1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349
|
# Owner(s): ["module: autograd"]
import contextlib
import gc
import io
import math
import os
import random
import sys
import tempfile
import threading
import time
import unittest
import uuid
import warnings
import operator
import subprocess
from copy import deepcopy
from collections import OrderedDict
from itertools import product
from operator import mul
from functools import reduce, partial
import torch
from torch import nn
from torch._six import inf, nan
from torch.autograd.function import once_differentiable
from torch.autograd.profiler import (profile, record_function, emit_nvtx, emit_itt)
from torch.autograd.profiler_util import (_format_time, EventList, FunctionEvent, FunctionEventAvg)
from torch.utils.checkpoint import checkpoint
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
TestCase, run_tests, skipIfNoLapack, slowTest, IS_WINDOWS, IS_MACOS,
disable_gc, gradcheck, gradgradcheck, parametrize,
instantiate_parametrized_tests, skipIfMps, set_warn_always_context)
from torch.autograd import Variable, Function, detect_anomaly, kineto_available, _calculate_shape
from torch.autograd.function import InplaceFunction
import torch.autograd.forward_ad as fwAD
from torch.testing._internal.common_methods_invocations import mask_not_all_zeros
from torch.testing._internal.common_device_type import (instantiate_device_type_tests,
onlyCPU, onlyCUDA, dtypes, dtypesIfCUDA,
deviceCountAtLeast, skipMeta, dtypesIfMPS)
from torch.testing._internal.common_dtype import floating_types_and
from torch.utils._mode_utils import no_dispatch
import weakref
import pickle
def graph_desc(fn):
if fn is None:
return 'None'
result = type(fn).__name__ + '('
next_functions = fn.next_functions
for next_fn, _ in next_functions:
result += graph_desc(next_fn)
result += ', '
if next_functions:
result = result[:-2]
return result + ')'
class TestAutograd(TestCase):
def test_tensor_grad_warnings(self):
dummy = torch.empty(1)
with warnings.catch_warnings(record=True) as w:
# Accessing .grad on leaf
dummy.requires_grad_()
foo = dummy.grad
self.assertEqual(len(w), 0)
# Accessing .grad on non-leaf
dummy = dummy.clone()
foo = dummy.grad
self.assertEqual(len(w), 1)
# Accessing .grad on non-leaf that retains gradients
dummy.retain_grad()
foo = dummy.grad
self.assertEqual(len(w), 1)
def _function_test(self, cls):
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
result = cls.apply(x, 2, y)
go = torch.ones((), requires_grad=True)
result.sum().backward(go, create_graph=True)
self.assertEqual(x.grad, y + torch.ones(5, 5))
self.assertEqual(y.grad, x + torch.ones(5, 5) * 2)
self.assertIsNotNone(x.grad.grad_fn)
self.assertIsNotNone(y.grad.grad_fn)
return x, y
def test_function(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, tensor1, pyscalar, tensor2):
ctx.pyscalar = pyscalar
ctx.save_for_backward(tensor1, tensor2)
return tensor1 + pyscalar * tensor2 + tensor1 * tensor2
@staticmethod
def backward(ctx, grad_output):
var1, var2 = ctx.saved_tensors
# NOTE: self is the test case here
self.assertIsInstance(var1, torch.Tensor)
self.assertIsInstance(var2, torch.Tensor)
self.assertIsInstance(grad_output, torch.Tensor)
return (grad_output + grad_output * var2, None,
grad_output * ctx.pyscalar + grad_output * var1)
x, y = self._function_test(MyFunction)
x_grad_desc = graph_desc(x.grad.grad_fn)
y_grad_desc = graph_desc(y.grad.grad_fn)
self.assertExpected(x_grad_desc, "x_grad_desc")
self.assertExpected(y_grad_desc, "y_grad_desc")
def test_once_differentiable(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, tensor1, pyscalar, tensor2):
ctx.pyscalar = pyscalar
ctx.save_for_backward(tensor1, tensor2)
return tensor1 + pyscalar * tensor2 + tensor1 * tensor2
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
self.assertFalse(torch.is_grad_enabled())
t1, t2 = ctx.saved_tensors
return (grad_output + grad_output * t2, None,
grad_output * ctx.pyscalar + grad_output * t1)
x, y = self._function_test(MyFunction)
self.assertEqual(graph_desc(x.grad.grad_fn),
'CopyBackwards(None, Error(AccumulateGrad(), None, AccumulateGrad()))')
self.assertEqual(graph_desc(y.grad.grad_fn),
'CopyBackwards(None, Error(AccumulateGrad(), None, AccumulateGrad()))')
def test_function_returns_input(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad):
return grad * 2
for shape in [(1,), ()]:
v = torch.ones(shape, requires_grad=True)
MyFunction.apply(v).backward()
self.assertEqual(v.grad, torch.full(shape, 2.))
with torch.no_grad():
v.grad.zero_()
MyFunction.apply(v.clone()).backward()
self.assertEqual(v.grad, torch.full(shape, 2.))
def test_function_returns_undefined_tensor(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x * 2
@staticmethod
def backward(ctx, grad):
return None
# Test that undefined tensors returned from custom backward function
# are propagated as undefined and not tensor full of zeroes
x = torch.ones(1, requires_grad=True)
MyFunction.apply(x).backward()
self.assertIsNone(x.grad)
MyFunction.apply(x ** 2).backward()
self.assertIsNone(x.grad)
MyFunction.apply(x).sum().backward()
self.assertIsNone(x.grad)
self.assertIsNone(torch.autograd.grad(MyFunction.apply(x), x, allow_unused=True)[0])
def test_materialize_grads(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad):
self.assertEqual(grad, torch.zeros(1))
return grad
x = torch.ones(1, requires_grad=True)
torch._C._functions.UndefinedGrad()(MyFunction.apply(x)).backward()
def test_dont_materialize_grads(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
ctx.set_materialize_grads(False)
return x
@staticmethod
def backward(ctx, grad):
self.assertIsNone(grad)
return grad
x = torch.ones(1, requires_grad=True)
torch._C._functions.UndefinedGrad()(MyFunction.apply(x)).backward()
def test_legacy_function_deprecation_exception(self):
# Trigger exception
class MyFunction(Function):
def forward(self, x):
return x
def backward(self, grad_output):
return grad_output
# Check exception occurs
with self.assertRaisesRegex(
RuntimeError,
'Legacy autograd function with non-static forward method is deprecated'):
MyFunction()(torch.randn(3, 4))
class SimulateBackwardError(Function):
@staticmethod
def forward(ctx, input):
return input.clone()
@staticmethod
@once_differentiable
def backward(ctx, input):
raise Exception("Simulate error on backward pass")
def test_custom_function_exception(self):
t1 = torch.rand((3, 3), requires_grad=True)
t2 = torch.rand((3, 3), requires_grad=True)
tmp = (t1 + t2) * (t1 + t2)
t3 = TestAutograd.SimulateBackwardError.apply(tmp)
with self.assertRaisesRegex(Exception, "Simulate error on backward pass"):
t3.sum().backward()
def test_custom_function_non_tensor_inputs_outputs(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
# Save scale
ctx.scale = scale
ctx.save_for_backward(t1, t2, t3)
return scale, t4, None, True, t5, "bar", t1
@staticmethod
@once_differentiable
def backward(ctx, *grads):
# Verify grads
self.assertEqual(7, len(grads))
self.assertIsNone(grads[0])
self.assertIsNone(grads[2])
self.assertIsNone(grads[3])
self.assertIsNone(grads[5])
scale = ctx.scale
var1, var2, var3 = ctx.saved_tensors
return (
grads[1] * scale + grads[4] * var2 * scale + grads[6],
grads[1] * var3 * scale + grads[4] * var1 * scale,
None,
grads[1] * var2 * scale + grads[4] * scale,
)
t1 = torch.rand(10, dtype=torch.double, requires_grad=True)
t2 = torch.rand(10, dtype=torch.double, requires_grad=True)
t3 = torch.rand(10, dtype=torch.double)
scale = random.randint(0, 10)
res = MyFunction.apply(t1, t2, scale, t3)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
# Validate running backward.
torch.autograd.backward([res[1].sum(), res[4].sum(), res[6].sum()])
self.assertIsNotNone(t1.grad)
self.assertIsNotNone(t2.grad)
self.assertIsNone(t3.grad)
# Test gradcheck
def foo(t1, t2, t3):
res = MyFunction.apply(t1, t2, scale, t3)
return res[1], res[4], res[6]
gradcheck(foo, (t1, t2, t3))
def test_custom_function_no_tensors(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
return scale, t4, None, True, t5, "bar", t1
@staticmethod
@once_differentiable
def backward(ctx, *args):
return (args[0], args[1], None, args[2])
t1 = random.random()
t2 = random.random()
t3 = random.random()
scale = random.randint(0, 10)
res = MyFunction.apply(t1, t2, scale, t3)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
def test_invalid_gradients(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x * 2
@staticmethod
def backward(ctx, grad_output):
return torch.randn(10, dtype=torch.float)
with self.assertRaisesRegex(RuntimeError, 'expected shape'):
input = torch.randn(5, 5, dtype=torch.float, requires_grad=True)
MyFunction.apply(input).sum().backward()
def test_unrelated_inputs(self):
# test to ensure grad(grad)check runs successfully even if there is an
# unrelated (but differentiable) inputs
def my_function(x, y):
return x * x
x = torch.rand(10, dtype=torch.double, requires_grad=True)
y = torch.rand(10, dtype=torch.double, requires_grad=True)
gradcheck(my_function, (x, y))
gradgradcheck(my_function, (x, y))
def test_not_implemented_grad(self):
a = torch.rand(2, requires_grad=True)
# if grad for nextafter ends up being implemented, this should be changed
y = torch.nextafter(a, a).sum()
with self.assertRaisesRegex(
NotImplementedError,
'the derivative for .* is not implemented'):
y.backward()
def test_not_implemented_fwad(self):
x = torch.randn(3)
v = torch.rand(3)
with fwAD.dual_level():
dual_x = fwAD.make_dual(x, v)
err_msg = r"Trying to use forward AD with .* that does not support it"
hint_msg = "Running forward AD for an OP that does not implement it should raise a NotImplementedError"
with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg):
# if forward AD ends up being implemented for torch.igamma, choose a different op
torch.igamma(dual_x, dual_x)
def test_will_engine_execute_node(self):
counter = [0]
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x * 2
@staticmethod
def backward(ctx, gO):
return gO * 2
def get_grad_fn(t):
if t.requires_grad and t.grad_fn is None:
return t.clone().grad_fn.next_functions[0][0]
else:
return t.grad_fn
a = torch.randn(2, 3, 4, requires_grad=True)
a2 = torch.randn(2, 3, 4, requires_grad=True)
b = a * a2
b2 = b.cos()
c = MyFunction.apply(b)
should_execute = list(map(get_grad_fn, (a, b, c)))
should_not_execute = list(map(get_grad_fn, (a2, b2)))
def fn(x):
counter[0] += 1
for g in should_execute:
self.assertTrue(torch._C._will_engine_execute_node(g))
for g in should_not_execute:
self.assertFalse(torch._C._will_engine_execute_node(g))
b.register_hook(fn)
c.register_hook(fn)
# .backward(inputs=) is OK
out = c.sum()
torch.autograd.backward(out, inputs=(a, b2), retain_graph=True)
self.assertEqual(counter[0], 2)
# .backward() is OK
should_execute = list(map(get_grad_fn, (a, a2, b, c)))
should_not_execute = list(map(get_grad_fn, (b2,)))
torch.autograd.backward(out, retain_graph=True)
# .grad is NOT OK when leaf is passed (this is the current state, subject to change)
with self.assertRaisesRegex(RuntimeError, "are currently running autograd.grad()"):
torch.autograd.grad(out, (a,))
# .grad is OK when non-leaf is passed
a = torch.randn(1, 2, 3, requires_grad=True) * 2
b = a * 2
def fn(x):
# Check a non-leaf
counter[0] += 1
self.assertTrue(torch._C._will_engine_execute_node(b.grad_fn))
b.register_hook(fn)
counter[0] = 0
torch.autograd.grad(b.sum(), (a,))
self.assertEqual(counter[0], 1)
# Verify other errors are raised
with self.assertRaisesRegex(RuntimeError, "during the backward pass"):
torch._C._will_engine_execute_node(out.grad_fn)
with self.assertRaisesRegex(RuntimeError, "expects an grad_fn"):
torch._C._will_engine_execute_node(out)
def test_accumulate_grad(self):
grad_output = torch.ones(5, 5)
def compute_grad(create_graph):
x = torch.randn(5, 5, requires_grad=True)
y = x + 2
y.backward(grad_output, retain_graph=True)
x_grad = x.grad
x_grad_clone = x.grad.clone()
y.backward(grad_output, create_graph=create_graph)
return x_grad, x_grad_clone
# Accumulate in-place when create_graph is False
x_grad, x_grad_clone = compute_grad(create_graph=False)
self.assertEqual(x_grad, x_grad_clone * 2)
# Accumulate out-of-place when create_graph is False
x_grad, x_grad_clone = compute_grad(create_graph=True)
self.assertEqual(x_grad, x_grad_clone)
def test_accumulate_grad_tensor_reference(self):
def _test_grad_tensor(params_grad_tensor, backward_grad_tensor, should_preserve_reference, create_graph):
params = torch.tensor([1.5, 1.5]).requires_grad_()
params.grad = params_grad_tensor
grad_saved = params.grad
params.backward(backward_grad_tensor, create_graph=create_graph)
self.assertEqual(id(grad_saved) == id(params.grad), should_preserve_reference)
for create_graph in (False, True):
# Accumulate dense gradient to sparse gradient will change the `params.grad` reference
_test_grad_tensor(
torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])),
torch.tensor([1.5, 1.5]),
False, # never accumulates in-place
create_graph)
# Accumulate dense gradient to dense gradient will preserve the `params.grad` reference,
# but only if create_graph=False.
_test_grad_tensor(
torch.tensor([1.5, 1.5]),
torch.tensor([1.5, 1.5]),
not create_graph,
create_graph)
# Accumulate sparse gradient to sparse gradient will preserve the `params.grad` reference,
# but only if create_graph=False.
_test_grad_tensor(
torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])),
torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.])),
not create_graph,
create_graph)
def test_accumulate_grad_with_zero_numel_grad(self):
a = torch.rand(4, 0, requires_grad=True)
b = torch.rand(4, 1, requires_grad=True)
c = a + b
assert c.shape == (4, 0)
c.sum().backward()
self.assertEqual(b.grad, torch.zeros(4, 1))
self.assertEqual(a.grad, torch.zeros(4, 0))
def test_hessian_vector(self):
x = torch.randn(2, 2, requires_grad=True)
y = torch.randn(2, 2, requires_grad=True)
z = x ** 2 + y * x + y ** 2
z.backward(torch.ones(2, 2), create_graph=True)
with torch.no_grad():
x_grad = 2 * x + y
y_grad = x + 2 * y
self.assertEqual(x.grad, x_grad)
self.assertEqual(y.grad, y_grad)
grad_sum = 2 * x.grad + y.grad
grad_sum.backward(torch.ones(2, 2))
x_hv = torch.ones(2, 2) * 5
y_hv = torch.ones(2, 2) * 4
self.assertEqual(x.grad, x_grad + x_hv)
self.assertEqual(y.grad, y_grad + y_hv)
def test_grad(self):
x = torch.randn(2, 2, requires_grad=True)
y = torch.randn(2, 2, requires_grad=True)
z = x ** 2 + y * x + y ** 2
z.backward(torch.ones(2, 2), create_graph=True)
x_grad = 2 * x + y
y_grad = x + 2 * y
self.assertEqual(x.grad, x_grad)
self.assertEqual(y.grad, y_grad)
grad_sum = 2 * x.grad + y.grad
x_hv = torch.autograd.grad(
outputs=[grad_sum], grad_outputs=[torch.ones(2, 2)],
inputs=[x], create_graph=True)
expected_x_hv = torch.ones(2, 2) * 5
expected_y_hv = torch.ones(2, 2) * 4
self.assertEqual(x_hv[0], expected_x_hv)
self.assertEqual(x.grad, x_grad)
self.assertEqual(y.grad, y_grad)
# Test that grad_outputs and outputs have the same shape
grad_out = torch.ones(2)
try:
torch.autograd.grad(
outputs=[grad_sum], grad_outputs=[grad_out],
inputs=[x], create_graph=True)
self.assertFail()
except RuntimeError as error:
self.assertEqual(str(error), "Mismatch in shape: grad_output[0] has a shape of "
+ str(grad_out.shape) + " and output[0] has a shape of "
+ str(grad_sum.shape) + ".")
def test_grad_nonleaf(self):
x_init = torch.randn(2, 2, requires_grad=True)
x = x_init
y = torch.randn(2, 2, requires_grad=True)
grad_output = torch.ones(2, 2)
def fn(x):
return x ** 2 + y * x + y ** 2
for _ in range(5):
grad_x, = torch.autograd.grad(
fn(x), x, grad_outputs=grad_output, create_graph=True)
grad_x_expected = 2 * x + y
self.assertIsNone(y.grad)
self.assertIsNone(x.grad)
self.assertEqual(grad_x, grad_x_expected)
x = x + 0.05 * grad_x
val_init = fn(x_init).sum()
val_final = fn(x).sum()
self.assertGreater(val_final, val_init)
x.backward(grad_output)
self.assertIsNotNone(y.grad)
self.assertIsNotNone(x_init.grad)
def test_grad_nonleaf_many_outputs(self):
# This checks an edge case for function callbacks
# We want to capture two grads of a function, but can only
# register a single callback.
x = torch.randn(4, 2, requires_grad=True)
a, b = x.chunk(2)
def hook(*grads):
hook_called[0] = True
hook_called = [False]
x.register_hook(hook)
go = torch.randn(2, 2)
grad_a, grad_b = torch.autograd.grad(
(a + 2 * b), [a, b], grad_outputs=go, create_graph=True)
self.assertEqual(grad_a, go)
self.assertEqual(grad_b, go * 2)
self.assertFalse(hook_called[0])
self.assertIsNone(x.grad)
def test_grad_nonleaf_register_hook(self):
# This checks an edge case for register_hook.
# We want to capture grad of a nonleaf tensor,
# but avoid segfault during backward of other nonleaf tensors
x = torch.randn(5, requires_grad=True)
x_list = x.unbind()
x0 = x_list[0]
hook_results = [None]
def hook(grad):
hook_results[0] = grad
x0.register_hook(hook)
x_list[0].backward()
self.assertEqual(hook_results[0], torch.tensor(1.))
