File: test_ondevice_quantization.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (529 lines) | stat: -rw-r--r-- 22,058 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# -*- coding: utf-8 -*-
# Owner(s): ["oncall: quantization"]

import torch
import torch._C_flatbuffer

from torch.ao.quantization import (
    default_dynamic_qconfig,
    per_channel_dynamic_qconfig,
)

from torch.ao.quantization.quantize_jit import (
    prepare_dynamic_jit,
    convert_dynamic_jit,
    _prepare_ondevice_dynamic_jit,
    _quantize_ondevice_dynamic_jit,
)

from torch.testing._internal.common_utils import TestCase

from torch.testing._internal.common_quantization import (
    get_script_module,
    LinearAddModel,
)

from torch.jit.mobile import _load_for_lite_interpreter, LiteScriptModule

from torch.testing import FileCheck
from torch.utils import bundled_inputs as bundled_inputs

import io
from typing import Dict

class myMod(torch.nn.Module):
    def __init__(self, weight):
        super(myMod, self).__init__()
        self.fc1 = torch.nn.Linear(5, 5).float()
        self.fc1.weight = weight
        self.fc2 = torch.nn.Linear(5, 5).float()

    def forward(self, x):
        return self.fc2(self.fc1(x))


class MyConvLinearModule(torch.nn.Module):
    def __init__(self):
        super(MyConvLinearModule, self).__init__()
        self.conv = torch.nn.Conv2d(3, 5, 3)
        weight = torch.nn.Parameter(torch.ones(5, 5))
        self.weight1 = torch.nn.Parameter(torch.ones(5, 5))
        self.mymod = myMod(weight)

    def forward(self, x):
        conv_output = self.conv(x)
        y = self.mymod(conv_output)
        z = torch.nn.functional.linear(y, self.weight1)
        return z

    def get_example_inputs(self):
        return (torch.rand(1, 3, 12, 7),)


class OnDevicePTQUtils(object):
    observer_module_name = ['MinMaxObserver', 'PerChannelMinMaxObserver']

    @staticmethod
    def insert_observers(model, qconfig_dict):
        inputs = model.get_example_inputs()
        scripted_model = get_script_module(model, False, inputs)
        scripted_model = _prepare_ondevice_dynamic_jit(scripted_model, qconfig_dict)
        return scripted_model

    @staticmethod
    def ptq_dynamic_quantize(model, qconfig_dict):
        inputs = model.get_example_inputs()
        m = get_script_module(model, False, inputs)
        m = _quantize_ondevice_dynamic_jit(m, qconfig_dict, 'forward', True)
        return m

    @staticmethod
    def find_observer_modules(m):
        observer_modules = []
        for child_module in m.children():
            if child_module.original_name in OnDevicePTQUtils.observer_module_name:
                observer_modules.append(child_module)
        return observer_modules

    @staticmethod
    def is_value_type_observer(value):
        type_name = value.type()
        for observer_type in OnDevicePTQUtils.observer_module_name:
            if observer_type in type_name.str():
                return True
        return False

    @staticmethod
    def is_calculate_qparam(node):
        if node.kind() == "prim::CallMethod":
            if node.s('name') == "calculate_qparams":
                return True
        return False

    @staticmethod
    def get_linear_packed_param_fp_weight(node):
        weight = node.inputsAt(0).node()
        if weight.kind() != "aten::quantize_per_tensor" and weight.kind() != "aten::quantize_per_channel":
            raise ValueError("Quantized weight must be produced.")
        fp_weight = weight.inputsAt(0).node()
        assert fp_weight.kind() == "prim::GetAttr", "Weight must be an attribute of the module."
        fp_weight_name = fp_weight.s('name')
        return fp_weight_name

