File: test_deprecated_jit_quant.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (298 lines) | stat: -rw-r--r-- 12,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Owner(s): ["oncall: quantization"]

import torch
from torch.testing._internal.common_quantization import (
    skipIfNoFBGEMM
)
from torch.testing._internal.common_utils import suppress_warnings
from torch.testing._internal.jit_utils import JitTestCase

from typing import Tuple
import copy

class TestDeprecatedJitQuantized(JitTestCase):
    @skipIfNoFBGEMM
    def test_rnn_cell_quantized(self):
        d_in, d_hid = 2, 2

        for cell in [
            torch.nn.LSTMCell(d_in, d_hid).float(),
            torch.nn.GRUCell(d_in, d_hid).float(),
            torch.nn.RNNCell(d_in, d_hid).float(),
        ]:
            if isinstance(cell, torch.nn.LSTMCell):
                num_chunks = 4
            elif isinstance(cell, torch.nn.GRUCell):
                num_chunks = 3
            elif isinstance(cell, torch.nn.RNNCell):
                num_chunks = 1

            # Replace parameter values s.t. the range of values is exactly
            # 255, thus we will have 0 quantization error in the quantized
            # GEMM call. This i s for testing purposes.
            #
            # Note that the current implementation does not support
            # accumulation values outside of the range representable by a
            # 16 bit integer, instead resulting in a saturated value. We
            # must take care that in our test we do not end up with a dot
            # product that overflows the int16 range, e.g.
            # (255*127+255*127) = 64770. So, we hardcode the test values
            # here and ensure a mix of signedness.
            vals = [[100, -155],
                    [100, -155],
                    [-155, 100],
                    [-155, 100],
                    [100, -155],
                    [-155, 100],
                    [-155, 100],
                    [100, -155]]
            vals = vals[:d_hid * num_chunks]
            cell.weight_ih = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float),
                requires_grad=False)
            cell.weight_hh = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float),
                requires_grad=False)

            ref = copy.deepcopy(cell)

            cell = torch.jit.quantized.quantize_rnn_cell_modules(cell)
            x = torch.tensor([[100, -155],
                              [-155, 100],
                              [100, -155]], dtype=torch.float)
            h0_vals = [[-155, 100],
                       [-155, 155],
                       [100, -155]]
            hx = torch.tensor(h0_vals, dtype=torch.float)
            if isinstance(cell, torch.jit.quantized.QuantizedLSTMCell):
                cx = torch.tensor(h0_vals, dtype=torch.float)
                hiddens = (hx, cx)
            else:
                hiddens = hx

            if isinstance(cell, torch.jit.quantized.QuantizedLSTMCell):
                class ScriptWrapper(torch.jit.ScriptModule):
                    def __init__(self, cell):
                        super(ScriptWrapper, self).__init__()
                        self.cell = cell

                    @torch.jit.script_method
                    def forward(self, x: torch.Tensor,
                                hiddens: Tuple[torch.Tensor, torch.Tensor]
                                ) -> Tuple[torch.Tensor, torch.Tensor]:
                        return self.cell(x, hiddens)
            else:

                class ScriptWrapper(torch.jit.ScriptModule):
                    def __init__(self, cell):
                        super(ScriptWrapper, self).__init__()
                        self.cell = cell

                    @torch.jit.script_method
                    def forward(self, x: torch.Tensor, hiddens: torch.Tensor) -> torch.Tensor:
                        return self.cell(x, hiddens)

            cell = ScriptWrapper(cell)
            outs = cell(x, hiddens)
            cell = self.getExportImportCopyWithPacking(cell)

            outs = cell(x, hiddens)
            ref_outs = ref(x, hiddens)

            self.assertEqual(len(outs), len(ref_outs))
            for out, ref_out in zip(outs, ref_outs):
                torch.testing.assert_close(out, ref_out)

    @skipIfNoFBGEMM
    def test_rnn_quantized(self):
        d_in, d_hid = 2, 2

        for cell in [
            torch.nn.LSTM(d_in, d_hid).float(),
            torch.nn.GRU(d_in, d_hid).float(),
        ]:

            # Replace parameter values s.t. the range of values is exactly
            # 255, thus we will have 0 quantization error in the quantized
            # GEMM call. This i s for testing purposes.
            #
            # Note that the current implementation does not support
            # accumulation values outside of the range representable by a
            # 16 bit integer, instead resulting in a saturated value. We
            # must take care that in our test we do not end up with a dot
            # product that overflows the int16 range, e.g.
            # (255*127+255*127) = 64770. So, we hardcode the test values
            # here and ensure a mix of signedness.
            vals = [[100, -155],
                    [100, -155],
                    [-155, 100],
                    [-155, 100],
                    [100, -155],
                    [-155, 100],
                    [-155, 100],
                    [100, -155]]
            if isinstance(cell, torch.nn.LSTM):
                num_chunks = 4
            elif isinstance(cell, torch.nn.GRU):
                num_chunks = 3
            vals = vals[:d_hid * num_chunks]
            cell.weight_ih_l0 = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float),
                requires_grad=False)
            cell.weight_hh_l0 = torch.nn.Parameter(
                torch.tensor(vals, dtype=torch.float),
                requires_grad=False)

            ref = copy.deepcopy(cell)
            cell_int8 = torch.jit.quantized.quantize_rnn_modules(cell, dtype=torch.int8)
            cell_fp16 = torch.jit.quantized.quantize_rnn_modules(cell, dtype=torch.float16)

            niter = 10
            x = torch.tensor([[100, -155],
                              [-155, 100],
                              [100, -155]], dtype=torch.float).unsqueeze(0).repeat(niter, 1, 1)
            h0_vals = [[-155, 100],
                       [-155, 155],
                       [100, -155]]
            hx = torch.tensor(h0_vals, dtype=torch.float).unsqueeze(0)
            cx = torch.tensor(h0_vals, dtype=torch.float).unsqueeze(0)

            if isinstance(ref, torch.nn.LSTM):
                hiddens = (hx, cx)
            elif isinstance(ref, torch.nn.GRU):
                hiddens = hx

            ref_out, ref_hid = ref(x, hiddens)