expected_grad = torch.tensor([1., 0, 0, 0, 0])
self.assertEqual(x.grad, expected_grad)
self.assertIsNone(x_list[0].grad)
for i in range(1, 5, 1):
x_list[i].backward()
self.assertEqual(hook_results[0], None)
expected_grad[i] = 1.0
self.assertEqual(x.grad, expected_grad)
self.assertIsNone(x_list[i].grad)
def test_hook_with_no_name(self):
# Create a hook that do not have a __name__ attribute
class MyHookClass:
def __call__(self, grad):
return grad.clone()
x = torch.randn(5, requires_grad=True).clone()
x.register_hook(MyHookClass())
x.sum().backward()
# Should run fine
def test_sharded_grad(self):
leaves = [torch.zeros(5, 5, requires_grad=True) for _ in range(10)]
intermediates = [l * i + l * l for i, l in enumerate(leaves)]
loss = sum(v * i for i, v in enumerate(intermediates)).sum()
# define a helper for dividing intermediates into groups
def group(l, group_size):
return (l[i:i + group_size] for i in range(0, len(l), group_size))
# Compute the d loss / d intermediates in chunks of shard_size
shard_size = 2
d_intermediates = [d_i for intermediates_batch in group(intermediates, shard_size)
for d_i in torch.autograd.grad(loss, intermediates_batch)]
# Compute rest of backward pass
torch.autograd.backward(intermediates, d_intermediates)
for i, l in enumerate(leaves):
self.assertEqual(l.grad, i * i * (1 + l))
def test_backward_badcalls(self):
x = torch.ones(1)
with self.assertRaisesRegex(RuntimeError, 'does not require grad'):
x.backward()
def test_grad_badcalls(self):
x = torch.ones(1)
y = x ** 2
with self.assertRaisesRegex(RuntimeError, 'does not require grad'):
torch.autograd.grad(x, y)
with self.assertRaisesRegex(RuntimeError, 'does not require grad'):
torch.autograd.grad(y, x)
x = torch.ones(1, requires_grad=True)
y = x ** 2
torch.autograd.grad(y, x) # this should succeed now
def test_grad_empty_inputs(self):
x = torch.tensor([1.0], requires_grad=True)
with self.assertRaisesRegex(ValueError, "grad requires non-empty inputs."):
torch.autograd.grad(2 * x, [], grad_outputs=torch.tensor([1.0]))
def test_grad_fn_badcalls(self):
error_regex = 'expected .* arguments, got .* instead'
x = torch.ones(1, requires_grad=True)
y = x ** 2
with self.assertRaisesRegex(TypeError, error_regex):
y.grad_fn(x.detach(), x.detach()) # too many
with self.assertRaisesRegex(TypeError, error_regex):
y.grad_fn() # too few
y.grad_fn(x.detach()) # this should succeed
def test_grad_unreachable(self):
x = torch.ones(1, requires_grad=True)
y = torch.ones(1, requires_grad=True)
# Make sure x and y have grad accumulators allocated
z = x * 2
w = y * 2
grad_x, grad_y = torch.autograd.grad(x * 2, [x, y], allow_unused=True)
self.assertEqual(grad_x, x * 2)
self.assertIsNone(grad_y)
# This is slightly different than the case above, because z doesn't even
# have a grad accumulator allocated.
z = torch.ones(1, requires_grad=True)
grad_x, grad_z = torch.autograd.grad(x * 2, [x, z], allow_unused=True)
self.assertEqual(grad_x, x * 2)
self.assertIsNone(grad_z)
# allow_unused=False, but grads contains None inside, should throw
with self.assertRaisesRegex(RuntimeError,
"Set allow_unused=True"):
grad_x, grad_y = torch.autograd.grad(x * 2, [x, y], allow_unused=False)
def test_grad_unreachable_discovery(self):
# Test that certain nodes are not erroneously executed when an input
# is unreachable. See #39784
class MyFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, x):
self.fail("This node should not be executed!")
x = MyFunc.apply(torch.randn(1, requires_grad=True) * 2)
y = torch.randn(1, requires_grad=True)
(gY,) = torch.autograd.grad(x, (y, ), allow_unused=True)
self.assertIsNone(gY)
x = MyFunc.apply(torch.randn(1, requires_grad=True) * 2)
y = torch.randn(1, requires_grad=True)
z = torch.randn(1, requires_grad=True)
(gY, gZ) = torch.autograd.grad(x + z, (y, z), allow_unused=True)
self.assertIsNone(gY)
self.assertIsNotNone(gZ)
x = MyFunc.apply(torch.randn(1, requires_grad=True) * 2)
y = torch.randn(1, requires_grad=True)
torch.autograd.backward(x, inputs=(y, )) # allow_unused is implicitly True!
self.assertIsNone(y.grad)
def test_grad_batched_grad(self):
x = torch.randn(2, 2, requires_grad=True)
out = x.clone() # Size([2, 2])
batched_grad = torch.arange(3).expand(2, 2, 3).transpose(0, 2) # Size([3, 2, 2])
grad, = torch.autograd.grad(out, (x,), (batched_grad,), is_grads_batched=True)
self.assertEqual(grad, torch.arange(3).expand(2, 2, 3).transpose(0, 2).to(dtype=grad.dtype))
# Detect shape mismatch
grad_out = torch.ones(2, 2)
with self.assertRaisesRegex(RuntimeError, "If `is_grads_batched=True`, we interpret the first"):
torch.autograd.grad(outputs=out, grad_outputs=(grad_out,), inputs=(x,), is_grads_batched=True)
# Scalar outputs
out = x.sum() # Size([])
batched_grad = torch.arange(3) # Size([3])
grad, = torch.autograd.grad(out, (x,), (batched_grad,), is_grads_batched=True)
self.assertEqual(grad, torch.arange(3).expand(2, 2, 3).transpose(0, 2).to(dtype=grad.dtype))
# We consider scalar and sized-1 to be a mismatch. This is consistent with current non-batched behavior.
grad_out = torch.ones(2).unsqueeze(1)
with self.assertRaisesRegex(RuntimeError, "If `is_grads_batched=True`, we interpret the first"):
torch.autograd.grad(outputs=out, grad_outputs=(grad_out,), inputs=(x,), is_grads_batched=True)
def test_hooks(self):
x = torch.ones(5, 5, requires_grad=True)
y = torch.ones(5, 5) * 4
y.requires_grad_(True)
counter = [0]
def bw_hook(inc, grad):
self.assertIsInstance(grad, torch.Tensor)
counter[0] += inc
z = x ** 2 + x * 2 + x * y + y
x.register_hook(lambda *args: bw_hook(0, *args))
test = z.register_hook(lambda *args: bw_hook(1, *args))
z.backward(torch.ones(5, 5), retain_graph=True)
self.assertEqual(counter[0], 1)
test2 = z.register_hook(lambda *args: bw_hook(2, *args))
z.backward(torch.ones(5, 5), retain_graph=True)
self.assertEqual(counter[0], 4)
test2.remove()
z.backward(torch.ones(5, 5), retain_graph=True)
self.assertEqual(counter[0], 5)
def bw_hook_modify(grad):
return grad.mul(2)
test.remove()
z.register_hook(bw_hook_modify)
with torch.no_grad():
y.grad.zero_()
z.backward(torch.ones(5, 5), retain_graph=True)
self.assertEqual(y.grad, (x + 1) * 2)
y.register_hook(bw_hook_modify)
with torch.no_grad():
y.grad.zero_()
z.backward(torch.ones(5, 5))
self.assertEqual(y.grad, (x + 1) * 4)
def _get_mul2(self, use_custom_function):
if use_custom_function:
class Mul2(Function):
@staticmethod
def forward(ctx, x):
return x * 2
@staticmethod
def backward(ctx, gO):
return gO * 2
return Mul2.apply
else:
return lambda x: x * 2
def test_grad_fn_prehooks(self):
for use_custom_function in (True, False):
mul2 = self._get_mul2(use_custom_function)
a = torch.tensor([1.], requires_grad=True)
b = mul2(a)
post_counter = [0]
pre_counter = [0]
def posthook(grad_input, grad_output):
self.assertEqual(pre_counter[0], 3)
self.assertTrue(torch.allclose(grad_output[0], torch.ones(1) * 8))
self.assertTrue(torch.allclose(grad_input[0], torch.ones(1) * 16))
post_counter[0] += 1
return grad_input
def prehook(grad_output):
pre_counter[0] += 1
return (grad_output[0] * 2,)
# register posthook x 2
b.grad_fn.register_hook(posthook)
b.grad_fn.register_hook(posthook)
# register prehook x 3
b.grad_fn.register_prehook(prehook)
b.grad_fn.register_prehook(lambda x: None)
b.grad_fn.register_prehook(prehook)
b.grad_fn.register_prehook(prehook)
b.grad_fn.register_prehook(lambda x: x)
b.grad_fn.register_prehook(lambda x: None)
b.sum().backward()
self.assertEqual(post_counter[0], 2)
self.assertEqual(pre_counter[0], 3)
# Return None
a = torch.rand(3, 3, requires_grad=True)
b = mul2(a)
def prehook(grad_output):
pre_counter[0] += 1
return None
b.grad_fn.register_prehook(prehook)
b.sum().backward()
self.assertEqual(pre_counter[0], 4)
self.assertTrue(torch.allclose(a.grad, torch.ones(3, 3) * 2))
def test_grad_fn_prehooks_multiple_outputs(self):
# Compute gradients without hooks
b = torch.rand(3, 3, requires_grad=True)
var, mean = torch.var_mean(b, dim=0)
(var + mean).sum().backward()
# Compute gradients with hooks
a = b.detach().requires_grad_()
counter = [0]
def prehook(grad_output):
gvar, gmean = grad_output
counter[0] += 1
return (gvar * 2, gmean * 2)
var, mean = torch.var_mean(a, dim=0)
mean.grad_fn.register_prehook(prehook)
(var + mean).sum().backward()
self.assertEqual(counter[0], 1)
# Compare
self.assertTrue(torch.allclose(a.grad, b.grad * 2))
# Test with custom Function
class DoubleMul2(Function):
@staticmethod
def forward(ctx, x, a, y):
ctx.a = a
return a * x * 2, a, a * y * 2
@staticmethod
def backward(ctx, g1, _a, g2):
return ctx.a * g1 * 2, None, ctx.a * g2 * 2
counter = [0]
def prehook(grad_output):
g1, ga, g2 = grad_output
self.assertIsNone(ga)
counter[0] += 1
return (g1 * 2, None, g2 * 2)
a = torch.randn(3, 3, requires_grad=True)
b = torch.randn(3, 3, requires_grad=True)
k = 3
c, _, d = DoubleMul2.apply(a, k, b)
c.grad_fn.register_prehook(prehook)
(c + d).sum().backward()
self.assertEqual(counter[0], 1)
self.assertTrue(torch.allclose(a.grad, torch.ones(1) * 4 * k))
self.assertTrue(torch.allclose(b.grad, torch.ones(1) * 4 * k))
def test_grad_fn_prehooks_remove_hooks(self):
for use_custom_function in (True, False):
mul2 = self._get_mul2(use_custom_function)
# Simply remove hooks
a = torch.rand(3, 3, requires_grad=True)
b = mul2(a)
counter = [0]
def prehook(grad_output):
counter[0] += 1
return None
handle = b.grad_fn.register_prehook(prehook)
b.grad_fn.register_prehook(prehook)
handle.remove()
b.sum().backward()
self.assertTrue(torch.allclose(a.grad, torch.ones(3, 3) * 2))
self.assertEqual(counter[0], 1)
# Remove hooks during backward
a = torch.rand(3, 3, requires_grad=True)
b = mul2(a)
counter = [0]
def prehook1(grad_output):
handle2.remove()
# Remove hook that is already removed is OK
handle3.remove()
return None
def prehook2(grad_output):
counter[0] += 1
return None
# Hooks that registered first run first
b.grad_fn.register_prehook(prehook1)
handle2 = b.grad_fn.register_prehook(prehook2)
handle3 = b.grad_fn.register_prehook(prehook2)
handle3.remove()
b.sum().backward()
self.assertTrue(torch.allclose(a.grad, torch.ones(3, 3) * 2))
self.assertEqual(counter[0], 1)
def test_hooks_cpp(self):
# Tests hooks for autograd function implemented in C++
bn = torch.nn.BatchNorm1d(5, affine=False)
bn.double()
bn.eval()
counter = [0]
def bw_hook(grad):
counter[0] += 1
return grad * 2
x = torch.ones(5, 5, dtype=torch.double, requires_grad=True)
z = bn(x)
z.register_hook(bw_hook)
z.sum().backward()
self.assertEqual(counter[0], 1, msg='bw_hook not called')
self.assertEqual(x.grad, torch.ones(5, 5, dtype=torch.double) * 2, atol=1e-5, rtol=0)
def test_hook_none(self):
# WARNING: this is a test for autograd internals.
# You should never have to use such things in your code.
class NoneGradientFunction(Function):
@staticmethod
def forward(ctx, x, y):
assert ctx.needs_input_grad[0]
assert not ctx.needs_input_grad[1]
return x, y
@staticmethod
def backward(ctx, grad_x, grad_y):
return grad_x, None
was_called = [False]
def hook(grad):
self.assertIsNotNone(grad)
was_called[0] = True
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5)
rx, ry = NoneGradientFunction.apply(x, y)
rx.register_hook(hook)
ry.register_hook(hook)
sum(rx, ry).sum().backward()
self.assertTrue(was_called[0])
def test_retain_grad(self):
input = torch.rand(1, 3, requires_grad=True)
h1 = input * 3
out = (h1 * h1).sum()
# It should be possible to call retain_grad() multiple times
h1.retain_grad()
h1.retain_grad()
# Gradient should be accumulated
out.backward(retain_graph=True)
self.assertEqual(h1 * 2, h1.grad)
out.backward(retain_graph=True)
self.assertEqual(h1 * 4, h1.grad)
with torch.no_grad():
input.grad.zero_()
# It should be a no-op for leaves
input.retain_grad()
input.retain_grad()
out.backward()
self.assertEqual(input * 18, input.grad)
# NB: See test/cpp/api/autograd.cpp for more tests on the interaction between
# retains_grad and hooks in cpp. There's no point testing in python because
# Python hooks use a completely different mechanism.
def test_retain_grad_inplace(self):
a = torch.tensor([1.], requires_grad=True).clone()
a.retain_grad()
a.mul_(2)
a.sum().backward()
self.assertEqual(a.grad, torch.tensor([1.]))
a = torch.tensor([1.], requires_grad=True).clone()
a.retain_grad()
# Inplace multiple times is OK, the real test here would be in cpp though
# because the index here is always zero, having cpp hooks in addition,
# will force us to properly update the index
a.mul_(2)
a.mul_(2)
a.sum().backward()
self.assertEqual(a.grad, torch.tensor([1.]))
def test_retain_grad_inplace_over_view(self):
base = torch.tensor([1.], requires_grad=True).clone()
view = base[:]
view2 = base[:]
view.retain_grad()
view2.retain_grad()
view.mul_(2)
(view + view2).sum().backward()
# The old grad_fn, slice, wouldn't be part of the graph during backward
# so if the retains grad were not properly updated to the new grad_fn,
# the grad would still be None
self.assertEqual(view.grad, view2.grad)
self.assertEqual(view.grad, torch.tensor([1.]))
def test_retain_grad_cycle(self):
x = torch.ones(5, 5, requires_grad=True)
def run_test():
y = x * 2
y.retain_grad()
return y / 2, torch._C._WeakTensorRef(y)
z, ref = run_test()
self.assertTrue(ref.expired())
z.sum().backward()
def test_backward(self):
v = torch.randn(5, 5, requires_grad=True)
x = torch.randn(5, 5, requires_grad=True)
y = (torch.rand(5, 5) + 0.1).requires_grad_(True)
z = torch.randn(5, 5, requires_grad=True)
grad_output = torch.randn(5, 5)
v.backward(grad_output)
self.assertEqual(v.grad, grad_output)
a = x + (y * z) + 4 * z ** 2 * x / y
a.backward(grad_output)
x_grad = 4 * z.pow(2) / y + 1
y_grad = z - 4 * x * z.pow(2) / y.pow(2)
z_grad = 8 * x * z / y + y
self.assertEqual(x.grad, x_grad * grad_output)
self.assertEqual(y.grad, y_grad * grad_output)
self.assertEqual(z.grad, z_grad * grad_output)
def test_sparse_mm_backward(self):
size = (3, 3)
sparse = torch.sparse_coo_tensor(size, requires_grad=True)
dense = torch.randn(size, requires_grad=True)
with self.assertRaisesRegex(
RuntimeError,
"The backward pass for this operation requires the 'mat1' tensor to be strided,"):
z = dense.addmm(sparse, dense)
mm_test_cases = [
# a requires grad, a is sparse, b requires grad, b is sparse, error message
(False, True, True, False, None),
(False, False, True, True, "The backward pass for this operation requires the 'mat2'"),
(False, True, True, True, "The backward pass for this operation requires the 'mat2'"),
(True, False, True, True, "The backward pass for this operation requires the 'mat2'"),
(True, True, False, False, "The backward pass for this operation requires the 'self'"),
(True, True, True, False, "The backward pass for this operation requires the 'self'"),
(True, True, True, True, "The backward pass for this operation requires the 'mat2'"),
]
for a_req_grad, a_is_sparse, b_req_grad, b_is_sparse, err_msg in mm_test_cases:
# We should only be testing cases with sparse inputs, and at least one
# input needs to require grad so we can call a backward pass
assert a_is_sparse or b_is_sparse
assert a_req_grad or b_req_grad
a = torch.randn(size, requires_grad=a_req_grad)
if a_is_sparse:
a = a.to_sparse()
b = torch.randn(size, requires_grad=b_req_grad)
if b_is_sparse:
b = b.to_sparse()
# If no error expected, check that sparse and dense cases match
if err_msg is None:
r = a.mm(b)
r.sum().backward()
a_grad = None if a.grad is None else a.grad.clone().detach()
b_grad = None if b.grad is None else b.grad.clone().detach()
# Redo with only dense tensors
a = (a.to_dense() if a.is_sparse else a).clone().detach()
a.requires_grad = a_req_grad
b = (b.to_dense() if b.is_sparse else b).clone().detach()
b.requires_grad = b_req_grad
r = a.mm(b)
r.sum().backward()
self.assertEqual(a_grad, a.grad)
self.assertEqual(b_grad, b.grad)
else:
with self.assertRaisesRegex(RuntimeError, err_msg):
a.mm(b)
def test_multi_backward(self):
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
q = torch.randn(5, 5, requires_grad=True)
a = torch.randn(5, 5, requires_grad=True)
b = torch.randn(5, 5, requires_grad=True)
q2 = q * 2
z = x + y + q2
c = a * b + q2
grad_z = torch.randn(5, 5)
grad_c = torch.randn(5, 5)
torch.autograd.backward([z, c], [grad_z, grad_c])
self.assertEqual(x.grad, grad_z)
self.assertEqual(y.grad, grad_z)
self.assertEqual(a.grad, grad_c * b)
self.assertEqual(b.grad, grad_c * a)
self.assertEqual(q.grad, (grad_c + grad_z) * 2)
def test_multi_backward_no_grad(self):
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=False)