    @staticmethod
    def is_per_channel_quantized_packed_param(node):
        assert node.kind() == 'quantized::linear_prepack', "Node must corresponds to linear_prepack."
        weight = node.inputsAt(0).node()
        assert weight.kind() != "aten::quantize_per_tensor" or weight.kind() != "aten::quantize_per_channel"
        return weight.kind() != "aten::quantize_per_tensor"


class TestOnDeviceDynamicPTQInsertObservers(TestCase):
    def _check_num_and_type_of_observers(self, model, num_observers):
        qconfig_dict = {"": default_dynamic_qconfig}
        scripted_model = OnDevicePTQUtils.insert_observers(model, qconfig_dict)
        observer_modules = OnDevicePTQUtils.find_observer_modules(scripted_model)
        self.assertTrue(len(observer_modules) == num_observers)
        for observer in observer_modules:
            self.assertTrue(observer.original_name == 'MinMaxObserver')

        qconfig_dict = {"": per_channel_dynamic_qconfig}
        scripted_model = OnDevicePTQUtils.insert_observers(model, qconfig_dict)
        observer_modules = OnDevicePTQUtils.find_observer_modules(scripted_model)
        self.assertTrue(len(observer_modules) == num_observers)
        for observer in observer_modules:
            self.assertTrue(observer.original_name == 'PerChannelMinMaxObserver')

    def _check_observer_method(self, model, num_observers):
        qconfig_dict = {"": default_dynamic_qconfig}
        inputs = model.get_example_inputs()
        orig_scripted_model = get_script_module(model, False, inputs)
        torch._C._jit_pass_inline(orig_scripted_model.graph)
        orig_forward_graph = orig_scripted_model.graph.str()
        scripted_model = OnDevicePTQUtils.insert_observers(model, qconfig_dict)
        quant_forward_graph = scripted_model.graph.str()
        # exact graph matching is difficult so just resorting to # of lines
        # instead of implementing graph matching
        self.assertEqual(len(orig_forward_graph.splitlines()), len(quant_forward_graph.splitlines()))
        observe_method = scripted_model.observe_forward.graph
        FileCheck().check_count("prim::CallMethod[name=\"forward\"](%_observer",
                                num_observers, exactly=True).run(observe_method)
        reset_observers_method = scripted_model.reset_observers_forward.graph
        FileCheck().check_count(
            "prim::CallMethod[name=\"reset_min_max_vals\"](%_observer", num_observers, exactly=True).run(reset_observers_method)

    def _observer_is_weight_only(self, node):
        if (node.kind() == "prim::CallMethod") and node.s("name") == "forward":
            if (OnDevicePTQUtils.is_value_type_observer(node.inputsAt(0))):
                return (node.inputsAt(1).node().kind() == "prim::GetAttr")
        return False

    def test_num_observers(self):
        model = LinearAddModel()
        self._check_num_and_type_of_observers(model, 2)
        model = MyConvLinearModule()
        self._check_num_and_type_of_observers(model, 3)

    def test_observe_method(self):
        model = MyConvLinearModule()
        self._check_observer_method(model, 3)

    def test_weight_only_observers(self):
        model = MyConvLinearModule()
        qconfig_dict = {"": default_dynamic_qconfig}
        inputs = model.get_example_inputs()
        scripted_model = OnDevicePTQUtils.insert_observers(model, qconfig_dict)
        observe_forward_graph = scripted_model.observe_forward.graph
        num_weight_only_observers = 0
        for node in observe_forward_graph.nodes():
            if (self._observer_is_weight_only(node)):
                num_weight_only_observers += 1
        self.assertEqual(num_weight_only_observers, 3)


class TestOnDeviceDynamicPTQInsertQuantDequant(TestCase):
    def _validate_quant_dequant_nodes(self, model, num_nodes, per_channel=0):
        quantize_forward_graph = model.quantize_forward.graph
        quantize_per_tensor = quantize_per_channel = 0
        for n in quantize_forward_graph.nodes():
            if "aten::quantize_per_tensor" in n.kind():
                quantize_per_tensor += 1
            if "aten::quantize_per_channel" in n.kind():
                quantize_per_channel += 1
        self.assertEqual(quantize_per_tensor + quantize_per_channel, num_nodes)

    def _validate_calculate_qparams(self, model, num_nodes):
        quantize_forward_graph = model.quantize_forward.graph
        num_calculate_qparams = 0
        for n in quantize_forward_graph.nodes():
            if OnDevicePTQUtils.is_calculate_qparam(n):
                num_calculate_qparams += 1
        self.assertEqual(num_calculate_qparams, num_nodes)

    def _validate_no_observer_forward(self, model):
        quantize_forward_graph = model.quantize_forward.graph
        for n in quantize_forward_graph.nodes():
            if (n.kind() == "prim::CallMethod") and n.s("name") == "forward":
                if (OnDevicePTQUtils.is_value_type_observer(n.inputsAt(0))):
                    return False
        return True