            # Compare int8 quantized to unquantized
            output_int8, final_hiddens_int8 = cell_int8(x, hiddens)

            torch.testing.assert_close(output_int8, ref_out)
            for out, ref in zip(final_hiddens_int8, ref_hid):
                torch.testing.assert_close(out, ref)

            # Compare fp16 quantized to unquantized
            output_fp16, final_hiddens_fp16 = cell_fp16(x, hiddens)

            torch.testing.assert_close(output_fp16, ref_out)
            for out, ref in zip(final_hiddens_fp16, ref_hid):
                torch.testing.assert_close(out, ref)

            def compare_quantized_unquantized(ScriptWrapper, cell):
                wrapper = ScriptWrapper(cell)

                # Compare quantize scripted module to unquantized
                script_out, script_hid = wrapper(x, hiddens)
                torch.testing.assert_close(script_out, ref_out)
                for out, ref in zip(script_hid, ref_hid):
                    torch.testing.assert_close(out, ref)

                # Compare export/import to unquantized
                export_import_wrapper = self.getExportImportCopyWithPacking(wrapper)
                ei_out, ei_hid = export_import_wrapper(x, hiddens)
                torch.testing.assert_close(ei_out, ref_out)
                for out, ref in zip(ei_hid, ref_hid):
                    torch.testing.assert_close(out, ref)

            if isinstance(cell, torch.jit.quantized.QuantizedGRU):
                class ScriptWrapper(torch.jit.ScriptModule):
                    def __init__(self, cell):
                        super(ScriptWrapper, self).__init__()
                        self.cell = cell

                    @torch.jit.script_method
                    def forward(self, x: torch.Tensor, hiddens: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
                        return self.cell(x, hiddens)

                compare_quantized_unquantized(ScriptWrapper, cell)
            elif isinstance(cell, torch.jit.quantized.QuantizedLSTM):
                for cell in [cell_int8, cell_fp16]:
                    class ScriptWrapper(torch.jit.ScriptModule):
                        def __init__(self, cell):
                            super(ScriptWrapper, self).__init__()
                            self.cell = cell

                        @torch.jit.script_method
                        def forward(self, x, hiddens):
                            # type: (torch.Tensor, Tuple[torch.Tensor, torch.Tensor])
                            #        -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
                            return self.cell(x, hiddens)
                    compare_quantized_unquantized(ScriptWrapper, cell)

    if 'fbgemm' in torch.backends.quantized.supported_engines:
        # Suppression: using deprecated quant api
        @suppress_warnings
        def test_quantization_modules(self):
            K1, N1 = 2, 2

            class FooBar(torch.nn.Module):
                def __init__(self):
                    super(FooBar, self).__init__()
                    self.linear1 = torch.nn.Linear(K1, N1).float()

                def forward(self, x):
                    x = self.linear1(x)
                    return x

            fb = FooBar()
            fb.linear1.weight = torch.nn.Parameter(
                torch.tensor([[-150, 100], [100, -150]], dtype=torch.float), requires_grad=False)
            fb.linear1.bias = torch.nn.Parameter(torch.zeros_like(fb.linear1.bias), requires_grad=False)

            x = (torch.rand(1, K1).float() - 0.5) / 10.0
            value = torch.tensor([[100, -150]], dtype=torch.float)

            y_ref = fb(value)

            fb_int8 = torch.jit.quantized.quantize_linear_modules(fb)
            traced_int8 = torch.jit.trace(fb_int8, (x,))
            fb_int8 = self.getExportImportCopyWithPacking(traced_int8)
            y_int8 = fb_int8(value)

            fb_fp16 = torch.jit.quantized.quantize_linear_modules(fb, torch.float16)
            traced_fp16 = torch.jit.trace(fb_fp16, (x,))
            fb_fp16 = self.getExportImportCopyWithPacking(traced_fp16)
            y_fp16 = fb_fp16(value)

            torch.testing.assert_close(y_int8, y_ref, rtol=0.0001, atol=1e-3)
            torch.testing.assert_close(y_fp16, y_ref, rtol=0.0001, atol=1e-3)

    @skipIfNoFBGEMM
    def test_erase_class_tensor_shapes(self):
        class Linear(torch.nn.Module):
            def __init__(self, in_features, out_features):
                super(Linear, self).__init__()
                qweight = torch._empty_affine_quantized(
                    [out_features, in_features], scale=1, zero_point=0,
                    dtype=torch.qint8)
                self._packed_weight = torch.ops.quantized.linear_prepack(qweight)

            @torch.jit.export
            def __getstate__(self):
                return (torch.ops.quantized.linear_unpack(self._packed_weight)[0], self.training)

            def forward(self):
                return self._packed_weight

            @torch.jit.export
            def __setstate__(self, state):
                self._packed_weight = torch.ops.quantized.linear_prepack(state[0])
                self.training = state[1]

            @property
            def weight(self):
                return torch.ops.quantized.linear_unpack(self._packed_weight)[0]

            @weight.setter
            def weight(self, w):
                self._packed_weight = torch.ops.quantized.linear_prepack(w)

        with torch._jit_internal._disable_emit_hooks():
            x = torch.jit.script(Linear(10, 10))
            torch._C._jit_pass_erase_shape_information(x.graph)


if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_quantization.py TESTNAME\n\n"
                       "instead.")