z = x + y
q = y * 2
# NB: we currently raise an exception if any arguments to backwards
# have requires_grad=False and don't have a grad_fn. We may want to
# relax that check to a warning.
def call_backwards():
torch.autograd.backward([z, q], [torch.ones(5, 5), torch.ones(5, 5)])
self.assertRaises(RuntimeError, call_backwards)
def test_backward_with_inputs(self):
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
y = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
def fn():
return x ** 2 + y * x + y ** 2
gradient = torch.ones(2, 2)
x_grad_expected = 2 * x + y
y_grad_expected = x + 2 * y
@torch.no_grad()
def reset_grad():
x.grad.zero_()
y.grad.zero_()
torch.autograd.backward(fn(), gradient, inputs=[x, y])
self.assertEqual(x.grad, x_grad_expected)
self.assertEqual(y.grad, y_grad_expected)
reset_grad()
torch.autograd.backward(fn(), gradient, inputs=[x])
self.assertEqual(x.grad, x_grad_expected)
self.assertEqual(y.grad, torch.zeros(2, 2), exact_dtype=False)
reset_grad()
torch.autograd.backward(fn(), gradient, inputs=[y])
self.assertEqual(y.grad, y_grad_expected)
self.assertEqual(x.grad, torch.zeros(2, 2), exact_dtype=False)
reset_grad()
torch.autograd.backward(fn(), gradient, inputs=y)
self.assertEqual(y.grad, y_grad_expected)
self.assertEqual(x.grad, torch.zeros(2, 2), exact_dtype=False)
reset_grad()
self.assertRaisesRegex(RuntimeError, 'cannot be empty',
lambda: torch.autograd.backward(fn(), gradient, inputs=[]))
def test_backward_with_nonleaf_inputs(self):
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
x_nonleaf = x * 1
y = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
z = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
out = x_nonleaf ** 2 + y * x_nonleaf + y ** 2
out.backward(torch.ones(2, 2, dtype=torch.double), create_graph=True, inputs=[x, y, x_nonleaf])
x_grad_expected = 2 * x + y
y_grad_expected = x + 2 * y
x_non_leaf_expected = 2 * x_nonleaf + y
self.assertEqual(y.grad, y_grad_expected)
self.assertEqual(x.grad, x_grad_expected)
self.assertEqual(x_nonleaf.grad, x_non_leaf_expected)
# backward doesn't have an allow_unused flag, so the behavior of backward
# when variable is not part of the graph is as if allow_used were true
# x.grad will simply be None.
out.backward(torch.ones(2, 2, dtype=torch.double), create_graph=True, inputs=[z])
self.assertIsNone(z.grad)
def test_dependent_backward(self):
x = torch.randn(10, requires_grad=True)
y = x ** 2
z = y ** 3
go_y = torch.randn(10)
go_z = torch.randn(10)
torch.autograd.backward([y, z], [go_y, go_z])
xd = x
self.assertEqual(x.grad, 2 * xd * go_y + 6 * xd.pow(5) * go_z)
def test_save_output_nr(self):
x = torch.randn(10, requires_grad=True)
class MultiOutputFn(Function):
@staticmethod
def forward(ctx, x):
return x[:5], x[5:]
@staticmethod
def backward(ctx, *grad):
return torch.cat(grad)
a, b = MultiOutputFn.apply(x)
self.assertEqual(b.output_nr, 1)
class TestFn(Function):
@staticmethod
def forward(ctx, b):
ctx.save_for_backward(b)
return b * 2
@staticmethod
def backward(ctx, grad_b):
b, = ctx.saved_tensors
self.assertEqual(b.output_nr, 1)
TestFn.apply(b).sum().backward()
def test_first_grad_fn_access_in_no_grad_mode(self):
a = torch.tensor([1 + 1j], requires_grad=True).clone()
v = a.real
a.add_(1)
with torch.autograd.grad_mode.no_grad():
v.grad_fn
def test_free_deep_graph(self):
def scope():
depth = 150000
x = torch.randn(1, requires_grad=True)
y = x.clone()
# build a "chain" computation graph
for _ in range(depth):
y = y + y * 0.000001
# graph deletion occurs when the above locals go out of scope.
# In this case `del y` will trigger it but it's easier to leave
# it to Python to delete the locals.
# Should not stack overflow
scope()
def test_free_deep_graph_complicated(self):
def scope():
depth = 100000
randchoice = torch.randint(2, [depth, 2])
x = torch.randn(1, requires_grad=True)
y = x.clone()
# Hold the two previous values
prev_values = [None, None]
# Build a "chain with skip connections" graph
for _ in range(depth):
prev_tensors = [tensor for tensor in prev_values[:-1]
if tensor is not None]
prev_values.append(y)
prev_values.pop(0)
# Definitely pick one tensor to add
y += y * 0.000001
# Possibly add other tensors
nprev = len(prev_tensors)
if nprev == 2:
y += randchoice[depth].mul(torch.cat(prev_tensors)).sum()
# graph deletion occurs when the above locals go out of scope.
# Should not stack overflow
scope()
def test_free_deep_graph_pyfunction(self):
class MyOp(Function):
@staticmethod
def forward(ctx, tensor1, tensor2):
return tensor1 + tensor2
@staticmethod
def backward(ctx, grad_output):
return grad_output, grad_output
def scope():
depth = 150000
x = torch.randn(1, requires_grad=True)
y = x.clone()
# build deeply nested computation graph
for _ in range(depth):
y = MyOp.apply(y, y)
# graph deletion occurs when the above locals go out of scope.
# Should not stack overflow
scope()
def test_no_unnecessary_save(self):
# If we kept x in the derivative Function of x * 2 we would
# get an error in the backward that would complain that we've
# modified x, which was needed for gradient computation.
# Since we should elide unnecessary saves, this test should pass.
mu = torch.ones(1, requires_grad=True)
x = torch.empty(1)
loss = 0
for i in range(3):
x.detach_()
x.copy_(mu + i)
ft = torch.tensor([float(i)])
multiplied = x * ft
s = multiplied.sum()
loss += s
loss.backward()
def test_no_grad(self):
x = torch.ones(5, 5, requires_grad=True)
y = torch.ones(5, 5) * 4
with torch.no_grad():
w = x + y
@torch.no_grad()
def adder(x, y):
return x + y
z = adder(x, y)
self.assertFalse(w.requires_grad)
self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5)))
self.assertIsNone(w.grad_fn)
self.assertFalse(z.requires_grad)
self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5)))
self.assertIsNone(z.grad_fn)
# test nested decorator and with-statement on no_grad
with torch.no_grad():
self.assertFalse(torch.is_grad_enabled())
w = adder(x, y)
self.assertFalse(torch.is_grad_enabled())
def test_set_grad_generator_functions(self):
@torch.no_grad()
def gen_no_grad():
for i in range(10):
self.assertEqual(torch.is_grad_enabled(), False)
yield i
with torch.enable_grad():
for _ in gen_no_grad():
self.assertEqual(torch.is_grad_enabled(), True)
@torch.enable_grad()
def gen_enable_grad():
for i in range(10):
self.assertEqual(torch.is_grad_enabled(), True)
yield i
with torch.no_grad():
for _ in gen_enable_grad():
self.assertEqual(torch.is_grad_enabled(), False)
def test_set_grad_generator_functions_recursive(self):
# enable_grad_decorator_recursive and no_grad_decorator_recursive call each other
# recursively, to ensure that the decorators preserve the caller's setting
@torch.enable_grad()
def enable_grad_decorator_recursive(depth):
self.assertTrue(torch.is_grad_enabled())
if depth > 0:
no_grad_decorator_recursive(depth - 1)
self.assertTrue(torch.is_grad_enabled())
@torch.no_grad()
def no_grad_decorator_recursive(depth):
self.assertFalse(torch.is_grad_enabled())
if depth > 0:
enable_grad_decorator_recursive(depth - 1)
self.assertFalse(torch.is_grad_enabled())
# enable_grad_context_manager_recursive and no_grad_context_manager_recursive call
# each other recursively, to ensure that the decorators preserve the caller's setting
def enable_grad_context_manager_recursive(depth):
with torch.enable_grad():
self.assertTrue(torch.is_grad_enabled())
if depth > 0:
no_grad_context_manager_recursive(depth - 1)
self.assertTrue(torch.is_grad_enabled())
def no_grad_context_manager_recursive(depth):
with torch.no_grad():
self.assertFalse(torch.is_grad_enabled())
if depth > 0:
enable_grad_context_manager_recursive(depth - 1)
self.assertFalse(torch.is_grad_enabled())
with torch.enable_grad():
self.assertTrue(torch.is_grad_enabled())
enable_grad_decorator_recursive(10)
self.assertTrue(torch.is_grad_enabled())
enable_grad_context_manager_recursive(10)
self.assertTrue(torch.is_grad_enabled())
with torch.no_grad():
self.assertFalse(torch.is_grad_enabled())
enable_grad_decorator_recursive(10)
self.assertFalse(torch.is_grad_enabled())
enable_grad_context_manager_recursive(10)
self.assertFalse(torch.is_grad_enabled())
def test_set_grad_coroutines(self):
@torch.no_grad()
def coro_no_grad(n=10):
self.assertFalse(torch.is_grad_enabled())
for i in range(n):
self.assertFalse(torch.is_grad_enabled())
r = yield i
self.assertFalse(torch.is_grad_enabled())
self.assertEqual(i, r)
self.assertFalse(torch.is_grad_enabled())
@torch.enable_grad()
def coro_enable_grad(n=10):
self.assertTrue(torch.is_grad_enabled())
for i in range(n):
self.assertTrue(torch.is_grad_enabled())
r = yield i
self.assertTrue(torch.is_grad_enabled())
self.assertEqual(i, r)
self.assertTrue(torch.is_grad_enabled())
with torch.enable_grad():
self.assertTrue(torch.is_grad_enabled())
coro, r = coro_no_grad(), None
try:
while True:
self.assertTrue(torch.is_grad_enabled())
r = coro.send(r)
self.assertTrue(torch.is_grad_enabled())
except StopIteration:
pass
with torch.no_grad():
self.assertFalse(torch.is_grad_enabled())
coro, r = coro_enable_grad(), None
try:
while True:
self.assertFalse(torch.is_grad_enabled())
r = coro.send(r)
self.assertFalse(torch.is_grad_enabled())
except StopIteration:
pass
def test_set_grad_coroutines_benign_exceptions(self):
class RecoverableException(Exception):
pass
@torch.no_grad()
def coro_no_grad(n=10):
has_raised = False
for i in range(n):
try:
self.assertFalse(torch.is_grad_enabled())
yield (-i if has_raised else i)
except RecoverableException:
self.assertFalse(torch.is_grad_enabled())
has_raised = True
@torch.enable_grad()
def coro_enable_grad(n=10):
has_raised = False
for i in range(n):
try:
self.assertTrue(torch.is_grad_enabled())
yield (-i if has_raised else i)
except RecoverableException:
self.assertTrue(torch.is_grad_enabled())
has_raised = True
with torch.enable_grad():
coro = coro_no_grad()
assert 0 == next(coro)
try:
while True:
r = coro.throw(RecoverableException)
self.assertLess(r, 0)
except StopIteration:
pass
with torch.no_grad():
coro = coro_enable_grad()
assert 0 == next(coro)
try:
while True:
r = coro.throw(RecoverableException)
self.assertLess(r, 0)
except StopIteration:
pass
def test_set_grad_coroutines_critical_exceptions(self):
class UnrecoverableException(Exception):
pass
class SecondaryException(Exception):
pass
@torch.no_grad()
def coro_no_grad(n=10):
has_raised = False
for i in range(n):
try:
self.assertFalse(torch.is_grad_enabled())
yield (-i if has_raised else i)
except UnrecoverableException:
self.assertFalse(torch.is_grad_enabled())
raise SecondaryException
@torch.enable_grad()
def coro_enable_grad(n=10):
has_raised = False
for i in range(n):
try:
self.assertTrue(torch.is_grad_enabled())
yield (-i if has_raised else i)
except UnrecoverableException:
self.assertTrue(torch.is_grad_enabled())
raise SecondaryException
with torch.enable_grad():
coro = coro_no_grad()
assert 0 == next(coro)
with self.assertRaises(SecondaryException):
coro.throw(UnrecoverableException)
with torch.no_grad():
coro = coro_enable_grad()
assert 0 == next(coro)
with self.assertRaises(SecondaryException):
coro.throw(UnrecoverableException)
def test_set_grad_coroutines_exit(self):
@torch.no_grad()
def coro_no_grad(state):
for i in range(10):
try:
self.assertFalse(torch.is_grad_enabled())
yield i
except GeneratorExit:
self.assertFalse(torch.is_grad_enabled())
state.add('GeneratorExit')
raise
@torch.enable_grad()
def coro_enable_grad(state):
for i in range(10):
try:
self.assertTrue(torch.is_grad_enabled())
yield i
except GeneratorExit:
self.assertTrue(torch.is_grad_enabled())
state.add('GeneratorExit')
raise
state = set()
with torch.enable_grad():
coro = coro_no_grad(state)
for i in range(5):
next(coro)
coro.close()
self.assertTrue('GeneratorExit' in state)
state = set()
with torch.no_grad():
coro = coro_enable_grad(state)
for i in range(5):
next(coro)
coro.close()
self.assertTrue('GeneratorExit' in state)
def test_no_grad_python_function(self):
"""Python Functions should respect grad mode."""
x = torch.ones(5, 5, requires_grad=True)
class MyOp(Function):
@staticmethod
def forward(self, x):
return x + 1
@staticmethod
def backward(self, dy):
return dy
with torch.no_grad():
y = MyOp.apply(x)
self.assertFalse(y.requires_grad)
def test_indexing(self):
x = torch.arange(1., 17).view(4, 4)
y = Variable(x, requires_grad=True)
def compare(x, y, idx, indexed_tensor, indexed_var):
indexed_var_t = indexed_var.data
if not isinstance(indexed_tensor, torch.Tensor):
indexed_var_t = indexed_var_t[0]
self.assertEqual(indexed_tensor, indexed_var_t)
indexed_var.sum().backward()
expected_grad = torch.empty(x.size()).fill_(0)
expected_grad[idx] = 1
self.assertEqual(y.grad, expected_grad)
def check_index(x, y, idx):
if y.grad is not None:
with torch.no_grad():
y.grad.zero_()
indexed_tensor = x[idx]
indexed_var = y[idx]
compare(x, y, idx, indexed_tensor, indexed_var)
check_index(x, y, 1)
check_index(x, y, (1, 1))
check_index(x, y, slice(1, None))
check_index(x, y, slice(None, 2))
check_index(x, y, (slice(None, 2), 2))
check_index(x, y, (slice(1, 2), 2))
check_index(x, y, (1, slice(2, None)))
check_index(x, y, (slice(None, None), slice(2, None)))
check_index(x, y, torch.LongTensor([0, 2]))
check_index(x, y, torch.rand(4, 4).bernoulli().bool())
check_index(x, y, (Ellipsis, slice(2, None)))
check_index(x, y, ([0], [0]))
check_index(x, y, ([1, 2, 3], [0]))
check_index(x, y, ([1, 2], [2, 1]))
check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 3]]))
check_index(x, y, ([slice(None), [2, 3]]))
check_index(x, y, ([[2, 3], slice(None)]))
# advanced indexing, with less dim, or ellipsis
check_index(x, y, ([0]))
check_index(x, y, ([0], ))
x = torch.arange(1., 49).view(4, 3, 4)
y = Variable(x, requires_grad=True)
check_index(x, y, (slice(None), [0], [0]))
check_index(x, y, ([0], [0], slice(None)))
check_index(x, y, (slice(None), [0, 1, 2], [0]))
check_index(x, y, ([0, 1, 2], [0], slice(None)))
check_index(x, y, (slice(None), [1, 2], [2, 1]))
check_index(x, y, ([1, 2], [2, 1], slice(None)))
check_index(x, y, (slice(None), [[1, 2], [2, 0]], [[0, 1], [2, 3]]))
check_index(x, y, ([[1, 2], [3, 0]], [[0, 1], [2, 2]], slice(None)))
check_index(x, y, (slice(None), slice(None), [2, 1]))
check_index(x, y, (slice(None), [2, 1], slice(None)))
check_index(x, y, ([2, 1], slice(None), slice(None)))
# advanced indexing, with less dim, or ellipsis
check_index(x, y, ([0], ))
check_index(x, y, ([0], slice(None)))
check_index(x, y, ([0], Ellipsis))
check_index(x, y, ([1, 2], [0, 1]))
check_index(x, y, ([1, 2], [0, 1], Ellipsis))
check_index(x, y, (Ellipsis, [1, 2], [0, 1]))
# advanced indexing, with a tensor wrapped in a variable
z = torch.LongTensor([0, 1])
zv = Variable(z, requires_grad=False)
seq = [z, Ellipsis]
seqv = [zv, Ellipsis]
if y.grad is not None:
with torch.no_grad():
y.grad.zero_()
indexed_tensor = x[seq]
indexed_var = y[seqv]
compare(x, y, seq, indexed_tensor, indexed_var)
def test_indexing_duplicates(self):
x = torch.arange(1., 17).view(4, 4)
y = Variable(x, requires_grad=True)
idx = torch.LongTensor([1, 1, 3, 2, 1, 2])
y[idx].sum().backward()
expected_grad = torch.zeros(4, 4)
for i in idx:
expected_grad[i] += 1
self.assertEqual(y.grad, expected_grad)
# with advanced indexing
x = torch.arange(1., 17).view(4, 4)
y = Variable(x, requires_grad=True)
idx = [[1, 1, 3, 2, 1, 2], [0]]
y[idx].sum().backward()
expected_grad = torch.zeros(4, 4)
for i in idx[0]:
for j in idx[1]:
expected_grad[i][j] += 1
self.assertEqual(y.grad, expected_grad)
x = torch.arange(1., 17).view(4, 4)
y = Variable(x, requires_grad=True)
idx = [[[1, 2], [0, 0]], [[0, 1], [1, 1]]]
y[idx].sum().backward()
expected_grad = torch.tensor([[0., 2., 0., 0.],
[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 0.]])