    def _check_quant_dequant_and_calc_qparams(self, model, num_nodes):
        qconfig_dict = {"" : default_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        self._validate_quant_dequant_nodes(m, num_nodes)
        self._validate_calculate_qparams(m, num_nodes)
        self._validate_no_observer_forward(m)

        qconfig_dict = {"" : per_channel_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        self._validate_quant_dequant_nodes(m, num_nodes, num_nodes)
        self._validate_calculate_qparams(m, num_nodes)
        self._validate_no_observer_forward(m)

    def _check_quantize_forward_runs(self, model):
        inputs = model.get_example_inputs()
        qconfig_dict = {"" : default_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        m.observe_forward(*inputs)
        m.quantize_forward(*inputs)

        qconfig_dict = {"" : per_channel_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        # First must run observe forward to record the stats to produce
        # correct scales and zero points
        m.observe_forward(*inputs)
        m.quantize_forward(*inputs)

    def test_num_quant_dequant_nodes(self):
        model = LinearAddModel()
        self._check_quant_dequant_and_calc_qparams(model, 2)
        model = MyConvLinearModule()
        self._check_quant_dequant_and_calc_qparams(model, 3)

    def test_quantize_forward_runs(self):
        model = LinearAddModel()
        self._check_quantize_forward_runs(model)
        model = MyConvLinearModule()
        self._check_quantize_forward_runs(model)


class TestOnDeviceDynamicPTQFinalize(TestCase):
    def _validate_packed_params(self, model, num_nodes, per_channel=0):
        quantize_forward_graph = model.quantize_forward.graph
        quantize_per_tensor = quantize_per_channel = 0
        linear_prepack = 0
        linear_prepack_uses = 0
        for n in quantize_forward_graph.nodes():
            if n.kind() == 'prim::SetAttr':
                maybe_packed_param_value = n.inputsAt(1)
                maybe_packed_param = maybe_packed_param_value.node()
                if maybe_packed_param.kind() == 'quantized::linear_prepack':
                    linear_prepack += 1
                    linear_prepack_uses += len(maybe_packed_param_value.uses())
                    if OnDevicePTQUtils.is_per_channel_quantized_packed_param(maybe_packed_param):
                        quantize_per_channel += 1
                    else:
                        quantize_per_tensor += 1
        self.assertEqual(quantize_per_tensor + quantize_per_channel, num_nodes)
        self.assertEqual(quantize_per_channel, per_channel)
        self.assertEqual(linear_prepack, num_nodes)
        self.assertEqual(linear_prepack_uses, num_nodes)


    def _validate_no_linear_unpack(self, model):
        quantize_forward_graph = model.quantize_forward.graph
        for n in quantize_forward_graph.nodes():
            if n.kind() == 'quantized::linear_unpack':
                return False
        return True


    def _validate_setattr_fp_weights(self, model, num_nodes):
        quantize_forward_graph = model.quantize_forward.graph
        fp_weights_setattr = 0
        fp_weight_names = []
        for n in quantize_forward_graph.nodes():
            if n.kind() == 'prim::SetAttr':
                maybe_packed_param = n.inputsAt(1).node()
                if maybe_packed_param.kind() == 'quantized::linear_prepack':
                    weight_name = OnDevicePTQUtils.get_linear_packed_param_fp_weight(maybe_packed_param)
                    fp_weight_names.append(weight_name)

        for n in quantize_forward_graph.nodes():
            # This is basically detecting
            # %x = prim::Constant
            # = prim::SetAttr(<weight_name>)(module_value, x)
            # Thus making sure that the original fp weights are
            # reset
            if n.kind() == 'prim::SetAttr':
                weight_name = n.s('name')
                if weight_name in fp_weight_names:
                    maybe_constant = n.inputsAt(1).node()
                    if maybe_constant.kind() == 'prim::Constant':
                        fp_weights_setattr += 1
        self.assertEqual(fp_weights_setattr, num_nodes)


