full)
self.assertEqual(modules_observer_cnt, 0) # assert no more observer modules
self.assertEqual(graph_observer_cnt, 0) # assert no more observer nodes in graph
# make sure observers aren't being removed for single report since not specified
modules_observer_cnt, graph_observer_cnt = self.get_module_and_graph_cnts(prepared_for_callibrate_model_single)
self.assertNotEqual(modules_observer_cnt, 0)
self.assertNotEqual(graph_observer_cnt, 0)
# make sure error when try to rerun report generation for full report but not single report
with self.assertRaises(Exception):
model_full_report = model_report_full.generate_model_report(
prepared_for_callibrate_model_full, False
)
# make sure we don't run into error for single report
model_single_report = model_report_single.generate_model_report(False)
@skipIfNoFBGEMM
def test_generate_visualizer(self):
"""
Tests that the ModelReport class can properly create the ModelReportVisualizer instance
Checks that:
- Correct number of modules are represented
- Modules are sorted
- Correct number of features for each module
"""
with override_quantized_engine('fbgemm'):
# set the backend for this test
torch.backends.quantized.engine = "fbgemm"
# test with multiple detectors
detector_set = set()
detector_set.add(OutlierDetector(reference_percentile=0.95))
detector_set.add(InputWeightEqualizationDetector(0.5))
model = TwoThreeOps()
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper(
model, detector_set, model.get_example_inputs()[0]
)
# now we actually callibrate the model
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# try to visualize without generating report, should throw error
with self.assertRaises(Exception):
mod_rep_visualizaiton = mod_report.generate_visualizer()
# now get the report by running it through ModelReport instance
generated_report = mod_report.generate_model_report(remove_inserted_observers=False)
# now we get the visualizer should not error
mod_rep_visualizer: ModelReportVisualizer = mod_report.generate_visualizer()
# since we tested with outlier detector, which looks at every base level module
# should be six entries in the ordered dict
mod_fqns_to_features = mod_rep_visualizer.generated_reports
self.assertEqual(len(mod_fqns_to_features), 6)
# outlier detector has 9 feature per module
# input-weight has 12 features per module
# there are 1 common data point, so should be 12 + 9 - 1 = 20 unique features per common modules
# all linears will be common
for module_fqn in mod_fqns_to_features:
if ".linear" in module_fqn:
linear_info = mod_fqns_to_features[module_fqn]
self.assertEqual(len(linear_info), 20)
@skipIfNoFBGEMM
def test_qconfig_mapping_generation(self):
"""
Tests for generation of qconfigs by ModelReport API
- Tests that qconfigmapping is generated
- Tests that mappings include information for for relavent modules
"""
with override_quantized_engine('fbgemm'):
# set the backend for this test
torch.backends.quantized.engine = "fbgemm"
# test with multiple detectors
detector_set = set()
detector_set.add(PerChannelDetector())
detector_set.add(DynamicStaticDetector())
model = TwoThreeOps()
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper(
model, detector_set, model.get_example_inputs()[0]
)
# now we actually callibrate the models
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# get the mapping without error
qconfig_mapping = mod_report.generate_qconfig_mapping()
# now get the report by running it through ModelReport instance
generated_report = mod_report.generate_model_report(remove_inserted_observers=False)
# get the visualizer so we can get access to reformatted reports by module fqn
mod_reports_by_fqn = mod_report.generate_visualizer().generated_reports
# compare the entries of the mapping to those of the report
# we should have the same number of entries
self.assertEqual(len(qconfig_mapping.module_name_qconfigs), len(mod_reports_by_fqn))
# for the non_empty one, we should have 2 because we have only applicable linears
# so should have suggestions for each module named
self.assertEqual(len(qconfig_mapping.module_name_qconfigs), 2)
# only two linears, make sure per channel min max for weight since fbgemm
# also static distribution since a simple single callibration
for key in qconfig_mapping.module_name_qconfigs:
config = qconfig_mapping.module_name_qconfigs[key]
self.assertEqual(config.weight, default_per_channel_weight_observer)
self.assertEqual(config.activation, default_observer)
# make sure these can actually be used to prepare the model
prepared = quantize_fx.prepare_fx(TwoThreeOps(), qconfig_mapping, example_input)