self.assertEqual(y.grad, expected_grad)
x = torch.arange(1., 65).view(4, 4, 4)
y = Variable(x, requires_grad=True)
idx = [[1, 1, 1], slice(None), slice(None)]
y[idx].sum().backward()
expected_grad = torch.empty(4, 4, 4).zero_()
expected_grad[1].fill_(3)
self.assertEqual(y.grad, expected_grad)
def test_index_backward_does_not_save_tensor(self):
# Example from https://github.com/pytorch/pytorch/issues/24853.
# if `index(tensor, indices)` saves `tensor` for backwards, then it will
# trigger a version check on `tensor` during the backward pass, which
# will cause the following code to error because `tensor` gets modified
# by the indexing line.
a = torch.tensor([1., 0, 0])
b = torch.zeros(3, requires_grad=True)
tensor = b + 0
tensor[a != 0] = tensor[a != 0]
tensor.backward(torch.zeros_like(tensor))
def test_volatile_deprecated(self):
v = torch.autograd.torch.randn(3, 3)
with warnings.catch_warnings(record=True) as w:
self.assertFalse(v.volatile)
self.assertIn('volatile', str(w[0].message))
def test_saved_variables_deprecated(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, tensor1, tensor2):
ctx.save_for_backward(tensor1, tensor2)
return tensor1 + tensor2
@staticmethod
def backward(ctx, grad_output):
var1, var2 = ctx.saved_variables
return (grad_output, grad_output)
with warnings.catch_warnings(record=True) as warns:
warnings.simplefilter("always")
x = torch.randn((3, 3), requires_grad=True)
y = torch.randn((3, 3), requires_grad=True)
MyFunction.apply(x, y).sum().backward()
has_deprecated = map(lambda warn:
'deprecated' in str(warn) and
'saved_variables' in str(warn),
warns)
has_deprecated = reduce(lambda x, y: x or y, has_deprecated)
self.assertTrue(has_deprecated)
def test_requires_grad(self):
x = torch.randn(5, 5)
y = torch.randn(5, 5)
z = torch.randn(5, 5, requires_grad=True)
a = x + y
self.assertFalse(a.requires_grad)
b = a + z
self.assertTrue(b.requires_grad)
def error():
raise RuntimeError
# Make sure backward isn't called on these
a._backward_hooks = OrderedDict()
x._backward_hooks = OrderedDict()
y._backward_hooks = OrderedDict()
a._backward_hooks['test'] = error
x._backward_hooks['test'] = error
y._backward_hooks['test'] = error
b.backward(torch.ones(5, 5))
def test_requires_grad_(self):
x = torch.randn(5, 5)
y = torch.randn(5, 5, requires_grad=True)
self.assertIs(x, x.requires_grad_())
self.assertTrue(x.requires_grad)
self.assertIs(y, y.requires_grad_())
self.assertTrue(y.requires_grad)
self.assertIs(x, x.requires_grad_(True))
self.assertTrue(x.requires_grad)
self.assertIs(y, y.requires_grad_(True))
self.assertTrue(y.requires_grad)
z = x * y
self.assertRaises(RuntimeError, lambda: z.requires_grad_(False))
self.assertIs(z, z.requires_grad_())
self.assertTrue(z.requires_grad)
self.assertIs(z, z.requires_grad_(True))
self.assertTrue(z.requires_grad)
self.assertIs(x, x.requires_grad_(False))
self.assertFalse(x.requires_grad)
self.assertIs(y, y.requires_grad_(False))
self.assertFalse(y.requires_grad)
def test_requires_grad_inplace(self):
a = torch.randn(5, 5)
b = torch.randn(5, 5, requires_grad=True)
a += b
self.assertTrue(a.requires_grad)
# non-leaf
a = torch.randn(5, 5) + 0
b = torch.randn(5, 5, requires_grad=True)
a += b
self.assertTrue(a.requires_grad)
def test_no_requires_grad_inplace(self):
# basic case, should be able to modify inplace while requires_grad is False
a = torch.randn(2, 3)
a.add_(5)
a.requires_grad = True
a.sum().backward()
self.assertEqual(a.grad, torch.ones(2, 3))
# same but with a view
a = torch.randn(2, 3)
b = a[:]
b.add_(5)
a.requires_grad = True
a.sum().backward()
self.assertEqual(a.grad, torch.ones(2, 3))
# should fail if requires_grad = True when we modify inplace
a = torch.randn(2, 3)
b = a[:]
a.requires_grad = True
with self.assertRaises(RuntimeError):
a.add_(5)
with self.assertRaises(RuntimeError):
b.add_(5)
def test_attribute_deletion(self):
x = torch.randn((5, 5), requires_grad=True)
del x.grad
self.assertIsNone(x.grad)
with self.assertRaises(RuntimeError):
del x.data
with self.assertRaises(TypeError):
x.data = None
with self.assertRaises(RuntimeError):
del x.requires_grad
with self.assertRaises(RuntimeError):
del x._grad_fn
with self.assertRaises(RuntimeError):
del x._backward_hooks
def test_duplicate_backward_root(self):
a = torch.randn(5, 5, requires_grad=True)
b = torch.randn(5, 5, requires_grad=True)
x = a * b
grad_output = torch.randn_like(x)
torch.autograd.backward([x, x], [grad_output, grad_output])
self.assertEqual(a.grad, b * grad_output * 2)
self.assertEqual(b.grad, a * grad_output * 2)
def test_backward_no_grad(self):
a = torch.randn(5, 5, requires_grad=True)
b = a + 2
with self.assertRaises(RuntimeError):
torch.autograd.backward([b], [None])
def test_backward_twice_with_saved_values(self):
b = torch.randn(3, requires_grad=True, dtype=torch.double)
c = torch.zeros(3, dtype=torch.double)
c[[1, 2]] = b[[1, 1]]
c.backward(torch.tensor([1, 1, 1], dtype=torch.double))
self.assertRaisesRegex(RuntimeError, 'Specify retain_graph=True',
lambda: c.backward(torch.tensor([1, 1, 1], dtype=torch.double)))
def test_backward_twice_retained_graph_with_saved_values(self):
b = torch.randn(3, requires_grad=True, dtype=torch.double)
c = torch.zeros(3, dtype=torch.double)
c[[1, 2]] = b[[1, 1]]
c.backward(torch.tensor([1, 1, 1], dtype=torch.double), retain_graph=True)
c.backward(torch.tensor([1, 1, 1], dtype=torch.double))
def test_backward_twice_without_saved_values(self):
b = torch.randn(3, requires_grad=True, dtype=torch.double)
c = b + 1
c.backward(torch.tensor([1, 1, 1], dtype=torch.double))
c.backward(torch.tensor([1, 1, 1], dtype=torch.double))
def test_backward_twice_retained_graph_without_saved_values(self):
b = torch.randn(3, requires_grad=True, dtype=torch.double)
c = torch.zeros(3, dtype=torch.double)
c[[1, 2]] = b[[1, 1]]
c.backward(torch.tensor([1, 1, 1], dtype=torch.double), retain_graph=True)
c.backward(torch.tensor([1, 1, 1], dtype=torch.double))
def test_backward_create_graph_warns(self):
with set_warn_always_context(True):
b = torch.randn(3, requires_grad=True, dtype=torch.double)
c = b * b
with warnings.catch_warnings(record=True) as ws:
c.backward(torch.ones_like(c), create_graph=True)
b.grad = None
self.assertTrue(any('Using backward() with create_graph=True' in str(w.message) for w in ws))
# Should not warn for grad
with warnings.catch_warnings(record=True) as ws:
torch.autograd.grad(c, b, torch.ones_like(c), create_graph=True)
self.assertFalse(any('Using backward() with create_graph=True' in str(w.message) for w in ws))
def test_next_functions(self):
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
a = x + y
self.assertIsNotNone(a.grad_fn)
next_functions = a.grad_fn.next_functions
self.assertEqual(len(next_functions), 2)
self.assertIsInstance(next_functions[0][0], torch._C._functions.AccumulateGrad)
self.assertEqual(next_functions[0][1], 0)
self.assertIsInstance(next_functions[1][0], torch._C._functions.AccumulateGrad)
self.assertEqual(next_functions[1][1], 0)
b = a + 5
next_functions = b.grad_fn.next_functions
self.assertEqual(len(next_functions), 2)
self.assertIs(next_functions[0][0], a.grad_fn)
self.assertIs(next_functions[1][0], None)
def test_inplace(self):
x = torch.ones(5, 5, requires_grad=True)
y = Variable(torch.ones(5, 5) * 4, requires_grad=True)
z = x * y
q = z + y
w = z * y
z.add_(2)
# Add doesn't need it's inputs to do backward, so it shouldn't raise
q.backward(torch.ones(5, 5), retain_graph=True)
# Mul saves both inputs in forward, so it should raise
self.assertRaises(RuntimeError, lambda: w.backward(torch.ones(5, 5)))
z = x * y
q = z * y
r = z + y
w = z.add_(y)
# w is a the last expression, so this should succeed
w.backward(torch.ones(5, 5), retain_graph=True)
# r doesn't use the modified value in backward, so it should succeed
r.backward(torch.ones(5, 5), retain_graph=True)
# q uses dirty z, so it should raise
self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5)))
with torch.no_grad():
x.grad.zero_()
m = x / 2
z = m + y / 8
q = z * y
r = z + y
prev_version = z._version
w = z.exp_()
self.assertNotEqual(z._version, prev_version)
r.backward(torch.ones(5, 5), retain_graph=True)
self.assertEqual(x.grad, torch.ones(5, 5) / 2)
w.backward(torch.ones(5, 5), retain_graph=True)
self.assertEqual(x.grad, torch.empty(5, 5).fill_((1 + math.e) / 2))
self.assertRaises(RuntimeError, lambda: q.backward(torch.ones(5, 5)))
leaf = torch.ones(5, 5, requires_grad=True)
x = leaf.clone()
x.add_(10)
self.assertEqual(x, torch.ones(5, 5) * 11)
# x should be still usable
y = x + 2
y.backward(torch.ones(5, 5))
self.assertEqual(leaf.grad, torch.ones(5, 5))
z = x * y
x.add_(2)
self.assertRaises(RuntimeError, lambda: z.backward(torch.ones(5, 5)))
def test_mark_non_differentiable(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, input):
output = input > 0
ctx.mark_non_differentiable(output)
return output
@staticmethod
def backward(ctx, grad_output):
return (grad_output * 0).to(torch.double)
x = torch.randn(5, 5, requires_grad=True)
mask = MyFunction.apply(x)
self.assertFalse(mask.requires_grad)
y = x.masked_fill(mask, 0)
y.sum().backward()
def test_mark_non_differentiable_mixed(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, input):
a = input + 1
b = input + 2
ctx.mark_non_differentiable(a)
return a, b
@staticmethod
def backward(ctx, grad_a, grad_b):
self.assertTrue((grad_a == 0).all())
self.assertTrue((grad_b == 1).all())
return grad_b
x = torch.randn(5, 5, requires_grad=True)
a, b = MyFunction.apply(x)
self.assertFalse(a.requires_grad)
self.assertTrue(b.requires_grad)
b.sum().backward()
self.assertEqual(x.grad, torch.ones(5, 5))
def test_mark_non_differentiable_none(self):
# This used to segfault because MyFunction would send back null
# gradients to MulBackward, which is implemented in C++. C++
# implemented functions expect incoming grad_ouptuts to be non-null.
class MyFunction(Function):
@staticmethod
def forward(ctx, input):
output = input.clone()
ctx.mark_non_differentiable(output)
return output
@staticmethod
def backward(ctx, grad_output):
return None
x = torch.randn(5, 5, requires_grad=True)
r = MyFunction.apply(x * x)
(r * x).sum().backward()
def test_return_duplicate(self):
class DoubleDuplicate(Function):
@staticmethod
def forward(ctx, x):
output = x * 2
return output, output
@staticmethod
def backward(ctx, grad1, grad2):
return grad1 * 2 + grad2 * 2
def fn(x):
a, b = DoubleDuplicate.apply(x)
self.assertIs(a, b)
return a + b
x = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
gradcheck(fn, [x])
gradgradcheck(fn, [x])
def test_return_duplicate_inplace(self):
class DoubleInplace(Function):
@staticmethod
def forward(ctx, x):
x.mul_(2)
ctx.mark_dirty(x)
return x, x
@staticmethod
def backward(ctx, grad1, grad2):
return grad1 * 2 + grad2 * 2
def inplace_fn(x):
a, b = DoubleInplace.apply(x.clone())
self.assertIs(a, b)
return a + b
x = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
gradcheck(inplace_fn, [x])
gradgradcheck(inplace_fn, [x])
# Can't modify leaf variables in-place
self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x))
# Functions which modify views in-place must return only one output
self.assertRaises(RuntimeError, lambda: InplaceFunction.apply(x.clone()[0]))
def _test_setitem(self, size, index):
x = torch.ones(*size, requires_grad=True)
y = x + 2
y_version = y._version
y[index] = 2
self.assertNotEqual(y._version, y_version)
y.backward(torch.ones(*size))
expected_grad = torch.ones(*size)
expected_grad[index] = 0
self.assertEqual(x.grad, expected_grad)
def _test_setitem_tensor(self, size, index):
x = torch.ones(*size, requires_grad=True)
y = x + 2
y_version = y._version
value = x.new(x[index].size()).fill_(7)
value.requires_grad = True
y[index] = value
self.assertNotEqual(y._version, y_version)
y.backward(torch.ones(*size))
expected_grad_input = torch.ones(*size)
expected_grad_input[index] = 0
self.assertEqual(x.grad, expected_grad_input)
self.assertEqual(value.grad, torch.ones_like(value))
# case when x broadcasts to as y[1]
x = torch.randn(4, requires_grad=True)
y = torch.zeros(2, 3, 4)
y[1] = x
y.backward(torch.randn(2, 3, 4))
self.assertEqual(x.size(), x.grad.size())
def test_setitem(self):
self._test_setitem((5, 5), 1)
self._test_setitem((5,), 1)
self._test_setitem((1,), 0)
self._test_setitem((10,), [[0, 4, 2]])
self._test_setitem((5, 5), [[0, 4], [2, 2]])
self._test_setitem((5, 5, 5), [slice(None), slice(None), [1, 3]])
self._test_setitem((5, 5, 5), [slice(None), [1, 3], slice(None)])
self._test_setitem((5, 5, 5), [[1, 3], slice(None), slice(None)])
self._test_setitem((5, 5, 5), [slice(None), [2, 4], [1, 3]])
self._test_setitem((5, 5, 5), [[1, 3], [2, 4], slice(None)])
self._test_setitem_tensor((5, 5), 3)
self._test_setitem_tensor((5, 5), [[0, 1], [1, 0]])
self._test_setitem_tensor((5,), 3)
self._test_setitem_tensor((5,), Variable(torch.LongTensor([3]), requires_grad=False).sum())
self._test_setitem_tensor((5,), [[0, 1, 2, 3]])
self._test_setitem_tensor((5, 5, 5), [slice(None), slice(None), [1, 3]])
self._test_setitem_tensor((5, 5, 5), [slice(None), [1, 3], slice(None)])
self._test_setitem_tensor((5, 5, 5), [[1, 3], slice(None), slice(None)])
self._test_setitem_tensor((5, 5, 5), [slice(None), [2, 4], [1, 3]])
self._test_setitem_tensor((5, 5, 5), [[1, 3], [2, 4], slice(None)])
self._test_setitem_tensor((5, 5, 5), [Variable(torch.LongTensor([1,
3]), requires_grad=False), [2, 4], slice(None)])
def test_setitem_mask(self):
mask = torch.BoolTensor(5, 5).bernoulli_()
self._test_setitem((5, 5), Variable(mask))
self._test_setitem((5,), Variable(mask[0]))
self._test_setitem((1,), Variable(mask[0, 0:1]))
self._test_setitem_tensor((5, 5), Variable(mask))
self._test_setitem_tensor((5,), Variable(mask[0]))
def test_select_sum(self):
# both select and sum return Scalars in ATen; ensure they work together.
x = torch.randn(10, dtype=torch.double, requires_grad=True)
def func(x):
return x.select(0, 1).sum()
gradcheck(func, [x])
gradgradcheck(func, [x])
def test_diagonal_expanded_v(self):
value = torch.rand([])
v_expanded = torch.tensor(value).expand(10)
a = torch.rand(10, 10, dtype=torch.double, requires_grad=True)
result, = torch.autograd.grad(a.diagonal(), a, v_expanded)
self.assertEqual(result, torch.eye(10, dtype=torch.double) * value)
def test_select_expanded_v(self):
v_expanded = torch.rand(10).expand(10, 10)
a = torch.rand(10, 10, 10, requires_grad=True)
result, = torch.autograd.grad(a[0], a, v_expanded)
expected = torch.zeros(10, 10, 10)
expected[0] = v_expanded
self.assertEqual(result, expected)
def test_slice_expanded_v(self):
v_expanded = torch.rand(10, 1).expand(2, 10, 10)
a = torch.rand(10, 10, 10, requires_grad=True)
result, = torch.autograd.grad(a[3:5], a, v_expanded)
expected = torch.zeros(10, 10, 10)
expected[3:5] = v_expanded
self.assertEqual(result, expected)
def test_unused_output(self):
x = torch.randn(10, 10, requires_grad=True)
outputs = x.chunk(5)
o = outputs[2]
o = o * 4 + 2
o.sum().backward()
expected_grad = torch.zeros(10, 10)
expected_grad[4:6] = 4
self.assertEqual(x.grad, expected_grad)
with torch.no_grad():
x.grad.zero_()
grad_output = torch.randn(2, 10)
outputs = x.chunk(5)
outputs[0].backward(grad_output)
expected_grad = torch.zeros(10, 10)
expected_grad[:2] = grad_output
self.assertEqual(x.grad, expected_grad)
# TODO: opinfo this or move to the sparse test suite
def _test_sparse_gather(self, size_x, size_ind, dim):
x = torch.randn(size_x, requires_grad=True)
if len(size_ind) > 0 and len(size_x) > 0:
ind = torch.randint(x.size(dim), size_ind)
else:
ind = torch.zeros(size_ind, dtype=torch.int64)
out = torch.gather(x, dim, ind, sparse_grad=False)
grad = torch.rand_like(out)
out.backward(grad)
grad_dense = x.grad.clone()
x.grad = None
out = torch.gather(x, dim, ind, sparse_grad=True)
out.backward(grad)
self.assertEqual(grad_dense, x.grad.to_dense())
def test_sparse_gather_dim0(self):
self._test_sparse_gather((10, 10), (5, 10), 0)
def test_sparse_gather_dim1(self):
self._test_sparse_gather((10, 10, 5), (10, 5, 5), 1)
def test_sparse_gather_dim_neg(self):
self._test_sparse_gather((10, 10, 5), (10, 10, 2), -1)
def test_sparse_gather_ind_scalar(self):
self._test_sparse_gather((10,), (), 0)
def test_sparse_gather_x_scalar(self):
self._test_sparse_gather((), (2,), 0)
def test_sparse_gather_both_scalar(self):
self._test_sparse_gather((), (), 0)
def test_gc_in_destructor(self):
"""
Previously, if a Function destructor triggered a garbage collection,
the Variable's tp_dealloc handler would get called twice leading to a
segfault.