    def _validate_quantized_forward(self, model, num_nodes):
        quantized_forward_graph = model.quantized_forward.graph
        quantize_per_tensor = quantize_per_channel = 0
        quantized_linear_dynamic = 0
        linear_packed_params = 0
        num_setattr = 0
        for n in quantized_forward_graph.nodes():
            if "aten::quantize_per_tensor" in n.kind():
                quantize_per_tensor += 1
            if "aten::quantize_per_channel" in n.kind():
                quantize_per_channel += 1
            if "quantized::linear_dynamic" in n.kind():
                quantized_linear_dynamic += 1
            if n.kind() == 'prim::GetAttr':
                output = n.outputsAt(0)
                output_type = output.type()
                if "LinearPackedParamsBase" in output_type.str():
                    linear_packed_params += 1
            if n.kind() == 'prim::SetAttr':
                num_setattr += 1
        self.assertEqual(quantize_per_tensor, 0)
        self.assertEqual(quantize_per_channel, 0)
        self.assertEqual(quantized_linear_dynamic, num_nodes)
        self.assertEqual(linear_packed_params, num_nodes)
        # self.assertEqual(num_setattr, 0)


    def _check_quantize_forward(self, model, num_nodes):
        qconfig_dict = {"" : default_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        self._validate_packed_params(m, num_nodes)
        self._validate_no_linear_unpack(m)
        self._validate_setattr_fp_weights(m, num_nodes)

        qconfig_dict = {"" : per_channel_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        self._validate_packed_params(m, num_nodes, num_nodes)
        self._validate_no_linear_unpack(m)
        self._validate_setattr_fp_weights(m, num_nodes)


    def _check_quantized_forward(self, model, num_nodes):
        qconfig_dict = {"" : default_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        self._validate_quantized_forward(m, num_nodes)

        qconfig_dict = {"" : per_channel_dynamic_qconfig}
        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        self._validate_quantized_forward(m, num_nodes)


    def _check_against_ref_dynamic_ptq(self, model):
        model.eval()
        inputs = model.get_example_inputs()
        ref_m = torch.jit.script(model)
        torch._C._jit_pass_inline(ref_m.graph)
        qconfig_dict = {"" : default_dynamic_qconfig}
        ref_m = prepare_dynamic_jit(ref_m, qconfig_dict)
        ref_m = convert_dynamic_jit(ref_m)
        ref_output = ref_m(*inputs)

        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        m.observe_forward(*inputs)
        m.quantize_forward(*inputs)
        output = m.quantized_forward(*inputs)
        self.assertTrue(torch.allclose(ref_output, output))
        thrown = False
        try:
            m(*inputs)
        except Exception as e:
            thrown = True
        self.assertTrue(thrown)

        # test with per channel quant
        ref_m = torch.jit.script(model)
        torch._C._jit_pass_inline(ref_m.graph)
        qconfig_dict = {"" : per_channel_dynamic_qconfig}
        ref_m = prepare_dynamic_jit(ref_m, qconfig_dict)
        ref_m = convert_dynamic_jit(ref_m)
        ref_output = ref_m(*inputs)

        m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
        m.observe_forward(*inputs)
        m.quantize_forward(*inputs)
        output = m.quantized_forward(*inputs)
        self.assertTrue(torch.allclose(ref_output, output))
        thrown = False
        try:
            m(*inputs)
        except Exception as e:
            thrown = True
        self.assertTrue(thrown)


    def _check_serdes_and_device_side_api_helper(self, model, check_device_side_api=False):
        model.eval()
        inputs = model.get_example_inputs()
        ref_m = torch.jit.script(model)
        torch._C._jit_pass_inline(ref_m.graph)
        qconfig_dict = {"" : default_dynamic_qconfig}
        ref_m = prepare_dynamic_jit(ref_m, qconfig_dict)
        ref_m = convert_dynamic_jit(ref_m)
        buffer = io.BytesIO()
        torch.jit.save(ref_m, buffer)
        buffer.seek(0)
        ref_m = torch.jit.load(buffer)
        ref_output = ref_m(*inputs)