# now convert the model to ensure no errors in conversion
converted = quantize_fx.convert_fx(prepared)
@skipIfNoFBGEMM
def test_equalization_mapping_generation(self):
"""
Tests for generation of qconfigs by ModelReport API
- Tests that equalization config generated when input-weight equalization detector used
- Tests that mappings include information for for relavent modules
"""
with override_quantized_engine('fbgemm'):
# set the backend for this test
torch.backends.quantized.engine = "fbgemm"
# test with multiple detectors
detector_set = set()
detector_set.add(InputWeightEqualizationDetector(0.6))
model = TwoThreeOps()
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper(
model, detector_set, model.get_example_inputs()[0]
)
# now we actually callibrate the models
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# get the mapping without error
qconfig_mapping = mod_report.generate_qconfig_mapping()
equalization_mapping = mod_report.generate_equalization_mapping()
# tests a lot more simple for the equalization mapping
# shouldn't have any equalization suggestions for this case
self.assertEqual(len(qconfig_mapping.module_name_qconfigs), 2)
# make sure these can actually be used to prepare the model
prepared = quantize_fx.prepare_fx(
TwoThreeOps(),
qconfig_mapping,
example_input,
_equalization_config=equalization_mapping
)
# now convert the model to ensure no errors in conversion
converted = quantize_fx.convert_fx(prepared)
class TestFxDetectInputWeightEqualization(QuantizationTestCase):
class SimpleConv(torch.nn.Module):
def __init__(self, con_dims):
super().__init__()
self.relu = torch.nn.ReLU()
self.conv = torch.nn.Conv2d(con_dims[0], con_dims[1], kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
def forward(self, x):
x = self.conv(x)
x = self.relu(x)
return x
class TwoBlockComplexNet(torch.nn.Module):
def __init__(self):
super().__init__()
self.block1 = TestFxDetectInputWeightEqualization.SimpleConv((3, 32))
self.block2 = TestFxDetectInputWeightEqualization.SimpleConv((3, 3))
self.conv = torch.nn.Conv2d(32, 3, kernel_size=(1, 1), stride=(1, 1), padding=(1, 1), bias=False)
self.linear = torch.nn.Linear(768, 10)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.block1(x)
x = self.conv(x)
y = self.block2(x)
y = y.repeat(1, 1, 2, 2)
z = x + y
z = z.flatten(start_dim=1)
z = self.linear(z)
z = self.relu(z)
return z
def get_fusion_modules(self):
return [['conv', 'relu']]
def get_example_inputs(self):
return (torch.randn((1, 3, 28, 28)),)
class ReluOnly(torch.nn.Module):
def __init__(self):
super().__init__()
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(x)
return x
def get_example_inputs(self):
return (torch.arange(27).reshape((1, 3, 3, 3)),)
def _get_prepped_for_calibration_model(self, model, detector_set, fused=False):
r"""Returns a model that has been prepared for callibration and corresponding model_report"""
# pass in necessary inputs to helper
example_input = model.get_example_inputs()[0]
return _get_prepped_for_calibration_model_helper(model, detector_set, example_input, fused)
@skipIfNoFBGEMM
def test_input_weight_equalization_determine_points(self):
# use fbgemm and create our model instance
# then create model report instance with detector
with override_quantized_engine('fbgemm'):
detector_set = set([InputWeightEqualizationDetector(0.5)])
# get tst model and callibrate
non_fused = self._get_prepped_for_calibration_model(self.TwoBlockComplexNet(), detector_set)
fused = self._get_prepped_for_calibration_model(self.TwoBlockComplexNet(), detector_set, fused=True)
# reporter should still give same counts even for fused model
for prepared_for_callibrate_model, mod_report in [non_fused, fused]:
# supported modules to check
mods_to_check = set([nn.Linear, nn.Conv2d])
# get the set of all nodes in the graph their fqns
node_fqns = set([node.target for node in prepared_for_callibrate_model.graph.nodes])
# there should be 4 node fqns that have the observer inserted
correct_number_of_obs_inserted = 4
number_of_obs_found = 0
obs_name_to_find = InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME
for node in prepared_for_callibrate_model.graph.nodes:
# if the obs name is inside the target, we found an observer
if obs_name_to_find in str(node.target):
number_of_obs_found += 1
self.assertEqual(number_of_obs_found, correct_number_of_obs_inserted)
# assert that each of the desired modules have the observers inserted
for fqn, module in prepared_for_callibrate_model.named_modules():