"""
class CollectOnDelete(Function):
def forward(self, x):
return x
def backward(self, grad_output):
return grad_output
def __del__(self):
gc.collect()
for _ in range(10):
CollectOnDelete().forward(torch.randn(1, requires_grad=True)).backward()
def test_naughty_autograd_function_attribute_access(self):
class Id(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad_x):
return grad_x
with self.assertWarnsRegex(DeprecationWarning, "should not be instantiated"):
f = Id()
# # After raising warning, should still return an instance
self.assertIsInstance(f, Id)
x = torch.zeros(1, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, "non-static forward method is deprecated"):
f(x)
t = Id.apply(x)
self.assertEqual(t.grad_fn.name(), "IdBackward")
# THPFunction is the base class of both grad_fn and autograd functions,
# which means that a lot of accessors on them may segfault. Test that we
# properly error in this case.
t = torch.ones(1, requires_grad=True)
t._backward_hooks = {}
with self.assertRaisesRegex(RuntimeError, "Attribute '_register_hook_dict' is invalid"):
f._register_hook_dict(t)
with self.assertRaisesRegex(RuntimeError, "Attribute 'register_hook' is invalid"):
f.register_hook(lambda x, y: None)
with self.assertRaisesRegex(RuntimeError, "Attribute 'next_functions' is invalid"):
f.next_functions
with self.assertRaisesRegex(RuntimeError, "Attribute 'name' is invalid"):
f.name()
with self.assertRaisesRegex(RuntimeError, "underlying PyNode has already been deallocated"):
f.metadata
@unittest.expectedFailure
def test_naughty_anomaly_access(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, g):
return g
x = torch.zeros(1, requires_grad=True)
y = MyFunction.apply(x)
y.backward()
y.grad_fn.metadata
g = y.grad_fn
del y
g.metadata # this currently fails, but shouldn't
def test_naughty_autograd_function_stashing_ctx(self):
saved_ctx = []
class Id(Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, grad_x):
saved_ctx.append(ctx)
return ctx.saved_tensors
p = torch.zeros(1, requires_grad=True)
loss = Id.apply(p)
loss.backward(retain_graph=True)
del loss
# At this point in time, it complains that the graph has been freed
# (which indeed true, although a somewhat indirect way of stating the
# problem).
self.assertRaises(RuntimeError, lambda: saved_ctx[0].saved_tensors)
def test_custom_autograd_repeated_grad_grad(self):
# This test failed the equality check in PR #22983; it's an interesting
# and different test case worth enshrining. mult1 is not testing
# anything that interesting, but mult2 is the interesting case.
def mult1(x):
return x.prod(dim=-1).prod(dim=-1)
class Mult(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = mult1(x)
ctx.save_for_backward(x, y)
return y
@staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
return (grad_output * y)[:, None, None] / x
mult2 = Mult.apply
def check_gradgrad_repeated(x, y):
gy, = torch.autograd.grad(y[0], x, create_graph=True)
ggy_1, = torch.autograd.grad(gy[0, 0, 0], x, retain_graph=True)
gy, = torch.autograd.grad(y[0], x, create_graph=True)
ggy_2, = torch.autograd.grad(gy[0, 0, 0], x, retain_graph=True)
self.assertEqual(ggy_1[0, 0, 1], ggy_2[0, 0, 1])
x = torch.ones(2, 4, 4).requires_grad_()
check_gradgrad_repeated(x, mult1(x))
check_gradgrad_repeated(x, mult2(x))
def test_custom_autograd_no_early_free(self):
# This test failed complaining that buffers had already been freed
# prior to #22983. Also pretty interesting test case.
class Double(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x ** 2
ctx.save_for_backward(x, y)
return y
@staticmethod
def backward(ctx, grad_output):
x, _ = ctx.saved_tensors
return grad_output * 2 * x
# this is equivalent, but uses the output of .forward() in .backward()
class Double2(Double):
@staticmethod
def backward(ctx, grad_output):
x, y = ctx.saved_tensors
return grad_output * 2 * y / x
double = Double.apply
double2 = Double2.apply
x = torch.tensor(2).double().requires_grad_()
self.assertTrue(gradcheck(double, x))
self.assertTrue(gradgradcheck(double, x))
self.assertTrue(gradcheck(double2, x))
self.assertTrue(gradgradcheck(double2, x))
y = double(x)
torch.autograd.grad(y, x, create_graph=True)
torch.autograd.grad(y, x)
y = double2(x)
torch.autograd.grad(y, x, create_graph=True)
torch.autograd.grad(y, x) # should not error!
def test_detach(self):
x = torch.randn(10, 10, requires_grad=True)
y = x + 2
y = y.detach()
z = y * 4 + 2
self.assertFalse(y.requires_grad)
self.assertFalse(z.requires_grad)
x = torch.randn(10, 10, requires_grad=True)
y = x * 2
y = y.detach()
self.assertFalse(y.requires_grad)
self.assertIsNone(y.grad_fn)
z = x + y
z.sum().backward()
# This is an incorrect gradient, but we assume that's what the user
# wanted. detach() is an advanced option.
self.assertEqual(x.grad, torch.ones(10, 10))
# in-place detach
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=True)
a = x * 2
(y + a).sum().backward(retain_graph=True)
a.detach_()
self.assertFalse(a.requires_grad)
(y + a).sum().backward() # this won't backprop to x
self.assertEqual(x.grad, torch.ones(10, 10) * 2)
self.assertEqual(y.grad, torch.ones(10, 10) * 2)
# in-place deatch on a view raises an exception
view = x.narrow(0, 1, 4)
self.assertRaisesRegex(RuntimeError, 'view', lambda: view.detach_())
def test_detach_base(self):
"detaching base does not detach view"
x = torch.randn(10, 10, requires_grad=True)
view = x.narrow(0, 1, 4)
x.detach_()
self.assertFalse(x.requires_grad)
self.assertTrue(view.requires_grad)
self.assertIsNotNone(view.grad_fn)
self.assertIs(view._base, x)
def test_detach_then_inplace_raises_in_autograd(self):
x = torch.randn([], requires_grad=True)
orig_x = x.detach().clone()
y = x ** 2 # saves x
z = x.detach()
z.zero_()
with self.assertRaisesRegex(RuntimeError, "has been modified by an inplace"):
y.backward()
def _test_type_conversion_backward(self, t, ):
fvar = Variable(t(torch.randn(5, 5).float()), requires_grad=True)
fvar.double().sum().backward()
self.assertEqual(fvar.grad, torch.ones_like(fvar))
self.assertEqual(type(fvar.grad), type(fvar))
dvar = Variable(t(torch.randn(5, 5).double()), requires_grad=True)
dvar.float().sum().backward()
self.assertEqual(dvar.grad, torch.ones_like(dvar))
self.assertEqual(type(dvar.grad), type(dvar))
def test_type_conversions(self):
x = torch.randn(5, 5)
self.assertIsInstance(x.float(), torch.FloatTensor)
self.assertIsInstance(x.int(), torch.IntTensor)
if torch.cuda.is_available():
self.assertIsInstance(x.float().cuda(), torch.cuda.FloatTensor)
self.assertIsInstance(x.int().cuda(), torch.cuda.IntTensor)
self.assertIsInstance(x.int().cuda().cpu(), torch.IntTensor)
if torch.cuda.device_count() >= 2:
x2 = x.float().cuda(1)
self.assertIsInstance(x2, torch.cuda.FloatTensor)
self.assertIs(x2.get_device(), 1)
x2 = x.float().cuda()
self.assertIsInstance(x2, torch.cuda.FloatTensor)
self.assertIs(x2.get_device(), 0)
x2 = x2.cuda(1)
self.assertIsInstance(x2, torch.cuda.FloatTensor)
self.assertIs(x2.get_device(), 1)
y = Variable(torch.randn(5).cuda(1), requires_grad=True)
y.cpu().sum().backward()
self.assertIs(y.grad.get_device(), 1)
self.assertIs(y.long().get_device(), 1)
for t in [torch.DoubleTensor, torch.FloatTensor, torch.IntTensor, torch.ByteTensor]:
for y_var in (True, False):
y = torch.randint(5, (5, 5), dtype=t.dtype)
y = Variable(y) if y_var else y
self.assertIsInstance(x.type(t), t)
self.assertIsInstance(x.type_as(y), t)
# TODO: t.dtype should work
t_dtype = t().dtype
self.assertIsInstance(x.type(t_dtype), t)
self.assertIs(t_dtype, x.type(t_dtype).dtype)
self.assertEqual(y.data_ptr(), y.type(t).data_ptr())
if torch.cuda.is_available():
for x_cuda in (True, False):
for y_cuda in (True, False):
x_c = x.cuda() if x_cuda else x
y_c = y.cuda() if y_cuda else y
_, y_type = y_c.type().rsplit('.', 1)
y_typestr = ('torch.cuda.' if y_cuda else 'torch.') + y_type
self.assertEqual(y_c.type(), x_c.type(y_typestr).type())
self.assertIs(y_c.dtype, x_c.type(y_c.dtype).dtype)
self.assertEqual(y_c.data_ptr(), y_c.cuda().data_ptr() if y_cuda else y_c.data_ptr())
self._test_type_conversion_backward(lambda x: x)
if torch.cuda.is_available():
self._test_type_conversion_backward(lambda x: x.cuda())
if torch.cuda.device_count() >= 2:
# one of these has to be the non-default device
self._test_type_conversion_backward(lambda x: x.cuda(0))
self._test_type_conversion_backward(lambda x: x.cuda(1))
def test_isolated_node(self):
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
a = x + y
b = torch.max(a, 1, True)[1].repeat(1, 5).double()
o = (b + a).sum()
o.backward()
def test_shape(self):
x = torch.randn(3, 4)
self.assertEqual(2, len(x.shape))
self.assertEqual(x.shape[0], 3)
self.assertEqual(x.shape[1], 4)
def test_numpy_requires_grad(self):
x = torch.randn(2, 2, requires_grad=True)
err_msg_outputs = r"Can't call numpy\(\) on Tensor that requires grad. Use tensor.detach\(\).numpy\(\) instead."
with self.assertRaisesRegex(RuntimeError, err_msg_outputs):
x.numpy()
with torch.no_grad():
x.numpy()
x = torch.randn(2, 2)
x.numpy()
with torch.no_grad():
x.numpy()
def test_return_leaf(self):
class Identity(Function):
@staticmethod
def forward(ctx, a, b):
return a, a + b
@staticmethod
def backward(ctx, grad_a, grad_b):
return grad_a + grad_b, grad_b
hook_called = [False]
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5, 5, requires_grad=True)
q, p = Identity.apply(x, y)
# Make sure hooks only receive grad from usage of q, not x.
def hook(grad):
hook_called[0] = True
self.assertEqual(grad, torch.ones(5, 5))
q.register_hook(hook)
(q + p + x).sum().backward()
self.assertEqual(x.grad, torch.ones(5, 5) * 3)
self.assertEqual(y.grad, torch.ones(5, 5))
self.assertTrue(hook_called[0])
def test_return_leaf_inplace(self):
class Inplace(InplaceFunction):
@staticmethod
def forward(ctx, a, b):
ctx.mark_dirty(a)
return a.add_(b), b + 2
@staticmethod
def backward(ctx, grad_a, grad_b):
return grad_a, grad_a + grad_b
x = torch.randn(5, 5)
y = torch.randn(5, 5, requires_grad=True)
q, p = Inplace.apply(x, y)
self.assertIs(q, x)
self.assertIs(q.grad_fn.__class__, Inplace._backward_cls)
self.assertTrue(q.requires_grad)
q.sum().backward()
self.assertEqual(y.grad, torch.ones(5, 5))
def test_leaf_assignment(self):
x = torch.randn(5, 5)
y = torch.randn(5, requires_grad=True)
z = torch.randn(5, requires_grad=True)
x[0] = y
x[1] = 2 * z
self.assertTrue(x.requires_grad)
self.assertIsNot(x.grad_fn, None)
x.sum().backward()
self.assertEqual(y.grad, torch.ones(5))
self.assertEqual(z.grad, torch.ones(5) * 2)
def test_no_grad_assignment(self):
x = torch.randn(5, 5, requires_grad=True)
y = torch.randn(5)
with torch.no_grad():
x[0] = y
self.assertTrue(x.requires_grad)
self.assertIsNone(x.grad_fn)
def test_no_grad_modifies_version(self):
x = torch.randn(5, requires_grad=True)
y = torch.randn(5, requires_grad=True)
z = (x * y).sum()
with torch.no_grad():
x *= 2
self.assertRaisesRegex(RuntimeError, 'modified by an inplace operation',
lambda: z.backward())
def test_no_grad_input(self):
class MyFunction(Function):
@staticmethod
def forward(self, x):
return x
@staticmethod
def backward(self, grad_output):
return grad_output
x = torch.randn(5, requires_grad=True)
with torch.no_grad():
y = MyFunction.apply(x)
self.assertTrue(x.requires_grad)
self.assertIsNone(y.grad_fn)
def test_backward_copy(self):
# This tests checks backward engine for a very subtle bug that appreared
# in one of the initial versions of autograd. Gradients tensors were
# simply stored in lists while the function waited for all its gradients
# to be computed. However, sometimes an output was used multiple times,
# so the gradients needed to be summed. Engine used to keep a need_copy
# set of tensors that will need a clone upon next addition and removed
# them from the set as soon as the clone was performed. However, this
# could lead to incorrect results if the same gradient tensor was
# buffered in three places in the graph:
# 1. When accumulating gradients in one of these places it was cloned
# and removed from need_copy set.
# 2. When accumulating in second place, it wasn't in the need_copy set,
# so the gradients were simply accumulated in-place (which already
# modified the grad in 3rd place)
# 3. When accumulating in the third place, it wasn't in the need_copy set
# as well, so the incoming gradient was summed in-place, yielding
# incorrect results in all functions, except the first one.
x = torch.ones(5, 5, requires_grad=True)
y = torch.ones(5, 5, requires_grad=True)
# Simulate that we're in the middle of the graph
a = x + 2
b = y + 2
c = x + 2
# This op will just return grad_output two times in backward
add1 = a + b
add2 = add1 + c
# Simulate a long branch, so grad_output will get buffered.
for _ in range(4):
a = a * 2
b = b * 2
c = c * 2
branch = a + b + c
out = add2 + branch
# expected gradients are:
# for x: 34 (16 from final a, 16 from final c, 2 from add2)
# for y: 17 (16 from final b, 1 from add2)
grad_output = torch.ones(5, 5)
out.backward(grad_output)
self.assertEqual(x.grad, torch.ones(5, 5) * 34)
self.assertEqual(y.grad, torch.ones(5, 5) * 17)
def test_save_none_for_backward(self):
test_case = self
class MyFn(Function):
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(None, input, None)
return input * input
@staticmethod
def backward(ctx, grad_output):
n1, input, n2 = ctx.saved_tensors
test_case.assertIsNone(n1)
test_case.assertIsNone(n2)
return 2 * input * grad_output
x = torch.randn(5, 5, requires_grad=True)
y = MyFn.apply(x)
y.sum().backward()
self.assertEqual(x.grad, 2 * x)
def test_too_many_grads(self):
class MyFn(Function):
@staticmethod
def forward(ctx, input):
return input
@staticmethod
def backward(ctx, grad_output):
return grad_output, None, None
x = torch.randn(5, 5, requires_grad=True)
y = MyFn.apply(x)
y.sum().backward()
self.assertEqual(x.grad, torch.ones_like(x))
def test_pickle(self):
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=False)
def assert_strict_equal(var1, var2):
self.assertEqual(var1, var2)
self.assertEqual(var1.requires_grad, var2.requires_grad)
serialized = [pickle.dumps([x, y], protocol=p) for p in range(3)]
for dump in serialized:
xc, yc = pickle.loads(dump)
assert_strict_equal(xc, x)
assert_strict_equal(yc, y)
def test_dep_nograd(self):
class F1(Function):
@staticmethod
def forward(ctx, input):
out = torch.randn(input.size())
ctx.mark_non_differentiable(out)
return input, out
@staticmethod
def backward(ctx, grad_output, ignored):
return grad_output
class F2(Function):
@staticmethod
def forward(ctx, input, ignored):
return input
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
x = torch.randn(5, requires_grad=True)
a, b = F1.apply(x)
b = b + 1 # separate F1 from F2 by another op
self.assertTrue(a.requires_grad)
self.assertFalse(b.requires_grad)
c = F2.apply(a, b)
c.backward(torch.ones(c.size()))
self.assertEqual(x.grad, torch.ones(x.size()))
def test_set_grad_enabled(self):
x = torch.tensor([1.], requires_grad=True)
with torch.set_grad_enabled(False):
y = x * 2
self.assertFalse(y.requires_grad)
with torch.set_grad_enabled(True):
y = x * 2
self.assertTrue(y.requires_grad)
with torch.set_grad_enabled(False):
torch.set_grad_enabled(True)
y = x * 2
self.assertTrue(y.requires_grad)
def test_simple_reentrant(self):
y_data = torch.randn(2, 2)
class Reenter(Function):
@staticmethod
def forward(ctx, x):
with torch.enable_grad():
ctx.x = Variable(x, requires_grad=True)
ctx.y = Variable(y_data, requires_grad=True)
ctx.output_var = ctx.x * ctx.y
return ctx.output_var.detach()
@staticmethod
def backward(ctx, grad_output):
with torch.enable_grad():
ctx.output_var.sum().backward()
return ctx.x.grad * grad_output
# Reentrant starts on CPU thread, finishs on GPU thread
x = torch.randn(2, 2, requires_grad=True)
out = Reenter.apply(x)
out.sum().backward()
self.assertEqual(x.grad, y_data)
def test_reentrant_child_error(self):
# Parent graph.
a = torch.rand(3, 3, requires_grad=True)
c = a * a
# Reentrant child graph.
b = torch.rand(3, 3, requires_grad=True)
e = b * b
f = TestAutograd.SimulateBackwardError.apply(e)
reentrant_root = f.sum()
class ReentrantFunc(Function):
@staticmethod
def forward(ctx, inp):
return inp.clone()
@staticmethod
def backward(ctx, grad):
# Reentrant backward in child will throw an error.
reentrant_root.backward()
return grad
d = ReentrantFunc.apply(c)
with self.assertRaisesRegex(Exception, 'Simulate error'):
d.sum().backward()
def test_var_mean_differentiable(self):
dim = [2, 4]
keepdim = False
input1 = torch.randn(3, 4, 5, 6, 2, 3, requires_grad=True)
input2 = deepcopy(input1)
var1, mean1 = torch.var_mean(input1, dim=dim, keepdim=keepdim)
var2 = input2.var(dim=dim, keepdim=keepdim)
mean2 = input2.mean(dim=dim, keepdim=keepdim)
grad = torch.randn(3, 4, 6, 3, requires_grad=True)
r1 = var1 * var1 * mean1 * mean1
r2 = var2 * var2 * mean2 * mean2
self.assertEqual(r1, r2, rtol=0.01, atol=0.0)
torch.autograd.backward(r1, grad)
torch.autograd.backward(r2, grad)
self.assertEqual(input1.grad, input2.grad, rtol=0.01, atol=0.0)
@skipIfNoLapack
def test_lobpcg(self):
def func(k, A, largest=True, B=None):
X_shape = list(A.shape)
X_shape[-1] = k
X = torch.eye(A.size(-2), k, dtype=A.dtype, device=A.device)
if A.dim() > 2:
X = X.expand(X_shape)
D, U = torch.lobpcg(A=A, k=k, B=B, X=X, largest=largest)
# LOBPCG uses a random initial eigenspace approximation
# if parameter `X` is not provided.
# This may cause a non-deterministic behavior
# when it comes to the sign of an eigenvector
# (note if v is an eigenvector, so is -v),
# hence we eliminate this non-determinism
# by making sure that each column of U
# gets multiplied by the sign of its max (in absolute value) element.
# Also, gradcheck changes the content of the input by +/- eps (default to 1e-06)
# to compute the numerical gradient which can also cause the signs to flip.
_, idx = U.abs().max(-2, keepdim=True)
sign = U.gather(-2, idx).sign()
U = U * sign
return D, U
# TODO: review if this can be ported to OpInfos or moved to test_linalg.py
def run_symeig_test(k, sizes, largest=True):
A = torch.rand(*sizes).double()
A = (A @ A.mT) / 10
A.requires_grad_(True)
gradcheck(lambda A: func(k, A, largest), A, check_batched_grad=False)