        if not check_device_side_api:
            m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
            buffer = io.BytesIO()
            torch.jit.save(m, buffer)
            buffer.seek(0)
            m = torch.jit.load(buffer)
            m.reset_observers_forward()
            m.observe_forward(*inputs)
            m.quantize_forward(*inputs)
            output = m.quantized_forward(*inputs)
            self.assertTrue(torch.allclose(ref_output, output))
        else:
            # check for lite interpreter
            m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
            first_input, = inputs
            rand_input = bundled_inputs.bundle_randn(first_input.size(), dtype=first_input.dtype)
            m = bundled_inputs.bundle_inputs(m, inputs=[(rand_input, )])
            buffer = io.BytesIO(m._save_to_buffer_for_lite_interpreter())
            buffer.seek(0)
            m = _load_for_lite_interpreter(buffer)  # Error here
            torch._C._quantize_ondevice_ptq_dynamic(m._c, "forward")
            self.assertFalse(m.find_method("quantized_forward"))
            self.assertFalse(m.find_method("quantize_forward"))
            self.assertFalse(m.find_method("observe_forward"))
            self.assertFalse(m.find_method("reset_observers_forward"))
            output = m(*inputs)
            self.assertTrue(torch.allclose(ref_output, output))

            # Now serialize to flabuffer and load from fb and check
            dict: Dict[str, str] = {}
            bytes = torch._C_flatbuffer._save_mobile_module_to_bytes(m._c, dict)
            m = LiteScriptModule(torch._C_flatbuffer._load_mobile_module_from_bytes(bytes))
            fb_output = m(*inputs)
            self.assertTrue(torch.allclose(ref_output, fb_output))

        model.eval()
        inputs = model.get_example_inputs()
        ref_m = torch.jit.script(model)
        torch._C._jit_pass_inline(ref_m.graph)
        qconfig_dict = {"" : per_channel_dynamic_qconfig}
        ref_m = prepare_dynamic_jit(ref_m, qconfig_dict)
        ref_m = convert_dynamic_jit(ref_m)
        buffer = io.BytesIO()
        torch.jit.save(ref_m, buffer)
        buffer.seek(0)
        ref_m = torch.jit.load(buffer)
        ref_output = ref_m(*inputs)

        if not check_device_side_api:
            m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
            buffer = io.BytesIO()
            torch.jit.save(m, buffer)
            buffer.seek(0)
            m = torch.jit.load(buffer)
            m.reset_observers_forward()
            m.observe_forward(*inputs)
            m.quantize_forward(*inputs)
            output = m.quantized_forward(*inputs)
            self.assertTrue(torch.allclose(ref_output, output))
        else:
            # check for lite interpreter
            m = OnDevicePTQUtils.ptq_dynamic_quantize(model, qconfig_dict)
            first_input, = inputs
            rand_input = bundled_inputs.bundle_randn(first_input.size(), dtype=first_input.dtype)
            m = bundled_inputs.bundle_inputs(m, inputs=[(rand_input, )])
            buffer = io.BytesIO(m._save_to_buffer_for_lite_interpreter())
            buffer.seek(0)
            m = _load_for_lite_interpreter(buffer)  # Error here
            torch._C._quantize_ondevice_ptq_dynamic(m._c, "forward")
            self.assertFalse(m.find_method("quantized_forward"))
            self.assertFalse(m.find_method("quantize_forward"))
            self.assertFalse(m.find_method("observe_forward"))
            self.assertFalse(m.find_method("reset_observers_forward"))
            output = m(*inputs)
            self.assertTrue(torch.allclose(ref_output, output))


    def _check_serialization_deserialization(self, model):
        self._check_serdes_and_device_side_api_helper(model, False)


    def _check_device_side_api(self, model):
        self._check_serdes_and_device_side_api_helper(model, True)


    def test_quantize_forward(self):
        model = LinearAddModel()
        self._check_quantize_forward(model, 2)
        model = MyConvLinearModule()
        self._check_quantize_forward(model, 3)


    def test_quantized_forward(self):
        model = LinearAddModel()
        self._check_quantized_forward(model, 2)
        model = MyConvLinearModule()
        self._check_quantized_forward(model, 3)


    def test_against_offdevice_dynamic_ptq(self):
        model = LinearAddModel()
        self._check_against_ref_dynamic_ptq(model)
        model = MyConvLinearModule()
        self._check_against_ref_dynamic_ptq(model)


    def test_serialization_deserialization(self):
        model = MyConvLinearModule()
        self._check_serialization_deserialization(model)


    def test_device_side_api(self):
        model = MyConvLinearModule()
        self._check_device_side_api(model)