# check if module is a supported module
is_in_include_list = sum(list(map(lambda x: isinstance(module, x), mods_to_check))) > 0
if is_in_include_list:
# make sure it has the observer attribute
self.assertTrue(hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME))
else:
# if it's not a supported type, it shouldn't have observer attached
self.assertTrue(not hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME))
@skipIfNoFBGEMM
def test_input_weight_equalization_report_gen(self):
# use fbgemm and create our model instance
# then create model report instance with detector
with override_quantized_engine('fbgemm'):
test_input_weight_detector = InputWeightEqualizationDetector(0.4)
detector_set = set([test_input_weight_detector])
model = self.TwoBlockComplexNet()
# prepare the model for callibration
prepared_for_callibrate_model, model_report = self._get_prepped_for_calibration_model(
model, detector_set
)
# now we actually callibrate the model
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# now get the report by running it through ModelReport instance
generated_report = model_report.generate_model_report(True)
# check that sizes are appropriate only 1 detector
self.assertEqual(len(generated_report), 1)
# get the specific report for input weight equalization
input_weight_str, input_weight_dict = generated_report[test_input_weight_detector.get_detector_name()]
# we should have 5 layers looked at since 4 conv / linear layers
self.assertEqual(len(input_weight_dict), 4)
# we can validate that the max and min values of the detector were recorded properly for the first one
# this is because no data has been processed yet, so it should be values from original input
example_input = example_input.reshape((3, 28, 28)) # reshape input
for module_fqn in input_weight_dict:
# look for the first linear
if "block1.linear" in module_fqn:
block_1_lin_recs = input_weight_dict[module_fqn]
# get input range info and the channel axis
ch_axis = block_1_lin_recs[InputWeightEqualizationDetector.CHANNEL_KEY]
# ensure that the min and max values extracted match properly
example_min, example_max = torch.aminmax(example_input, dim=ch_axis)
dimension_min = torch.amin(example_min, dim=ch_axis)
dimension_max = torch.amax(example_max, dim=ch_axis)
# make sure per channel min and max are as expected
min_per_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX
min_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MIN_KEY
max_per_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX
max_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MAX_KEY
per_channel_min = block_1_lin_recs[min_per_key]
per_channel_max = block_1_lin_recs[max_per_key]
self.assertEqual(per_channel_min, dimension_min)
self.assertEqual(per_channel_max, dimension_max)
# make sure per channel min and max are as expected
min_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX
min_key += InputWeightEqualizationDetector.GLOBAL_MIN_KEY
max_key = InputWeightEqualizationDetector.ACTIVATION_PREFIX
max_key += InputWeightEqualizationDetector.GLOBAL_MAX_KEY
# make sure the global min and max were correctly recorded and presented
global_min = block_1_lin_recs[min_key]
global_max = block_1_lin_recs[max_key]
self.assertEqual(global_min, min(dimension_min))
self.assertEqual(global_max, max(dimension_max))
input_ratio = torch.sqrt((per_channel_max - per_channel_min) / (global_max - global_min))
# ensure comparision stat passed back is sqrt of range ratios
# need to get the weight ratios first
# make sure per channel min and max are as expected
min_per_key = InputWeightEqualizationDetector.WEIGHT_PREFIX
min_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MIN_KEY
max_per_key = InputWeightEqualizationDetector.WEIGHT_PREFIX
max_per_key += InputWeightEqualizationDetector.PER_CHANNEL_MAX_KEY
# get weight per channel and global info
per_channel_min = block_1_lin_recs[min_per_key]
per_channel_max = block_1_lin_recs[max_per_key]
# make sure per channel min and max are as expected
min_key = InputWeightEqualizationDetector.WEIGHT_PREFIX
min_key += InputWeightEqualizationDetector.GLOBAL_MIN_KEY
max_key = InputWeightEqualizationDetector.WEIGHT_PREFIX
max_key += InputWeightEqualizationDetector.GLOBAL_MAX_KEY
global_min = block_1_lin_recs[min_key]
global_max = block_1_lin_recs[max_key]
weight_ratio = torch.sqrt((per_channel_max - per_channel_min) / (global_max - global_min))
# also get comp stat for this specific layer
comp_stat = block_1_lin_recs[InputWeightEqualizationDetector.COMP_METRIC_KEY]
weight_to_input_ratio = weight_ratio / input_ratio
self.assertEqual(comp_stat, weight_to_input_ratio)