# Custom gradient vectors for better stability due to some
# non-determinism in the lobpcg's forward.
# Note it is not required if symeig is in forward instead (tested).
D_grad = torch.rand(*A.shape[:-2], k) / 100
U_grad = torch.rand(*A.shape[:-1], k) / 100
gradgradcheck(lambda A: func(k, A, largest), A, [D_grad, U_grad], atol=1e-4, check_batched_grad=False)
# check whether A.grad is symmetric
A = A.detach().requires_grad_(True)
D, U = func(k, A, largest)
(D.sum() + U.sum()).backward()
self.assertEqual(A.grad, A.grad.mT)
for largest in [True, False]:
run_symeig_test(1, (6, 6), largest=largest)
run_symeig_test(1, (2, 6, 6), largest=largest)
run_symeig_test(1, (2, 2, 6, 6), largest=largest)
run_symeig_test(2, (6, 6), largest=largest)
run_symeig_test(2, (2, 6, 6), largest=largest)
run_symeig_test(2, (2, 2, 6, 6), largest=largest)
run_symeig_test(3, (9, 9), largest=largest)
run_symeig_test(3, (2, 9, 9), largest=largest)
run_symeig_test(3, (2, 2, 9, 9), largest=largest)
def test_variable_traverse(self):
def get_out_and_unrefed_cycle():
inp = torch.randn(10, requires_grad=True)
tmp = inp.view(10, 1)
out = tmp.view(10)
# Create a reference cycle that contains an
# intermediary Variable in the graph
my_list = []
my_list.append(tmp)
my_list.append(my_list)
return out
out = get_out_and_unrefed_cycle()
gc.collect()
# This will segfault if things have been erroneously released
out.backward(torch.randn(out.size()))
# TODO: review porting these to OpInfo tests
def test_pow_zero_tensor_gradient(self):
def run_test(input_size, exponent):
input = torch.zeros(*input_size, requires_grad=True)
input.pow(exponent).sum().backward()
self.assertEqual(input.grad.abs().sum(), 0)
run_test((10,), torch.zeros(10))
run_test((10, 10), torch.zeros(10, 10))
run_test((10,), 0)
def test_profiler(self):
x = torch.randn(10, 10)
with profile(use_kineto=kineto_available()) as p:
self.assertTrue(torch.autograd._profiler_enabled())
y = x * 2 + 4
self.assertFalse(torch.autograd._profiler_enabled())
names = ['aten::mul', 'aten::add']
found_indices = set()
for evt in p.function_events:
if evt.name in names:
found_indices.add(names.index(evt.name))
self.assertEqual(len(found_indices), len(names))
def test_profiler_seq_nr(self):
with profile(use_kineto=kineto_available()) as p:
x = torch.randn(10, 10, requires_grad=True)
y = torch.randn(10, 10, requires_grad=True)
z = x + y
s = z.sum()
s.backward()
print(p.key_averages().table(
sort_by="self_cpu_time_total", row_limit=-1))
# expecting aten::add, aten::sum to have the sequence numbers,
# expecting the corresponding backward nodes to have the same numbers
# as the forward ops
autograd_ops = {
("aten::add", "Add"): [],
("aten::sum", "Sum"): [],
}
accumulate_ops = []
found_empty = False
for e in p.function_events:
for (fwd_name, bwd_name), ops in autograd_ops.items():
if e.name == fwd_name or (bwd_name in e.name and "Backward" in e.name):
ops.append(e)
if "AccumulateGrad" in e.name:
accumulate_ops.append(e)
# check that nested ops (e.g. empty) don't have
# sequence number
if e.name == "aten::empty":
self.assertEqual(e.sequence_nr, -1)
found_empty = True
for (fwd_name, bwd_name), ops in autograd_ops.items():
self.assertEqual(len(ops), 3)
self.assertEqual(ops[0].name, fwd_name)
self.assertEqual(ops[1].name, f"autograd::engine::evaluate_function: {bwd_name}Backward0")
self.assertEqual(ops[2].name, f"{bwd_name}Backward0")
self.assertGreaterEqual(ops[0].sequence_nr, 0)
self.assertEqual(ops[1].sequence_nr, ops[0].sequence_nr)
self.assertEqual(ops[2].sequence_nr, ops[0].sequence_nr)
self.assertEqual(ops[0].fwd_thread, 0)
self.assertEqual(ops[1].fwd_thread, ops[0].thread)
self.assertEqual(ops[2].fwd_thread, ops[0].thread)
self.assertTrue(found_empty)
def test_profiler_unboxed_only(self):
x = torch.rand(3, 4)
with torch.autograd.profiler.profile(use_kineto=kineto_available()) as prof:
x.resize_([3, 2])
def test_profiler_propagation(self):
def foo(x):
with record_function("in_foo") as rf:
return x * 2
x = torch.rand(3, 4)
traced_foo = torch.jit.trace(foo, x)
def bar(x):
with record_function("in_bar") as rf:
# we expect that profiler will be able
# propagate across fork
fut = torch.jit._fork(traced_foo, x)
y = torch.jit._wait(fut)
# note: continuation (and rf's end) can
# be executed in a different thread
with record_function("in_bar_after_wait") as rf2:
y = y * 2
return y
traced_bar = torch.jit.trace(bar, x)
with profile(use_kineto=kineto_available()) as p:
traced_bar(x)
found_foo = False
found_bar = False
found_bar_after_wait = False
for info in p.function_events:
if info.name == "in_foo":
self.assertFalse(found_foo)
found_foo = True
elif info.name == "in_bar":
self.assertFalse(found_bar)
found_bar = True
elif info.name == "in_bar_after_wait":
self.assertFalse(found_bar_after_wait)
found_bar_after_wait = True
self.assertTrue(found_foo)
self.assertTrue(found_bar)
self.assertTrue(found_bar_after_wait)
def test_record_function_callbacks(self):
x = torch.randn(10, 10)
with profile(use_kineto=kineto_available()) as p:
with record_function("foo"):
y = x * 2 + 4
function_events = p.function_events
foo_event = [event for event in function_events if "foo" in event.name][0]
self.assertEqual(foo_event.count, 1)
def test_record_function_new_signatures(self):
# Test the new _record_function ops work
# Note: Remove once record_function uses these directly
x = torch.randn(10, 10)
with profile(use_kineto=kineto_available()) as p:
record = torch.ops.profiler._record_function_enter_new("bar", None)
try:
y = x * 2 + 4
finally:
torch.ops.profiler._record_function_exit(record)
function_events = p.function_events
foo_event = [event for event in function_events if "bar" in event.name][0]
self.assertEqual(foo_event.count, 1)
def test_profiler_aggregation_fake(self):
events = EventList()
id = [0]
def get_id():
id[0] = id[0] + 1
return id[0]
# [[thread_id, [(start, end, id), ....]], ...]
# Using list instead of a dict so order is guaranteed for any Python
# version
threads = [
[1, [(0, 1, get_id()), (1, 2, get_id())]],
[0, [(0, 2, get_id()), (1, 2, get_id()), (1, 3, get_id())]],
]
for thread, ranges in threads:
for range in ranges:
assert(len(range) == 3)
events.append(
FunctionEvent(
id=range[2],
node_id=0,
name="",
thread=thread,
start_us=range[0],
end_us=range[1],
)
)
events._populate_cpu_children()
# Note that [1, 3] pushes out [0, 2] first. Then we record [1, 2]
# as a child of [1, 3]
res = [[], [], [], [], [4]]
def get_children_ids(event):
return [child.id for child in event.cpu_children]
assert([get_children_ids(event) for event in events] == res)
def test_profiler_aggregation_table(self):
"""
Test if the profiling result is aggregated for `str(prof)`
See: https://github.com/pytorch/pytorch/issues/37500
"""
x = torch.randn(1024)
with torch.autograd.profiler.profile(use_kineto=kineto_available()) as prof:
torch.einsum("i->", x)
prof_str = str(prof)
prof_table = prof.table()
self.assertEqual(prof_table, prof_str)
def test_profiler_function_event_avg(self):
avg = FunctionEventAvg()
avg.add(FunctionEvent(id=0, node_id=0, name="foo", thread=0, start_us=10, end_us=15))
avg.add(FunctionEvent(id=1, node_id=0, name="foo", thread=0, start_us=20, end_us=30))
avg.add(avg)
self.assertEqual(avg.key, "foo")
# aggregate stats
self.assertEqual(avg.count, 4)
self.assertEqual(avg.cpu_time_total, 30)
self.assertEqual(avg.self_cpu_time_total, 30)
self.assertEqual(avg.cuda_time_total, 0)
# average stats
self.assertEqual(avg.cpu_time, 7.5)
self.assertEqual(avg.cuda_time_total, 0)
def test_profiler_shapes(self):
print("")
layer1 = torch.nn.Linear(20, 30)
layer2 = torch.nn.Linear(30, 40)
input = torch.randn(128, 20)
with profile(record_shapes=True, use_kineto=kineto_available()) as prof:
layer2(layer1(input))
print(prof.function_events)
linear_expected_shapes = [
[[128, 20], [30, 20], [30]],
[[128, 30], [40, 30], [40]],
]
found_indices = set()
for event in prof.function_events:
if event.name == "aten::linear":
self.assertTrue(event.input_shapes in linear_expected_shapes)
found_indices.add(linear_expected_shapes.index(event.input_shapes))
self.assertEqual(len(found_indices), len(linear_expected_shapes))
def test_profiler_aggregation_lstm(self):
print("")
rnn = torch.nn.LSTM(10, 20, 2)
total_time_s = 0
with profile(record_shapes=True, use_kineto=kineto_available()) as prof:
for i in range(20):
input = torch.randn(5, 3, 10)
h = torch.randn(2, 3, 20)
c = torch.randn(2, 3, 20)
start = time.time()
rnn(input, (h, c))
end = time.time()
total_time_s += end - start
print(prof.table(
sort_by="self_cpu_time_total", row_limit=10, header="TEST"))
print(prof.key_averages(group_by_input_shape=True).table(
sort_by="self_cpu_time_total", row_limit=10))
print(prof.table(
sort_by="self_cpu_time_total", row_limit=10, max_src_column_width=300, header="TEST", top_level_events_only=True))
print(prof.key_averages(group_by_input_shape=True).table(
sort_by="self_cpu_time_total", row_limit=10, top_level_events_only=True))
total_time_us = total_time_s * 1000.0 * 1000.0 # make it us which is profiler default
print(
"Total time based on python measurements: ",
_format_time(total_time_us)
)
print(
"CPU time measurement python side overhead: {:.2f}%".format(
(total_time_us / prof.self_cpu_time_total - 1.0) * 100.0
)
)
if sys.platform != "win32":
with tempfile.NamedTemporaryFile() as trace_file:
prof.export_chrome_trace(trace_file.name)
def test_record_function(self):
x = torch.randn(10, 10)
def forward(x):
with record_function("outer"):
y = x * 2 + 4
with record_function("inner"):
y = y - 1
y = y / 1
forward(x)
with profile(use_kineto=kineto_available()) as p:
forward(x)
events = p.function_events
important_events = [
'outer',
'aten::mul',
'aten::add',
'inner',
'aten::sub',
'aten::div'
]
idx = 0
for info in events:
if info.name == important_events[idx]:
idx = idx + 1
if idx == len(important_events):
break
self.assertEqual(idx, len(important_events))
# We can also use record_function to decorate arbitrary function
@record_function('my_func')
def f(x, y):
return x + y
with profile(use_kineto=kineto_available()) as p:
f(1, 2)
self.assertTrue('my_func' in str(p))
def test_record_function_multithreaded(self):
rf = record_function("outer")
rf.__enter__()
with record_function("inner"):
# test that exiting the record function after starting another one
# doesn't throw.
rf.__exit__(None, None, None)
with record_function("inner"):
rf.__enter__()
# test that exiting the record function after ending another one
# doesn't throw.
rf.__exit__(None, None, None)
def test_dir(self):
x = torch.randn(10, 10)
keys = dir(x)
self.assertIn('shape', keys)
# real and imag are only implemented for complex tensors.
y = torch.randn(10, 10, dtype=torch.cfloat)
imag_key = 'imag'
self.assertRaises(RuntimeError, lambda: hasattr(x, imag_key))
self.assertTrue(hasattr(y, imag_key))
keys.remove(imag_key)
for key in keys:
self.assertTrue(hasattr(x, key))
def test_inplace_on_view_saved_output(self):
# Test an in-place operation on a view in which the in-place op saves
# its output. Previously, this created a reference cycle.
dealloc = [0]
class IncrementOnDelete(object):
def __del__(self):
dealloc[0] += 1
def test():
root = torch.randn(3, 3, requires_grad=True)
copy = root.clone()
copy.grad_fn.register_hook(IncrementOnDelete())
view = copy.view(9)
torch.nn.functional.relu(view, inplace=True)
test()
self.assertEqual(dealloc[0], 1)
def test_inplace_on_view_leaf_errors(self):
# Issue #21875: Fail faster (when we try to modify the view vs. in backward())
x = torch.zeros(1, requires_grad=True)
y = x.view_as(x)
with self.assertRaisesRegex(RuntimeError,
"a view of a leaf Variable that "
"requires grad is being used in "
"an in-place operation."):
y.add_(1)
def test_inplace_on_view_backward(self):
# Issue #10532: Make sure that this does not raise RuntimeError.
net = nn.Sequential(
nn.InstanceNorm2d(2),
nn.ReLU(True)
)
x = torch.tensor([[[[1.0, 1.0]]]], requires_grad=True)
g, = torch.autograd.grad(net(x).pow(2), [x], grad_outputs=x.new_ones(x.shape) , create_graph=True)
torch.autograd.grad(g.sum(), [x])
self.assertEqual(x, torch.tensor([[[[1.0, 1.0]]]]))
# https://discuss.pytorch.org/t/freeing-buffer-strange-behavior/31955/8
inputs = torch.ones((1, 3, 256, 256), requires_grad=True)
tmp1 = (inputs + 1).view_as(inputs)
tmp2 = torch.nn.functional.threshold(tmp1, 0., 0., True)
prob_interpolated = torch.sigmoid(tmp2)
gradients = torch.autograd.grad(outputs=prob_interpolated, inputs=inputs,
grad_outputs=torch.ones(prob_interpolated.size()),
create_graph=True, retain_graph=True)[0]
gradient_penalty = gradients.sum()
gradient_penalty.backward()
fn = gradient_penalty.grad_fn.next_functions[0][0].next_functions[1][0]
self.assertEqual(fn.name(), "ThresholdBackwardBackward0")
def test_inplace_on_view_weak_grad_fn(self):
# Issue 23502: Test that b's grad_fn is preserved.
a = torch.arange(10.0, requires_grad=True)
b = a.narrow(0, 0, 2).clone().view(-1)
b.relu_()
c = b.clone()
del b
gc.collect()
s = c.sum()
s.backward()
self.assertEqual(s, torch.tensor(1.0))
# Issue #21875: Fail faster (when we try to modify the view vs. in backward())
a = torch.rand(10, requires_grad=True).narrow(0, 0, 10)
with self.assertRaises(RuntimeError):
b = a.relu_()
def test_out_variant_raises_when_inputs_require_grad(self):
a = torch.randn(2, 2, requires_grad=True)
b = torch.randn(2, 2, requires_grad=True)
x = torch.zeros_like(a)
# out=... functions don't support automatic differentiation currently
self.assertRaisesRegex(RuntimeError, 'out=', lambda: torch.mul(a, b, out=x))
# the inputs can require grad if we're in no_grad() mode
with torch.no_grad():
torch.mul(a, b, out=x)
self.assertEqual(x, a * b)
a = torch.randn(2, 2)
b = torch.randn(2, 2)
x = torch.zeros(2, 2, requires_grad=True)
# we should throw an exception if the output requires grad
self.assertRaisesRegex(RuntimeError, 'out=', lambda: torch.mul(a, b, out=x))
# TODO: see if this test can be OpInfo'd or moved to diagonal's test suite
def test_diagonal_derivative_requires_grad(self):
# test that the backward requires grad
# we do this is because diagonal_backward uses inplace
# operations and gradgradcheck does not catch whether
# they works as expected (it will succeed even if
# the gradient has requires_grad == False
a = torch.randn(5, 6, requires_grad=True)
b = torch.diagonal(a)**2
c = b.sum()
d, = torch.autograd.grad(c, a, retain_graph=True, create_graph=True)
self.assertTrue(d.requires_grad)
def test_anomaly_detect_nan(self):
size = 10
class MyFunc(Function):
@staticmethod
def forward(ctx, inp1, inp2, fail_0th):
ctx.fail_0th = fail_0th
return inp1.sum(0, keepdim=True)
@staticmethod
def backward(ctx, gO):
gI = gO.clone().expand(size)
gI[0] = 0
gI[0] /= 0 # Generate a nan
if ctx.fail_0th:
return gI, None, None
else:
return None, gI, None
inp = torch.rand(size, requires_grad=True)
out = MyFunc.apply(inp, inp, True)
out.backward() # Should not fail
inp = torch.rand(size, requires_grad=True)
out = MyFunc.apply(inp, inp, True)
with self.assertRaisesRegex(RuntimeError, "Function 'MyFuncBackward' returned nan values in its 0th output."):
with warnings.catch_warnings(record=True) as w:
with detect_anomaly():
out.backward()
self.assertIn('No forward pass information', str(w[0].message))
inp = torch.rand(size, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, "Function 'MyFuncBackward' returned nan values in its 1th output."):
with warnings.catch_warnings(record=True) as w:
with detect_anomaly():
out = MyFunc.apply(inp, inp, False)
out.backward()
self.assertIn('MyFunc.apply', str(w[0].message))
def test_calculate_shape_util(self):
out = torch.randn(10, 5, requires_grad=True)
grad = torch.randn(5, 10, requires_grad=True)
out_shape, grad_shape = _calculate_shape(out, grad, False)
assert out_shape == torch.Size([10, 5])
assert grad_shape == torch.Size([5, 10])
out = torch.nested.as_nested_tensor([
torch.randn(10, 5, requires_grad=True),
torch.randn(10, 5, requires_grad=True),
torch.randn(10, 5, requires_grad=True)]
)
grad = torch.nested.as_nested_tensor([torch.randn(5, 10, requires_grad=True), torch.randn(5, 10, requires_grad=True)])
out_shape, grad_shape = _calculate_shape(out, grad, False)
assert torch.equal(out_shape, torch.tensor([[10, 5], [10, 5], [10, 5]]))
assert torch.equal(grad_shape, torch.tensor([[5, 10], [5, 10]]))
def test_nested_anomaly_detect_nan(self):
size = 10
class MyFunc(Function):
@staticmethod
def forward(ctx, inp1, fail_0th):
ctx.fail_0th = fail_0th
ctx.save_for_backward(inp1)
return inp1.sum(0, keepdim=True)
@staticmethod
def backward(ctx, gO):
inp, = ctx.saved_tensors
fail_0th = ctx.fail_0th
g = gO.clone().expand(size)
gI = MyFunc2.apply(g * inp, g + inp, fail_0th)
return gI, None
class MyFunc2(Function):
@staticmethod
def forward(ctx, inp1, inp2, fail_0th):
ctx.fail_0th = fail_0th
return inp1 * 2.0 + inp2
@staticmethod
def backward(ctx, gO):
fail_0th = ctx.fail_0th
g1 = gO.clone()
g2 = gO.clone()
g1[0] = 0
g2[0] = 0
# generate a nan
if fail_0th:
g1[0] /= 0
else:
g2[0] /= 0
return g1, g2, None
inp = torch.rand(size, requires_grad=True)
out = MyFunc.apply(inp, True)
ginp, = torch.autograd.grad(out, (inp,), create_graph=True)
gsum = ginp.sum()
gsum.backward() # should not fail
inp = torch.rand(size, requires_grad=True)
out = MyFunc.apply(inp, True)
ginp, = torch.autograd.grad(out, (inp,), create_graph=True)
gsum = ginp.sum()
with warnings.catch_warnings(record=True) as w:
with self.assertRaisesRegex(RuntimeError, "Function 'MyFunc2Backward' returned nan values in its 0th output."):
with detect_anomaly():
gsum.backward()
self.assertIn('No forward pass information', str(w[1].message))
inp = torch.rand(size, requires_grad=True)
with warnings.catch_warnings(record=True) as w:
with self.assertRaisesRegex(RuntimeError, "Function 'MyFunc2Backward' returned nan values in its 1th output."):
with detect_anomaly():
out = MyFunc.apply(inp, False)
ginp, = torch.autograd.grad(out, (inp,), create_graph=True)
gsum = ginp.sum()
gsum.backward()
self.assertIn('MyFunc2.apply', str(w[1].message))
self.assertIn('MyFunc.apply', str(w[2].message))
def test_anomaly_grad_warnings(self):
# PyTorch won't throw warnings if there is an error
# but we'd want to at least see them in stderr
class StdErrDiverter:
def __enter__(self):
self.stderr_orig = sys.stderr
self.stderr_new = io.StringIO()
sys.stderr = self.stderr_new
return self
def __exit__(self, *args):
self.captured = self.stderr_new.getvalue()
sys.stderr = self.stderr_orig
# if the warnings don't throw, they will be handled as regular warnings
with self.assertRaisesRegex(RuntimeError,
"one of the variables needed for gradient computation has been "
"modified by an inplace operation"):
with warnings.catch_warnings(record=True) as w:
with detect_anomaly():
a = torch.randn(5, requires_grad=True)
d1 = a + 1
d2 = d1 ** 2
d1 += 1
torch.autograd.grad(d2.sum(), a)
self.assertEqual(len(w), 2)
self.assertIn('Anomaly Detection has been enabled', str(w[0].message))
self.assertIn('Error detected in PowBackward0', str(w[1].message))
# if the warning throws, it will be printed to sys.stderr
with self.assertRaisesRegex(RuntimeError,
"one of the variables needed for gradient computation has been "
"modified by an inplace operation"):
with warnings.catch_warnings(record=True) as w:
with detect_anomaly():
warnings.simplefilter("error")
with StdErrDiverter() as s:
a = torch.randn(5, requires_grad=True)
d1 = a + 1
d2 = d1 ** 2
d1 += 1
torch.autograd.grad(d2.sum(), a)
self.assertEqual(len(w), 1)
self.assertIn('Anomaly Detection has been enabled', str(w[0].message))
self.assertIn('Error detected in PowBackward0', s.captured)
def test_anomaly_assign_parent_cleanup(self):
# Test that python objects created are properly cleaned up when assign_parent is called
def get_ref():
# we use torch.exp here but any function that will construct a new node in its
# backward call in grad mode will work
x = torch.randn(2, 2, requires_grad=True)
t = x.exp()
