File: test_subgraph_rewriter.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (489 lines) | stat: -rw-r--r-- 15,868 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# Owner(s): ["oncall: quantization"]
# Copied from pytorch/test/fx/test_subgraph_rewriter.py

import os
import sys

import torch
from torch.fx import symbolic_trace, subgraph_rewriter
from torch.fx.annotate import annotate
# Make the helper files in test/ importable
from torch.fx.experimental.rewriter import RewritingTracer

pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_fx.py TESTNAME\n\n"
                       "instead.")

class TestSubgraphRewriter(JitTestCase):

    def test_subgraph_rewriter_preserves_logic(self):
        class M(torch.nn.Module):
            def forward(self, x):
                val = torch.neg(x) + torch.relu(x)
                return torch.add(val, val)

        def pattern(x):
            return torch.neg(x) + torch.relu(x)

        def comparison(x):
            val = torch.neg(x) + torch.relu(x)
            return torch.add(val, val)

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.rand(1, 3)

        # Replace `pattern` with the same pattern (shouldn't change
        # the underlying logic)
        subgraph_rewriter.replace_pattern(traced, pattern, pattern)

        traced.graph.lint()

        ref_output = comparison_fn(x)
        test_output = traced.forward(x)
        self.assertEqual(ref_output, test_output)

    def test_subgraph_rewriter_with_oneliner_pattern(self):
        class M(torch.nn.Module):
            def forward(self, x):
                val = torch.neg(x)
                return torch.add(val, val)

        def pattern(x):
            return torch.neg(x)

        def replacement(x):
            return torch.relu(x)

        def comparison(x):
            val = torch.relu(x)
            return torch.add(val, val)

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.rand(1, 3)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_output = comparison_fn(x)
        test_output = traced.forward(x)
        self.assertEqual(ref_output, test_output)

    def test_subgraph_rewriter_single_pattern_match(self):
        class M(torch.nn.Module):
            def forward(self, x):
                val = torch.neg(x) + torch.relu(x)
                return torch.add(val, val)

        def pattern(x):
            return torch.neg(x) + torch.relu(x)

        def replacement(x):
            return torch.relu(x)

        def comparison(x):
            val = torch.relu(x)
            return torch.add(val, val)

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.rand(1, 3)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_output = comparison_fn(x)
        test_output = traced.forward(x)
        self.assertEqual(ref_output, test_output)

    def test_subgraph_rewriter_multiple_pattern_match(self):
        class M(torch.nn.Module):
            def forward(self, x, w1, w2):
                m1 = torch.cat([w1, w2]).sum()
                m2 = torch.cat([w1, w2]).sum()
                return x + torch.max(m1) + torch.max(m2)

        def pattern(w1, w2):
            return torch.cat([w1, w2]).sum()

        def replacement(w1, w2):
            return torch.stack([w1, w2])

        def comparison(x, w1, w2):
            m1 = torch.stack([w1, w2])
            m2 = torch.stack([w1, w2])
            return x + torch.max(m1) + torch.max(m2)

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.rand(1, 3)
        w1 = torch.rand(1, 3)
        w2 = torch.rand(1, 3)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_outs = comparison_fn(x, w1, w2)
        test_outs = traced.forward(x, w1, w2)
        self.assertEqual(ref_outs, test_outs)

    def test_subgraph_rewriter_graph_argument_order(self):
        class M(torch.nn.Module):
            def forward(self, x, y):
                return torch.mm(x, y)

        def pattern(x, y):
            return torch.mm(x, y)

        def comparison(x, y):
            return torch.mm(x, y)

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.randn(3, 4)
        y = torch.randn(4, 5)

        subgraph_rewriter.replace_pattern(traced, pattern, pattern)

        traced.graph.lint()

        ref_outs = comparison_fn(x, y)
        test_outs = traced.forward(x, y)
        self.assertEqual(ref_outs, test_outs)

    def test_subgraph_rewriter_correct_output_replacement(self):
        class M(torch.nn.Module):
            def forward(self, x, y):
                val = torch.neg(y) + torch.relu(x)
                return torch.add(val, val)

        def pattern(x):
            return torch.relu(x)

        def replacement(x):
            return torch.neg(x)

        def comparison(x, y):
            val = torch.neg(y) + torch.neg(x)
            return torch.add(val, val)