# only looking at the first example so can break
break
@skipIfNoFBGEMM
def test_input_weight_equalization_report_gen_empty(self):
# tests report gen on a model that doesn't have any layers
# use fbgemm and create our model instance
# then create model report instance with detector
with override_quantized_engine('fbgemm'):
test_input_weight_detector = InputWeightEqualizationDetector(0.4)
detector_set = set([test_input_weight_detector])
model = self.ReluOnly()
# prepare the model for callibration
prepared_for_callibrate_model, model_report = self._get_prepped_for_calibration_model(model, detector_set)
# now we actually callibrate the model
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# now get the report by running it through ModelReport instance
generated_report = model_report.generate_model_report(True)
# check that sizes are appropriate only 1 detector
self.assertEqual(len(generated_report), 1)
# get the specific report for input weight equalization
input_weight_str, input_weight_dict = generated_report[test_input_weight_detector.get_detector_name()]
# we should have 0 layers since there is only a Relu
self.assertEqual(len(input_weight_dict), 0)
# make sure that the string only has two lines, as should be if no suggestions
self.assertEqual(input_weight_str.count("\n"), 2)
class TestFxDetectOutliers(QuantizationTestCase):
class LargeBatchModel(torch.nn.Module):
def __init__(self, param_size):
super().__init__()
self.param_size = param_size
self.linear = torch.nn.Linear(param_size, param_size)
self.relu_1 = torch.nn.ReLU()
self.conv = torch.nn.Conv2d(param_size, param_size, 1)
self.relu_2 = torch.nn.ReLU()
def forward(self, x):
x = self.linear(x)
x = self.relu_1(x)
x = self.conv(x)
x = self.relu_2(x)
return x
def get_example_inputs(self):
param_size = self.param_size
return (torch.randn((1, param_size, param_size, param_size)),)
def get_outlier_inputs(self):
param_size = self.param_size
random_vals = torch.randn((1, param_size, param_size, param_size))
# change one in some of them to be a massive value
random_vals[:, 0:param_size:2, 0, 3] = torch.tensor([3.28e8])
return (random_vals,)
def _get_prepped_for_calibration_model(self, model, detector_set, use_outlier_data=False):
r"""Returns a model that has been prepared for callibration and corresponding model_report"""
# call the general helper function to callibrate
example_input = model.get_example_inputs()[0]
# if we specifically want to test data with outliers replace input
if use_outlier_data:
example_input = model.get_outlier_inputs()[0]
return _get_prepped_for_calibration_model_helper(model, detector_set, example_input)
@skipIfNoFBGEMM
def test_outlier_detection_determine_points(self):
# use fbgemm and create our model instance
# then create model report instance with detector
# similar to test for InputWeightEqualization but key differences that made refactoring not viable
# not explicitly testing fusion because fx workflow automatically
with override_quantized_engine('fbgemm'):
detector_set = set([OutlierDetector(reference_percentile=0.95)])
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model(
self.LargeBatchModel(param_size=128), detector_set
)
# supported modules to check
mods_to_check = set([nn.Linear, nn.Conv2d, nn.ReLU])
# there should be 4 node fqns that have the observer inserted
correct_number_of_obs_inserted = 4
number_of_obs_found = 0
obs_name_to_find = InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME
number_of_obs_found = sum(
[1 if obs_name_to_find in str(node.target) else 0 for node in prepared_for_callibrate_model.graph.nodes]
)
self.assertEqual(number_of_obs_found, correct_number_of_obs_inserted)
# assert that each of the desired modules have the observers inserted
for fqn, module in prepared_for_callibrate_model.named_modules():
# check if module is a supported module
is_in_include_list = isinstance(module, tuple(mods_to_check))
if is_in_include_list:
# make sure it has the observer attribute
self.assertTrue(hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME))
else:
# if it's not a supported type, it shouldn't have observer attached
self.assertTrue(not hasattr(module, InputWeightEqualizationDetector.DEFAULT_PRE_OBSERVER_NAME))
@skipIfNoFBGEMM
def test_no_outlier_report_gen(self):
# use fbgemm and create our model instance
# then create model report instance with detector
with override_quantized_engine('fbgemm'):
# test with multiple detectors
outlier_detector = OutlierDetector(reference_percentile=0.95)
dynamic_static_detector = DynamicStaticDetector(tolerance=0.5)
param_size: int = 4