# ExpBackward calls mul, creating the MulBackward node when create_graph=True.
# In anomaly mode, a PyObject referencing MulBackward's "parent" ExpBackward is added to
# MulBackward's anomaly metadata dict, creating the following reference chain:
#
# grad -> MulBackward -> PyObject -> ExpBackward
#
with detect_anomaly():
grad = torch.autograd.grad(t, x, torch.ones_like(t), create_graph=True)
# We add a weak reference to a new Foo object, which we insert into ExpBackward's metadata dict
#
# (PyObject) -> ExpBackward -> dict -> *Foo*
# t ----^ WeakRef ---^
#
# We want to test that when grad goes out of scope at the end of this function that PyObject is destroyed
# We can test this by seeing whether Foo is not kept alive once t is destroyed
class Foo(object):
pass
my_obj = Foo()
meta_dict = t.grad_fn.metadata
meta_dict[0] = my_obj
ref = weakref.ref(my_obj)
return t, ref
t, ref = get_ref()
self.assertIsNotNone(ref())
del t
self.assertIsNone(ref())
def test_nested_anomaly_printstack_cleanup(self):
# Test if metadata dict PyObject is properly destroyed
def get_ref():
# This is similar to the construction in test_anomaly_assign_parent_cleanup:
#
# MyFuncBackward2 -> PyObject -> MyFuncBackward -> dict -> Foo
# out ---^ WeakRef ---^
#
# We want to check that Foo is still properly destroyed even when MyFunc2Backward's
# AnomalyMetadata calls printstack, which does some python object manipulation.
#
# You might be wondering why we still have to test_anomaly_assign_parent_cleanup,
# since if PyObject is not destroyed here, wouldn't this test would detect that also?
# The answer is that custom function's PyObject (THPFunction) actually only hold
# a weak reference to the c++ node!
class MyFunc(Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gO):
x, = ctx.saved_tensors
return MyFunc2.apply(x)
class MyFunc2(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, gO):
return gO + float("NaN")
inp = torch.rand(1, requires_grad=True)
out = MyFunc.apply(inp)
ginp, = torch.autograd.grad(out, (inp,), create_graph=True)
with warnings.catch_warnings(record=True) as w:
with self.assertRaisesRegex(RuntimeError, "Function 'MyFunc2Backward' returned nan values in its 0th output."):
with detect_anomaly():
ginp.backward()
class Foo(object):
pass
my_obj = Foo()
meta_dict = out.grad_fn.metadata
meta_dict[0] = my_obj
ref = weakref.ref(my_obj)
return out, ref
t, ref = get_ref()
self.assertIsNotNone(ref())
del t
self.assertIsNone(ref())
def test_anomaly_mode_no_check_nan(self):
class MyFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, inp):
return inp.clone()
@staticmethod
def backward(ctx, gO):
return torch.tensor(float("nan")).expand(10, 10)
def run_fn(a):
out = MyFunc.apply(a)
return out.sum()
with warnings.catch_warnings(record=True) as w:
with torch.autograd.detect_anomaly(check_nan=False):
inp = torch.rand(10, 10, requires_grad=True)
out = run_fn(inp)
out.backward(retain_graph=True)
with torch.autograd.detect_anomaly(check_nan=True):
with self.assertRaisesRegex(RuntimeError, "Function 'MyFuncBackward' returned nan values in its 0th output."):
out.backward(retain_graph=True)
out.backward()
# TODO: update these tests to use the linalg module and move to test_linalg.py
@skipIfNoLapack
def test_symeig_no_eigenvectors(self):
A = torch.tensor([[1., 2.], [2., 4.]], dtype=torch.float32, requires_grad=True)
w, v = torch.symeig(A, eigenvectors=False)
with self.assertRaisesRegex(RuntimeError, 'is not differentiable'):
torch.autograd.backward([w, v], [torch.ones_like(w), torch.ones_like(v)])
def test_no_grad_copy(self):
# create autograd function that saves grad pointer as class static
class MyFunc(Function):
static_grad_ptr = None
@staticmethod
def forward(ctx, inp1, inp2):
return inp1 + inp2
@staticmethod
def backward(ctx, grad):
MyFunc.static_grad_ptr = grad.data_ptr()
return grad, grad
class NonContGradFunc(Function):
@staticmethod
def forward(ctx, inp1):
ctx.size = inp1.size()
return torch.tensor([1.])
@staticmethod
def backward(ctx, grad):
return torch.ones(1).expand(ctx.size)
a = torch.randn(5, 6, requires_grad=True)
b = torch.randn(5, 6, requires_grad=True)
# non-contiguous grad should be copied
NonContGradFunc.apply(MyFunc.apply(a, b)).backward()
self.assertFalse(a.grad.data_ptr() == MyFunc.static_grad_ptr)
self.assertFalse(b.grad.data_ptr() == MyFunc.static_grad_ptr)
# test case that should trigger no copy for one of a,b
a.grad = b.grad = None
MyFunc.apply(a, b)[1][0].backward()
p_g = MyFunc.static_grad_ptr
p_a = a.grad.data_ptr()
p_b = b.grad.data_ptr()
# check a,b uses different grad buffer
self.assertFalse(p_a == p_b)
# check one of them is using the computed buffer
self.assertTrue(p_a == p_g or p_b == p_g)
def test_no_grad_copy_sparse(self):
# create autograd function that saves grad pointer as class static
class MyFunc(Function):
static_grad_ptr = None
@staticmethod
def forward(ctx, inp1, inp2):
return inp1 + inp2
@staticmethod
def backward(ctx, grad):
MyFunc.static_grad_ptr = grad._values().data_ptr()
return grad, grad
class NonContGradFunc(Function):
static_grad_ptr = None
@staticmethod
def forward(ctx, inp1, inp2):
return inp1 + inp2
@staticmethod
def backward(ctx, grad):
# Create a sparse tensor with non-contigous indices and values
# and return as grad.
v = torch.rand(1, 3)
i = torch.ones(1, 1, dtype=torch.long)
nv = v.expand(8, 3)
ni = i.expand(1, 8)
ngrad = torch.sparse.FloatTensor(ni, nv, torch.Size([10, 3]))
NonContGradFunc.static_grad_ptr = ngrad._values().data_ptr()
return ngrad, ngrad
a = torch.randn(10, 3, requires_grad=True)
b = torch.randn(10, 3, requires_grad=True)
input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9])
offsets = torch.tensor([0, 4])
import torch.nn.functional as F
# test case that should trigger no copy for one of a,b
emb_matrix = MyFunc.apply(a, b)
loss = F.embedding_bag(emb_matrix, input, offsets, sparse=True).sum()
loss.backward(retain_graph=True)
p_g = MyFunc.static_grad_ptr
p_a = a.grad._values().data_ptr()
p_b = b.grad._values().data_ptr()
# check a,b uses different grad buffer
self.assertFalse(p_a == p_b)
# check one of them is using the computed buffer
self.assertTrue(p_a == p_g or p_b == p_g)
# Run backwards multiple times to ensure accumulation works.
for i in range(10):
loss.backward(retain_graph=True)
# non-contiguous indices and value, we should trigger a copy.
a.grad = b.grad = None
emb_matrix = NonContGradFunc.apply(a, b)
loss = F.embedding_bag(emb_matrix, input, offsets, sparse=True).sum()
loss.backward(retain_graph=True)
p_g = NonContGradFunc.static_grad_ptr
p_a = a.grad._values().data_ptr()
p_b = b.grad._values().data_ptr()
# check a,b uses different grad buffer
self.assertFalse(p_a == p_b)
# Verify we cloned both grads.
self.assertFalse(p_a == p_g)
self.assertFalse(p_b == p_g)
# Run backwards multiple times to ensure accumulation works.
for i in range(10):
loss.backward(retain_graph=True)
def test_gradcheck_single_input(self):
def check(fast_mode):
def f(inp):
return inp.mul(5)
gradcheck(f, torch.rand(10, dtype=torch.float64, requires_grad=True), fast_mode=fast_mode)
gradgradcheck(f, torch.rand(10, dtype=torch.float64, requires_grad=True), fast_mode=fast_mode)
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_sparse_input(self):
def check(fast_mode):
def fn(sparse):
return torch.sparse.sum(sparse)
gradcheck(fn, torch.rand(10, dtype=torch.double).to_sparse().requires_grad_(True), check_sparse_nnz=True,
check_batched_grad=False, fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, 'gradcheck expects all tensor inputs are dense'):
gradcheck(fn, torch.rand(10, dtype=torch.double).to_sparse().requires_grad_(True), check_sparse_nnz=False,
check_batched_grad=False, fast_mode=fast_mode)
check(fast_mode=True)
check(fast_mode=False)
@unittest.expectedFailure
def test_gradcheck_sparse_csr_input(self):
def check(fast_mode):
def fn(sparse_csr):
return torch.clone(sparse_csr).to_dense()
# Fails because gradcheck can't work with sparse csr inputs yet
gradcheck(fn, torch.rand(2, 2, dtype=torch.double).to_sparse_csr().requires_grad_(True), check_sparse_nnz=True,
check_batched_grad=False, fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, 'gradcheck expects all tensor inputs are dense'):
gradcheck(fn, torch.rand(2, 2, dtype=torch.double).to_sparse_csr().requires_grad_(True), check_sparse_nnz=False,
check_batched_grad=False, fast_mode=fast_mode)
# check(fast_mode=True) # Segmentation fault
check(fast_mode=False)
def test_gradcheck_nondeterministic(self):
class NonDetFunc(Function):
@staticmethod
def forward(ctx, x, jitter=0.0):
ctx._jitter = jitter
return x
@staticmethod
def backward(ctx, grad_out):
return NonDetFunc.apply(grad_out, ctx._jitter) * (1 + torch.rand_like(grad_out) * ctx._jitter), None
def check(fast_mode):
inp = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
gradcheck(lambda x: NonDetFunc.apply(x, 0.0), inp, check_batched_grad=False, fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, 'Backward is not reentrant'):
gradcheck(lambda x: NonDetFunc.apply(x, 1e-6), inp, check_batched_grad=False, fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, 'Backward is not reentrant'):
gradgradcheck(lambda x: NonDetFunc.apply(x, 1e-12), inp, check_batched_grad=False, fast_mode=fast_mode)
gradcheck(lambda x: NonDetFunc.apply(x, 0.0), inp, nondet_tol=1e-5, check_batched_grad=False,
fast_mode=fast_mode)
gradcheck(lambda x: NonDetFunc.apply(x, 1e-6), inp, nondet_tol=1e-5, check_batched_grad=False,
fast_mode=fast_mode)
gradgradcheck(lambda x: NonDetFunc.apply(x, 1e-12), inp, nondet_tol=1e-5, check_batched_grad=False,
fast_mode=fast_mode)
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_validates_inputs(self):
def check(fast_mode):
# when inputs are not dense, but check_sparse_nnz is false
x = torch.rand(10, requires_grad=True).to_sparse()
with self.assertRaisesRegex(RuntimeError, 'dense when check_sparse_nnz is set to False.'):
gradcheck(lambda x: x.to_dense(), (x,), check_sparse_nnz=False, check_batched_grad=False,
fast_mode=fast_mode)
self.assertFalse(gradcheck(lambda x: x.to_dense(), (x,), check_sparse_nnz=False,
check_batched_grad=False, raise_exception=False, fast_mode=fast_mode))
# when none of the inputs require grad (always raises even if raise_exception=False)
x = torch.rand(10, requires_grad=False)
with self.assertRaisesRegex(ValueError, 'at least one input tensor to require gradient'):
gradcheck(lambda x: x, (x,), raise_exception=False, fast_mode=fast_mode)
# (warning) when inputs are not double precision
x = torch.ones(1, dtype=torch.float32, requires_grad=True)
with self.assertWarnsRegex(UserWarning, "Input #0 requires gradient and is not a double precision"):
self.assertTrue(gradcheck(lambda x: x, (x,), atol=1e-1, fast_mode=fast_mode))
# when layout is not mkldnn(aka has strides) and input has a dimension with stride 0. (always raises
# even if raise_exception=False)
x = torch.ones(1, dtype=torch.float64, requires_grad=True)
x = x.expand((2, 2))
with self.assertRaisesRegex(RuntimeError, 'The 0th input has a dimension with stride 0'):
gradcheck(lambda x: x, (x,), raise_exception=False, fast_mode=fast_mode)
check(fast_mode=True)
check(fast_mode=False)
@unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled")
def test_gradcheck_validates_input_mkldnn(self):
# when mkldnn inputs, forward mode testing is not allowed
# Update tolerances below to make sure the gradient match even in single precision floats
# Use the warning assert to hide the float32 warning
x = torch.ones(1).to_mkldnn().requires_grad_()
with self.assertWarnsRegex(UserWarning, "Input #0 requires gradient and is not a double precision"):
with self.assertRaisesRegex(ValueError, 'MKLDNN inputs are not support for forward AD gradcheck.'):
gradcheck(lambda x: x.to_dense(), (x,), raise_exception=False, fast_mode=False, check_forward_ad=True,
atol=1e-1, rtol=1e-1)
with self.assertWarnsRegex(UserWarning, "Input #0 requires gradient and is not a double precision"):
with self.assertRaisesRegex(ValueError, 'MKLDNN inputs are not support for forward AD gradcheck.'):
gradcheck(lambda x: x.to_dense(), (x,), raise_exception=False, fast_mode=True, check_forward_ad=True,
atol=1e-1, rtol=1e-1)
@unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled")
def test_gradcheck_test_outputs(self):
def check(fast_mode):
# when sparse outputs (always raise even if raise_exception=False)
x = torch.rand(10, requires_grad=True).to_sparse()
with self.assertRaisesRegex(ValueError, 'Sparse output is not supported at gradcheck yet'):
gradcheck(lambda x: x, (x,), check_sparse_nnz=True, check_batched_grad=False, raise_exception=False,
fast_mode=fast_mode)
# when mkldnn outputs (always raise even if raise_exception=False)
root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True)
with self.assertRaisesRegex(ValueError, 'MKLDNN output is not supported at gradcheck yet'):
gradcheck(lambda x: x.to_mkldnn(), (root,), check_batched_grad=False, raise_exception=False, fast_mode=fast_mode)
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_check_no_differentiable_outputs(self):
def check(fast_mode):
# When none of the outputs are differentiable, but numerical gradient is not zero
x = torch.ones((1,), requires_grad=True)
with self.assertRaisesRegex(RuntimeError, 'Numerical gradient for function expected to be zero'):
gradcheck(lambda x: torch.tensor([x]), x)
self.assertFalse(gradcheck(lambda x: torch.tensor([x]), x, raise_exception=False, fast_mode=fast_mode))
# succeed when no outputs at all
self.assertTrue(gradcheck(lambda x: (), (x,), fast_mode=fast_mode))
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_check_batched_grad(self):
def check(fast_mode):
x = torch.rand(10, dtype=torch.double, requires_grad=True).to_sparse()
# runtime error while compute batched grad (print big error)
with self.assertRaisesRegex(RuntimeError, 'gradcheck or gradgradcheck failed while testing batched gradient'):
gradcheck(lambda x: x.to_dense(), (x,), check_sparse_nnz=True, check_batched_grad=True, fast_mode=fast_mode)
self.assertFalse(gradcheck(lambda x: x.to_dense(), (x,), check_sparse_nnz=True, check_batched_grad=True,
raise_exception=False, fast_mode=fast_mode))
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_backward_mul_by_grad_output(self):
# when grad_input is sparse and has incorrect sparse_dim/dense_dim
def check(fast_mode):
def fn(x):
def hook(grad):
if grad is not None:
return grad.to_dense().to_sparse(1)
return grad
y = x.clone()
y.register_hook(hook)
return y.to_dense()
x = torch.ones((2, 2), dtype=torch.double, requires_grad=True).to_sparse()
with self.assertRaisesRegex(RuntimeError, 'grad is sparse tensor, but has incorrect sparse_dim'):
gradcheck(fn, (x,), atol=1e-1, check_sparse_nnz=True, check_batched_grad=False, fast_mode=fast_mode)
self.assertFalse(gradcheck(fn, (x,), atol=1e-1, check_sparse_nnz=True, check_batched_grad=False,
raise_exception=False, fast_mode=fast_mode))
# when backward not multiplied by grad_output (non-sparse case)
def fn2(x):
y = x.clone()
y.register_hook(lambda x: x + 1e-2)
return y
x = torch.ones(1, dtype=torch.double, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, 'backward not multiplied by grad_output'):
gradcheck(fn2, (x,), atol=1e-1, fast_mode=fast_mode)
self.assertFalse(gradcheck(fn2, (x,), atol=1e-1, raise_exception=False, fast_mode=fast_mode))
# when backward not multiplied by grad_output (sparse case)
def fn3(x):
y = x.clone().to_dense()
y.register_hook(lambda x: x + 1e-2)
return y
x = torch.ones(1, dtype=torch.double, requires_grad=True).to_sparse()
with self.assertRaisesRegex(RuntimeError, 'backward not multiplied by grad_output'):
gradcheck(fn3, (x,), atol=1e-1, check_sparse_nnz=True, check_batched_grad=False, fast_mode=fast_mode)
self.assertFalse(gradcheck(fn3, (x,), atol=1e-1, check_sparse_nnz=True, check_batched_grad=False,
raise_exception=False, fast_mode=fast_mode))
# when layout of grad_input is not the same as input
class Test(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, x):
return x.to_sparse()
x = torch.ones(1, dtype=torch.double, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, 'grad is incorrect layout'):
gradcheck(Test.apply, (x,), check_batched_grad=False, fast_mode=fast_mode)
self.assertFalse(gradcheck(Test.apply, (x,), check_batched_grad=False, raise_exception=False, fast_mode=fast_mode))
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_undefined_grad(self):
def check(fast_mode):
# when encounter runtime error while running backward
def fn(x):
def hook(x):
if x is None:
raise RuntimeError("x is undefined")
y = x.clone()
y.register_hook(hook)
return y
x = torch.ones(1, dtype=torch.double, requires_grad=True)
with self.assertWarnsRegex(UserWarning, "Backwards compatibility: New undefined gradient support checking feature"):
with self.assertRaisesRegex(RuntimeError, 'Expected backward function to handle undefined output grads'):
gradcheck(fn, (x,), fast_mode=fast_mode)
self.assertFalse(gradcheck(fn, (x,), raise_exception=False, fast_mode=fast_mode))
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_jacobian_mismatch(self):