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.randn(4, 4)
        y = torch.randn(4, 4)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_outs = comparison_fn(x, y)
        test_outs = traced.forward(x, y)
        self.assertEqual(ref_outs, test_outs)

    def test_subgraph_rewriter_traced_as_callable(self):
        class M(torch.nn.Module):
            def forward(self, x):
                val = torch.neg(x) + torch.relu(x)
                return torch.add(val, val)

        class Pattern(torch.nn.Module):
            def forward(self, x):
                return torch.neg(x) + torch.relu(x)

        class Replacement(torch.nn.Module):
            def forward(self, x):
                return torch.sigmoid(x)

        def comparison(x):
            val = torch.sigmoid(x)
            return torch.add(val, val)

        traced = symbolic_trace(M())
        traced_pattern = symbolic_trace(Pattern())
        traced_replacement = symbolic_trace(Replacement())
        comparison_fn = symbolic_trace(comparison)

        x = torch.randn(3, 4)

        subgraph_rewriter.replace_pattern(traced, traced_pattern, traced_replacement)

        traced.graph.lint()

        ref_outs = comparison_fn(x)
        test_outs = traced.forward(x)
        self.assertEqual(ref_outs, test_outs)

    def test_subgraph_rewriter_pattern_is_entire_graph(self):
        class M(torch.nn.Module):
            def forward(self, x):
                a = torch.neg(x)
                return torch.add(a, a)

        def pattern(x):
            a = torch.neg(x)
            return torch.add(a, a)

        def replacement(x):
            a = torch.sigmoid(x)
            return torch.cat([a, a])

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(replacement)

        x = torch.randn(3, 4)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_outs = comparison_fn(x)
        test_outs = traced.forward(x)
        self.assertEqual(ref_outs, test_outs)

    def test_subgraph_rewriter_pattern_output_pattern_node_can_have_users_that_are_not_matched(self):
        class M(torch.nn.Module):
            def forward(self, x):
                y = torch.relu(x)
                return torch.neg(y) - y

        def pattern(x):
            return torch.relu(x)

        def replacement(x):
            return torch.sigmoid(x)

        def comparison(x):
            y = torch.sigmoid(x)
            return torch.neg(y) - y

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.randn(3, 4)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_outs = comparison_fn(x)
        test_outs = traced.forward(x)
        self.assertEqual(ref_outs, test_outs)

    def test_subgraph_rewriter_internal_pattern_nodes_cannot_have_users_that_are_not_matched(self):
        class M(torch.nn.Module):
            def forward(self, x, w1, w2, b1, b2):
                m0 = torch.cat([w1, w2])
                m1 = torch.cat([w1, w2])
                m2 = torch.cat([x, b2])
                t0 = torch.addmm(b1, m1, m2.t())
                t1 = torch.sum(w1, 1)
                t2 = torch.addmm(b1, m1, m2.t())
                return torch.sum(t1), torch.sum(t2)

        def pattern(x, w1, w2, b1, b2):
            m1 = torch.cat([w1, w2])
            m2 = torch.cat([x, b2])
            return torch.addmm(b1, m1, m2.t())

        def replacement(x, w1, w2, b1, b2):
            return torch.cat([x, w1, w2])

        traced = symbolic_trace(M())

        # Result should be [] since no matches can be found
        res = subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        self.assertEqual(res, [])