detector_set = set([outlier_detector, dynamic_static_detector])
model = self.LargeBatchModel(param_size=param_size)
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model(
model, detector_set
)
# now we actually callibrate the model
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# now get the report by running it through ModelReport instance
generated_report = mod_report.generate_model_report(True)
# check that sizes are appropriate only 2 detectors
self.assertEqual(len(generated_report), 2)
# get the specific report for input weight equalization
outlier_str, outlier_dict = generated_report[outlier_detector.get_detector_name()]
# we should have 5 layers looked at since 4 conv + linear + relu
self.assertEqual(len(outlier_dict), 4)
# assert the following are true for all the modules
for module_fqn in outlier_dict:
# get the info for the specific module
module_dict = outlier_dict[module_fqn]
# there really should not be any outliers since we used a normal distribution to perform this calculation
outlier_info = module_dict[OutlierDetector.OUTLIER_KEY]
self.assertEqual(sum(outlier_info), 0)
# ensure that the number of ratios and batches counted is the same as the number of params
self.assertEqual(len(module_dict[OutlierDetector.COMP_METRIC_KEY]), param_size)
self.assertEqual(len(module_dict[OutlierDetector.NUM_BATCHES_KEY]), param_size)
@skipIfNoFBGEMM
def test_all_outlier_report_gen(self):
# make the percentile 0 and the ratio 1, and then see that everything is outlier according to it
# use fbgemm and create our model instance
# then create model report instance with detector
with override_quantized_engine('fbgemm'):
# create detector of interest
outlier_detector = OutlierDetector(ratio_threshold=1, reference_percentile=0)
param_size: int = 16
detector_set = set([outlier_detector])
model = self.LargeBatchModel(param_size=param_size)
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model(
model, detector_set
)
# now we actually callibrate the model
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# now get the report by running it through ModelReport instance
generated_report = mod_report.generate_model_report(True)
# check that sizes are appropriate only 1 detector
self.assertEqual(len(generated_report), 1)
# get the specific report for input weight equalization
outlier_str, outlier_dict = generated_report[outlier_detector.get_detector_name()]
# we should have 5 layers looked at since 4 conv + linear + relu
self.assertEqual(len(outlier_dict), 4)
# assert the following are true for all the modules
for module_fqn in outlier_dict:
# get the info for the specific module
module_dict = outlier_dict[module_fqn]
# everything should be an outlier because we said that the max should be equal to the min for all of them
# however we will just test and say most should be in case we have several 0 channel values
outlier_info = module_dict[OutlierDetector.OUTLIER_KEY]
assert sum(outlier_info) >= len(outlier_info) / 2
# ensure that the number of ratios and batches counted is the same as the number of params
self.assertEqual(len(module_dict[OutlierDetector.COMP_METRIC_KEY]), param_size)
self.assertEqual(len(module_dict[OutlierDetector.NUM_BATCHES_KEY]), param_size)
@skipIfNoFBGEMM
def test_multiple_run_consistent_spike_outlier_report_gen(self):
# specifically make a row really high consistently in the number of batches that you are testing and try that
# generate report after just 1 run, and after many runs (30) and make sure above minimum threshold is there
with override_quantized_engine('fbgemm'):
# detector of interest
outlier_detector = OutlierDetector(reference_percentile=0.95)
param_size: int = 8
detector_set = set([outlier_detector])
model = self.LargeBatchModel(param_size=param_size)
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = self._get_prepped_for_calibration_model(
model, detector_set, use_outlier_data=True
)
# now we actually callibrate the model
example_input = model.get_outlier_inputs()[0]
example_input = example_input.to(torch.float)
# now callibrate minimum 30 times to make it above minimum threshold
for i in range(30):
example_input = model.get_outlier_inputs()[0]
example_input = example_input.to(torch.float)
# make 2 of the batches to have zero channel
if i % 14 == 0:
# make one channel constant
example_input[0][1] = torch.zeros_like(example_input[0][1])
prepared_for_callibrate_model(example_input)
# now get the report by running it through ModelReport instance
generated_report = mod_report.generate_model_report(True)