    def test_subgraph_rewriter_placeholder_matching(self):
        """
        This tests that a placeholder Node can be matched to a Node with
        a different number of input Nodes. In the example below, the
        original traced Module looks like this:
            opcode         target                                                      args                      kwargs
            -------------  ----------------------------------------------------------  ------------------------  --------
            placeholder    x                                                           ()                        {}
            call_function  <built-in function add>                                     (x, 3)                    {}
            call_method    dequantize                                                  (add,)                    {}
            call_function  <built-in method sigmoid of type object at 0x7f7c1f440fe0>  (dequantize,)             {}
            call_method    to                                                          (sigmoid, torch.float16)  {}
            output         output                                                      (to,)                     {}
        while the pattern we want to match looks like this:
            opcode         target                                                      args                      kwargs
            -------------  ----------------------------------------------------------  ------------------------  --------
            placeholder    x                                                           ()                        {}
            call_method    dequantize                                                  (x,)                      {}
            call_function  <built-in method sigmoid of type object at 0x7f7c1f440fe0>  (dequantize,)             {}
            call_method    to                                                          (sigmoid, torch.float16)  {}
            output         output                                                      (to,)                     {}
        Here, we want to be able to match the original graph's
        `call_function.add` Node with the pattern graph's
        `plaeholder.x` Node.
        Credit to Jerry Zhang (GitHub: jerryzh168) for this test case
        """
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.dtype = torch.float16

            def forward(self, x):
                x += 3
                x = x.dequantize()
                x = torch.sigmoid(x)
                dtype = self.dtype
                x = x.to(dtype)
                return x

        def pattern(x):
            x = x.dequantize()
            x = torch.sigmoid(x)
            x = x.to(torch.float16)
            return x

        def replacement(x):
            return x

        def comparison(x):
            return x + 3

        traced = symbolic_trace(M())
        comparison_fn = symbolic_trace(comparison)

        x = torch.randn(3, 4)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_outs = comparison_fn(x)
        test_outs = traced.forward(x)
        self.assertEqual(ref_outs, test_outs)

    def test_subgraph_rewriter_replaces_referenced_submodules(self):
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.sigmoid = torch.nn.Sigmoid()
                self.submod = torch.nn.ReLU()

            def forward(self, x):
                x = x + 1
                return self.submod(self.sigmoid(x))

        class Pattern(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.sigmoid = torch.nn.Sigmoid()
                self.submod = torch.nn.ReLU()

            def forward(self, x):
                return self.submod(self.sigmoid(x))

        class Replacement(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.id = torch.nn.Identity()
                self.submod = torch.nn.ReLU()

            def forward(self, x):
                return self.submod(self.id(x))

        class Comparison(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.id = torch.nn.Identity()
                self.submod = torch.nn.ReLU()

            def forward(self, x):
                x = x + 1
                return self.submod(self.id(x))

        traced = symbolic_trace(M())
        comparison = Comparison()

        x = torch.randn(3, 4)

        subgraph_rewriter.replace_pattern(traced, Pattern(), Replacement())

        traced.graph.lint()

        ref_outs = comparison(x)
        test_outs = traced.forward(x)
        self.assertEqual(ref_outs, test_outs)

        traced.get_submodule("id")
        with self.assertRaisesRegex(AttributeError, "has no attribute"):
            traced.get_submodule("sigmoid")

        submod = traced.get_submodule("submod")
        self.assertEqual(type(submod), torch.nn.ReLU)

    def test_subgraph_rewriter_annotations_int(self):

        class M1(torch.nn.Module):
            def forward(self, x):
                y: int = x
                return torch.add(x, y)

        class M2(torch.nn.Module):
            def forward(self, x):
                y = annotate(x, int)
                return torch.add(x, y)

        ast_rewriter = RewritingTracer()
        graph = ast_rewriter.trace(M1())

        module = M2()
        symbolic_traced: torch.fx.GraphModule = symbolic_trace(module)
        for n, m in zip(symbolic_traced.graph.nodes, graph.nodes):
            if n.op == 'placeholder':
                assert n.type == int
                assert m.type == int

    def test_subgraph_writer_replace_consecutive_submodules(self):

        def f(x):
            x = torch.sigmoid(x)
            x = torch.sigmoid(x)
            return torch.sigmoid(x)

        def pattern(x):
            return torch.sigmoid(x)

        def replacement(x):
            return torch.exp(x)

        def comparison(x):
            x = torch.exp(x)
            x = torch.exp(x)
            return torch.exp(x)

        traced = symbolic_trace(f)
        comparison_fn = symbolic_trace(comparison)

        x = torch.randn(3, 4)

        subgraph_rewriter.replace_pattern(traced, pattern, replacement)

        traced.graph.lint()

        ref_outs = comparison_fn(x)
        test_outs = traced.forward(x)
        self.assertEqual(ref_outs, test_outs)