# check that sizes are appropriate only 1 detector
self.assertEqual(len(generated_report), 1)
# get the specific report for input weight equalization
outlier_str, outlier_dict = generated_report[outlier_detector.get_detector_name()]
# we should have 5 layers looked at since 4 conv + linear + relu
self.assertEqual(len(outlier_dict), 4)
# assert the following are true for all the modules
for module_fqn in outlier_dict:
# get the info for the specific module
module_dict = outlier_dict[module_fqn]
# because we ran 30 times, we should have at least a couple be significant
# could be less because some channels could possibly be all 0
sufficient_batches_info = module_dict[OutlierDetector.IS_SUFFICIENT_BATCHES_KEY]
assert sum(sufficient_batches_info) >= len(sufficient_batches_info) / 2
# half of them should be outliers, because we set a really high value every 2 channels
outlier_info = module_dict[OutlierDetector.OUTLIER_KEY]
self.assertEqual(sum(outlier_info), len(outlier_info) / 2)
# ensure that the number of ratios and batches counted is the same as the number of params
self.assertEqual(len(module_dict[OutlierDetector.COMP_METRIC_KEY]), param_size)
self.assertEqual(len(module_dict[OutlierDetector.NUM_BATCHES_KEY]), param_size)
# for the first one ensure the per channel max values are what we set
if module_fqn == "linear.0":
# check that the non-zero channel count, at least 2 should be there
# for the first module
counts_info = module_dict[OutlierDetector.CONSTANT_COUNTS_KEY]
assert sum(counts_info) >= 2
# half of the recorded max values should be what we set
matched_max = sum([val == 3.28e8 for val in module_dict[OutlierDetector.MAX_VALS_KEY]])
self.assertEqual(matched_max, param_size / 2)
class TestFxModelReportVisualizer(QuantizationTestCase):
def _callibrate_and_generate_visualizer(self, model, prepared_for_callibrate_model, mod_report):
r"""
Callibrates the passed in model, generates report, and returns the visualizer
"""
# now we actually callibrate the model
example_input = model.get_example_inputs()[0]
example_input = example_input.to(torch.float)
prepared_for_callibrate_model(example_input)
# now get the report by running it through ModelReport instance
generated_report = mod_report.generate_model_report(remove_inserted_observers=False)
# now we get the visualizer should not error
mod_rep_visualizer: ModelReportVisualizer = mod_report.generate_visualizer()
return mod_rep_visualizer
@skipIfNoFBGEMM
def test_get_modules_and_features(self):
"""
Tests the get_all_unique_module_fqns and get_all_unique_feature_names methods of
ModelReportVisualizer
Checks whether returned sets are of proper size and filtered properly
"""
with override_quantized_engine('fbgemm'):
# set the backend for this test
torch.backends.quantized.engine = "fbgemm"
# test with multiple detectors
detector_set = set()
detector_set.add(OutlierDetector(reference_percentile=0.95))
detector_set.add(InputWeightEqualizationDetector(0.5))
model = TwoThreeOps()
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper(
model, detector_set, model.get_example_inputs()[0]
)
mod_rep_visualizer: ModelReportVisualizer = self._callibrate_and_generate_visualizer(
model, prepared_for_callibrate_model, mod_report
)
# ensure the module fqns match the ones given by the get_all_unique_feature_names method
actual_model_fqns = set(mod_rep_visualizer.generated_reports.keys())
returned_model_fqns = mod_rep_visualizer.get_all_unique_module_fqns()
self.assertEqual(returned_model_fqns, actual_model_fqns)
# now ensure that features are all properly returned
# all the linears have all the features for two detectors
# can use those as check that method is working reliably
b_1_linear_features = mod_rep_visualizer.generated_reports["block1.linear"]
# first test all features
returned_all_feats = mod_rep_visualizer.get_all_unique_feature_names(False)
self.assertEqual(returned_all_feats, set(b_1_linear_features.keys()))
# now test plottable features
plottable_set = set()
for feature_name in b_1_linear_features:
if type(b_1_linear_features[feature_name]) == torch.Tensor:
plottable_set.add(feature_name)
returned_plottable_feats = mod_rep_visualizer.get_all_unique_feature_names()
self.assertEqual(returned_plottable_feats, plottable_set)
def _prep_visualizer_helper(self):
r"""
Returns a mod rep visualizer that we test in various ways
"""
# set backend for test
torch.backends.quantized.engine = "fbgemm"
# test with multiple detectors
detector_set = set()
detector_set.add(OutlierDetector(reference_percentile=0.95))
detector_set.add(InputWeightEqualizationDetector(0.5))
model = TwoThreeOps()
# get tst model and callibrate
prepared_for_callibrate_model, mod_report = _get_prepped_for_calibration_model_helper(
model, detector_set, model.get_example_inputs()[0]
)
mod_rep_visualizer: ModelReportVisualizer = self._callibrate_and_generate_visualizer(
model, prepared_for_callibrate_model, mod_report
)
return mod_rep_visualizer
@skipIfNoFBGEMM
def test_generate_tables_match_with_report(self):
"""
Tests the generate_table_view()
ModelReportVisualizer
Checks whether the generated dict has proper information
Visual check that the tables look correct performed during testing
"""
with override_quantized_engine('fbgemm'):
# get the visualizer
mod_rep_visualizer = self._prep_visualizer_helper()
table_dict = mod_rep_visualizer.generate_filtered_tables()
# test primarily the dict since it has same info as str
tensor_headers, tensor_table = table_dict[ModelReportVisualizer.TABLE_TENSOR_KEY]
channel_headers, channel_table = table_dict[ModelReportVisualizer.TABLE_CHANNEL_KEY]
# these two together should be the same as the generated report info in terms of keys
tensor_info_modules = set(row[1] for row in tensor_table)
channel_info_modules = set(row[1] for row in channel_table)
combined_modules: Set = tensor_info_modules.union(channel_info_modules)
generated_report_keys: Set = set(mod_rep_visualizer.generated_reports.keys())
self.assertEqual(combined_modules, generated_report_keys)
@skipIfNoFBGEMM
def test_generate_tables_no_match(self):
"""
Tests the generate_table_view()
ModelReportVisualizer
Checks whether the generated dict has proper information
Visual check that the tables look correct performed during testing
"""
with override_quantized_engine('fbgemm'):
# get the visualizer
mod_rep_visualizer = self._prep_visualizer_helper()
# try a random filter and make sure that there are no rows for either table
empty_tables_dict = mod_rep_visualizer.generate_filtered_tables(module_fqn_filter="random not there module")
# test primarily the dict since it has same info as str
tensor_headers, tensor_table = empty_tables_dict[ModelReportVisualizer.TABLE_TENSOR_KEY]
channel_headers, channel_table = empty_tables_dict[ModelReportVisualizer.TABLE_CHANNEL_KEY]
tensor_info_modules = set(row[1] for row in tensor_table)
channel_info_modules = set(row[1] for row in channel_table)
combined_modules: Set = tensor_info_modules.union(channel_info_modules)
self.assertEqual(len(combined_modules), 0) # should be no matching modules
@skipIfNoFBGEMM
def test_generate_tables_single_feat_match(self):
"""
Tests the generate_table_view()
ModelReportVisualizer
Checks whether the generated dict has proper information
Visual check that the tables look correct performed during testing
"""
with override_quantized_engine('fbgemm'):
# get the visualizer
mod_rep_visualizer = self._prep_visualizer_helper()
# try a matching filter for feature and make sure only those features show up
# if we filter to a very specific feature name, should only have 1 additional column in each table row
single_feat_dict = mod_rep_visualizer.generate_filtered_tables(feature_filter=OutlierDetector.MAX_VALS_KEY)
# test primarily the dict since it has same info as str
tensor_headers, tensor_table = single_feat_dict[ModelReportVisualizer.TABLE_TENSOR_KEY]
channel_headers, channel_table = single_feat_dict[ModelReportVisualizer.TABLE_CHANNEL_KEY]
# get the number of features in each of these
tensor_info_features = len(tensor_headers)
channel_info_features = len(channel_headers) - ModelReportVisualizer.NUM_NON_FEATURE_CHANNEL_HEADERS
# make sure that there are no tensor features, and that there is one channel level feature
self.assertEqual(tensor_info_features, 0)
self.assertEqual(channel_info_features, 1)
def _get_prepped_for_calibration_model_helper(model, detector_set, example_input, fused: bool = False):
r"""Returns a model that has been prepared for callibration and corresponding model_report"""
# set the backend for this test
torch.backends.quantized.engine = "fbgemm"
# create model instance and prepare it
example_input = example_input.to(torch.float)
q_config_mapping = torch.ao.quantization.get_default_qconfig_mapping()
# if they passed in fusion paramter, make sure to test that
if fused:
model = torch.quantization.fuse_modules(model, model.get_fusion_modules())
model_prep = quantize_fx.prepare_fx(model, q_config_mapping, example_input)
model_report = ModelReport(model_prep, detector_set)
# prepare the model for callibration
prepared_for_callibrate_model = model_report.prepare_detailed_calibration()
return (prepared_for_callibrate_model, model_report)
|