def check(fast_mode):
def fn(x): # R -> R, C -> C
y = x.clone()
y.register_hook(lambda x: x + 1e-2)
return y
x = torch.ones(2, 2, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, 'Jacobian mismatch for output 0 with respect to input 0'):
gradcheck(fn, (x,), fast_mode=fast_mode)
self.assertFalse(gradcheck(fn, (x,), raise_exception=False, fast_mode=fast_mode))
x_c = torch.ones(2, 2, requires_grad=True, dtype=torch.complex128)
with self.assertRaisesRegex(RuntimeError, 'While considering the imaginary part of complex outputs only'):
gradcheck(fn, (x_c,), fast_mode=False)
self.assertFalse(gradcheck(fn, (x_c,), raise_exception=False, fast_mode=False))
def fn2(x): # R -> C
y = torch.complex(x, x)
y.register_hook(lambda x: x + 1e-2)
return y
x = torch.ones(2, 2, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, 'While considering the imaginary part of complex outputs only'):
gradcheck(fn2, (x,), fast_mode=False)
self.assertFalse(gradcheck(fn2, (x,), raise_exception=False, fast_mode=False))
def fn3(x): # C -> R
y = torch.real(x)
y.register_hook(lambda x: x + 1e-2)
return y
with self.assertRaisesRegex(RuntimeError, 'Jacobian mismatch for output 0 with respect to input 0'):
gradcheck(fn3, (x_c,), fast_mode=False)
self.assertFalse(gradcheck(fn3, (x_c,), raise_exception=False, fast_mode=False))
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_dense_and_sparse_inputs(self):
def check(fast_mode):
def fn(x, y):
return x * y.coalesce().to_dense()
a = torch.rand(2, 2, dtype=torch.double, requires_grad=True)
b = torch.rand(2, 2, dtype=torch.double,).to_sparse().requires_grad_(True)
self.assertTrue(gradcheck(fn, (a, b), check_sparse_nnz=True, check_batched_grad=False, fast_mode=fast_mode))
check(fast_mode=True)
check(fast_mode=False)
@unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled")
def test_gradcheck_multiple_mkldnn_inputs(self):
def check(fast_mode):
def fn(x, y):
return x + y.to_dense()
a = torch.rand(10, requires_grad=True)
b = torch.rand(10, dtype=torch.float32).to_mkldnn().requires_grad_(True)
self.assertTrue(gradcheck(fn, (a, b), atol=1e-1, check_batched_grad=False, fast_mode=fast_mode))
def fn2(x, y):
return x.to_dense() + y.to_dense()
c = torch.rand(10, dtype=torch.float32).to_mkldnn().requires_grad_(True)
self.assertTrue(gradcheck(fn, (a, c), atol=1e-1, check_batched_grad=False, fast_mode=fast_mode))
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_output_shape_or_dtype_depend_on_values(self):
def check(fast_mode):
def fn(x):
if torch.all(x >= 1):
return torch.cat([x, x])
else:
return x
a = torch.ones(1, dtype=torch.double, requires_grad=True)
with self.assertRaisesRegex(AssertionError, 'return outputs with the same shape when inputs are perturbed'):
self.assertTrue(gradcheck(fn, (a,), fast_mode=fast_mode))
def fn2(x):
if torch.all(x >= 1):
return x.to(torch.float32)
else:
return x
with self.assertRaisesRegex(AssertionError, 'return outputs with the same dtype when inputs are perturbed'):
self.assertTrue(gradcheck(fn2, (a,), fast_mode=fast_mode))
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_complex_non_complex_outputs(self):
def fn(x, y):
z = torch.complex(x, y)
return z, x + 1
a = torch.ones(2, 2, requires_grad=True, dtype=torch.float64)
b = torch.ones(2, 2, requires_grad=True, dtype=torch.float64)
self.assertTrue(gradcheck(fn, (a, b)))
def fn2(z):
return z, torch.real(z)
c = torch.ones(2, 2, requires_grad=True, dtype=torch.complex128)
self.assertTrue(gradcheck(fn2, (c)))
def test_gradcheck_get_numerical_jacobian(self):
# get_numerical_jacobian is deprecated and no longer used internally by gradcheck
from torch.autograd.gradcheck import get_numerical_jacobian
def fn(inputs):
# get_numerical_jacobian requires fn to take inputs as a tuple
# and returns the jacobian wrt the first output
x = inputs[0]
y = inputs[1]
return 2 * x + y, x + 2 * y
a = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)
b = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)
with self.assertWarnsRegex(UserWarning, "get_numerical_jacobian was part of PyTorch's private API"):
jacobian = get_numerical_jacobian(fn, (a, b), target=a, eps=1e-6)
self.assertEqual(jacobian[0], 2 * torch.eye(4, dtype=torch.double))
with self.assertWarnsRegex(UserWarning, "get_numerical_jacobian was part of PyTorch's private API"):
jacobian = get_numerical_jacobian(fn, (a, b), eps=1e-6)
self.assertEqual(jacobian[0], 2 * torch.eye(4, dtype=torch.double))
self.assertEqual(jacobian[1], 1 * torch.eye(4, dtype=torch.double))
with self.assertRaisesRegex(ValueError, "Expected grad_out to be 1.0"):
jacobian = get_numerical_jacobian(fn, (a, b), eps=1e-6, grad_out=2.0)
def test_gradcheck_get_analytical_jacobian(self):
from torch.autograd.gradcheck import get_analytical_jacobian
def fn(x, y):
return 2 * x + y, x + 2 * y
a = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)
b = torch.rand(2, 2, requires_grad=True, dtype=torch.float64)
outputs = fn(a, b)
with self.assertWarnsRegex(UserWarning, "get_analytical_jacobian was part of PyTorch's private API"):
jacobians, reentrant, correct_grad_sizes, correct_grad_types = get_analytical_jacobian((a, b), outputs[0])
self.assertEqual(jacobians[0], 2 * torch.eye(4, dtype=torch.double))
self.assertEqual(jacobians[1], 1 * torch.eye(4, dtype=torch.double))
self.assertTrue(reentrant)
class NonDetFunc(Function):
@staticmethod
def forward(ctx, x, jitter=0.0):
ctx._jitter = jitter
return x
@staticmethod
def backward(ctx, grad_out):
return NonDetFunc.apply(grad_out, ctx._jitter) * (1 + torch.rand_like(grad_out) * ctx._jitter), None
outputs = NonDetFunc.apply(a, 1e-6)
with self.assertWarnsRegex(UserWarning, "get_analytical_jacobian was part of PyTorch's private API"):
jacobians, reentrant, correct_grad_sizes, correct_grad_types = get_analytical_jacobian((a,), outputs)
self.assertFalse(reentrant)
with self.assertRaisesRegex(ValueError, "Expected grad_out to be 1.0"):
jacobians, _, _, _ = get_analytical_jacobian((a,), outputs, grad_out=2.0)
def test_gradcheck_custom_error(self):
from torch.autograd.gradcheck import GradcheckError
def check(fast_mode):
def fn(x):
y = x.clone()
y.register_hook(lambda x: x + 1e-2)
return y
x = torch.ones(2, 2, requires_grad=True)
with self.assertRaisesRegex(GradcheckError, 'Jacobian mismatch for output 0 with respect to input 0'):
gradcheck(fn, (x,), fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, 'Jacobian mismatch for output 0 with respect to input 0'):
gradcheck(fn, (x,), fast_mode=fast_mode)
self.assertFalse(gradcheck(fn, (x,), raise_exception=False, fast_mode=fast_mode))
def fn2(x):
raise RuntimeError("Not a GradcheckError!")
# Checks that when raise_exception=False, non-GradcheckErrors are not caught by gradcheck
with self.assertRaisesRegex(RuntimeError, "Not a GradcheckError!"):
gradcheck(fn2, (x,), fast_mode=fast_mode, raise_exception=False)
check(fast_mode=True)
check(fast_mode=False)
def test_gradcheck_forward_ad(self):
def fn(x, y):
return x + y, y
def bad_fn(x, y):
# Hacky way to check if we're currently inside a forward ad level
is_running_forward_ad = fwAD._current_level >= 0
if is_running_forward_ad:
y_p, y_d = fwAD.unpack_dual(y)
y = fwAD.make_dual(y_p, y_d * 1.1)
return x + y, y
err_msg = "Jacobian computed with forward mode mismatch for output 0 with respect to input 1"
for fast_mode in [True, False]:
# Test for all inputs and outputs being real
x = torch.rand(2, dtype=torch.double, requires_grad=True)
y = torch.rand(2, dtype=torch.double, requires_grad=True)
gradcheck(fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, err_msg):
gradcheck(bad_fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
def basic_mul(x):
return torch.view_as_real(torch.resolve_conj(x * 1j))
gradcheck(basic_mul, x, check_forward_ad=True, fast_mode=fast_mode)
# Test for one input and one output being complex
x = torch.rand(2, dtype=torch.cdouble, requires_grad=True)
gradcheck(fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, err_msg):
gradcheck(bad_fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
# Test for all inputs and outputs being complex
y = torch.rand(2, dtype=torch.cdouble, requires_grad=True)
gradcheck(fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
with self.assertRaisesRegex(RuntimeError, err_msg):
gradcheck(bad_fn, (x, y), check_forward_ad=True, fast_mode=fast_mode)
def test_gradcheck_forward_ad_runs_with_no_requires_grad(self):
# Currently requires_grad is used as a easy way for gradcheck to know
# which inputs of the function are meant to be differentiable
# This test checks that when the inputs are passed to the function they should not have
# requires_grad=True even though they may have requires_grad=True when passed
# to gradcheck
class UserFn(Function):
@staticmethod
def forward(ctx, x, y):
if fwAD._current_level >= 0:
self.assertFalse(x.requires_grad)
self.assertFalse(y.requires_grad)
return x.clone(), y.clone()
@staticmethod
def jvp(ctx, x_t, y_t):
return x_t, y_t
x = torch.rand(2, dtype=torch.double, requires_grad=True)
y = torch.rand(2, dtype=torch.double, requires_grad=True)
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=False, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=False)
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=True, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=False)
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=True, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=True)
x = torch.rand(2, dtype=torch.double, requires_grad=True)
y = torch.rand(2, dtype=torch.double, requires_grad=False)
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=True, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=True)
def test_gradcheck_forward_ad_respects_requires_grad(self):
# Currently requires_grad is used as a easy way for gradcheck to know
# which inputs of the function are meant to be differentiable
jvp_count = [0]
class UserFn(Function):
@staticmethod
def forward(ctx, x, y):
return x.clone(), y.clone()
@staticmethod
def jvp(ctx, x_t, y_t):
jvp_count[0] += 1
return x_t, y_t
# NB: In slow gradcheck we need to loop through numel times so use numel = 1 to ensure
# that fast and slow have the same counts
x = torch.rand(1, dtype=torch.double, requires_grad=True)
y = torch.rand(1, dtype=torch.double, requires_grad=True)
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=False, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=False)
self.assertEqual(jvp_count[0], 2) # (2) once per input
jvp_count = [0]
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=True, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=False)
self.assertEqual(jvp_count[0], 6) # (+4): (once with normal ZT (+1), once with efficient ZT (+1)) for each input (x2)
jvp_count = [0]
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=True, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=True)
self.assertEqual(jvp_count[0], 12) # (+6): (compute batch of 2 with vmap (+1), with a loop (+2)) for each input (x2)
jvp_count = [0]
# Repeat the previous test except we mark one input with requires_grad=False
# NB: _test_undefined_forward_mode is only (+1), when function has single differentiable input, not (+2)!
# Otherwise, other counts are halved.
x = torch.rand(1, dtype=torch.double, requires_grad=True)
y = torch.rand(1, dtype=torch.double, requires_grad=False)
gradcheck(UserFn.apply, (x, y), check_forward_ad=True, check_undefined_grad=True, check_backward_ad=False,
check_batched_grad=False, check_batched_forward_grad=True)
self.assertEqual(jvp_count[0], 5) # 1 + 1 + 3
def test_gradcheck_check_forward_or_backward_only(self):
"""Depending on settings for check_forward_ad and check_backward_ad, the
correct codepaths should be reached (or not reached)
"""
fwd_fail_err_msg = "FAIL FWD"
bwd_fail_err_msg = "FAIL BWD"
class UserFn(Function):
@staticmethod
def forward(ctx, foo, fwd_bad, bwd_bad):
ctx.fwd_bad = fwd_bad
ctx.bwd_bad = bwd_bad
return foo * 2
@staticmethod
def vjp(ctx, gO):
if ctx.bwd_bad:
raise RuntimeError(bwd_fail_err_msg)
else:
return 2 * gO, None, None
@staticmethod
def jvp(ctx, gI, _1, _2):
if ctx.fwd_bad:
raise RuntimeError(fwd_fail_err_msg)
else:
return 2 * gI
for fast_mode in (True, False):
for check_forward_ad in (True, False):
for check_backward_ad in (True, False):
for fwd_bad in (True, False):
for bwd_bad in (True, False):
fwd_should_fail = fwd_bad and check_forward_ad
bwd_should_fail = bwd_bad and check_backward_ad
def run():
gradcheck(UserFn.apply, (x, fwd_bad, bwd_bad), check_forward_ad=check_forward_ad,
check_backward_ad=check_backward_ad, check_undefined_grad=check_backward_ad,
check_batched_grad=check_backward_ad, fast_mode=fast_mode)
x = torch.rand(2, dtype=torch.double, requires_grad=True)
if not check_forward_ad and not check_backward_ad:
with self.assertRaisesRegex(AssertionError, "Expected at least one of"):
run()
continue
if not fwd_should_fail and not bwd_should_fail:
run()
else:
# If both fail, backward AD failure "hides" forward AD failure
if fwd_should_fail:
fail_msg = fwd_fail_err_msg
if bwd_should_fail:
fail_msg = bwd_fail_err_msg
with self.assertRaisesRegex(RuntimeError, fail_msg):
run()
def test_gradcheck_forward_ad_batched_grad(self):
x = torch.rand(2, dtype=torch.double, requires_grad=True)
# multiple inputs and outputs with non-tensors inputs
def fn1(a: torch.Tensor, b: int):
return a.clone(), a + 1
gradcheck(fn1, (x, 1), check_forward_ad=True, check_backward_ad=False, check_batched_grad=False,
check_undefined_grad=False, check_batched_forward_grad=True)
# unrelated inputs: tangent for c is None
def fn2(a: torch.Tensor, c: torch.Tensor):
return a.clone()
gradcheck(fn2, (x, x.clone()), check_forward_ad=True, check_backward_ad=False, check_batched_grad=False,
check_undefined_grad=False, check_batched_forward_grad=True)
class Fn(Function):
@staticmethod
def forward(ctx, foo):
return foo * 2
@staticmethod
def vjp(ctx, gO):
return gO * 2
@staticmethod
def jvp(ctx, gI):
torch.randn_like(gI)
return gI * 2
msg = "vmap: We do not yet support calling random operations inside of vmap"
with self.assertRaisesRegex(RuntimeError, msg):
gradcheck(Fn.apply, (x,), check_forward_ad=True, check_batched_forward_grad=True)
def test_version_counter(self):
x = torch.randn(1, 2)
# In-place op bumps version
x_saved_version = x._version
x.add_(1).add_(1)
self.assertTrue(x._version > x_saved_version)
# Differentiable view shares version counter
xz = x[:]
self.assertTrue(x._version == xz._version)
xz.add_(1)
self.assertTrue(x._version == xz._version)
# `x.data = y` preserves version counter of `x`
x_saved_version = x._version
x.data = torch.randn(2, 3)
self.assertTrue(x._version == x_saved_version)
x.add_(1)
self.assertTrue(x._version > x_saved_version)
# Make sure `x` is still using the same version counter it shares with `xz`
self.assertTrue(x._version == xz._version)
# In-place op on `xz` also updates version of `x`,
# because they share the version counter
xz.add_(1)
self.assertTrue(x._version == xz._version)
def test_set_data_tensorimpl_type(self):
# Dense tensor has impl of type `TensorImpl`, while sparse tensor has impl
# of type `SparseTensorImpl`.
x = torch.randn(1, 2)
x_s = torch.sparse_coo_tensor(torch.zeros([1, 1]), torch.ones([1]))
with self.assertRaisesRegex(RuntimeError, 'incompatible tensor type'):
x.data = x_s
def test_set_data_preserve_pyobj(self):
a = torch.randn(1, 2)
b = torch.randn(1, 2)
b_id_saved = id(b)
b.data = a
self.assertTrue(b_id_saved == id(b))
def test_set_data_self_requires_grad(self):
a = torch.tensor(1.0, requires_grad=True)
b = torch.tensor(2.0)
c = torch.tensor(3, dtype=torch.int64)
a.data = b
with self.assertRaisesRegex(RuntimeError, 'must be floating point or complex dtype'):
a.data = c
@unittest.skipIf(IS_WINDOWS, "Skipping because doesn't work for windows")
def test_thread_shutdown(self):
code = """import torch
from torch.autograd import Function
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, grad):
return grad
for shape in [(1,), ()]:
v = torch.ones(shape, requires_grad=True)
MyFunction.apply(v).backward()
"""
s = TestCase.runWithPytorchAPIUsageStderr(code)
# The autograd engine creates worker threads only when GPU devices are present.
# So make sure that we do shutdown threads when we're testing cuda and make sure
# that there is no thread to shutdown when we're not using cuda.
if TEST_CUDA or torch.backends.mps.is_available():
self.assertRegex(s, "PYTORCH_API_USAGE torch.autograd.thread_shutdown")
else:
self.assertNotRegex(s, "PYTORCH_API_USAGE torch.autograd.thread_shutdown")
@unittest.skipIf(IS_MACOS, "Fails with SIGBUS on macOS; https://github.com/pytorch/pytorch/issues/25941")
def test_deep_reentrant(self):
class DeepReentrant(Function):
@staticmethod
def forward(ctx, x):
with torch.enable_grad():
ctx.x = Variable(x.detach(), requires_grad=True)
ctx.x = ctx.x - 1
return ctx.x.detach()
@staticmethod
def backward(ctx, x):
if ctx.x < 0:
return x
with torch.enable_grad():
DeepReentrant.apply(ctx.x).sum().backward()
return x
# Test stack overflow escape mechanism
v = torch.tensor(2000.0, requires_grad=True)
# This will cause stack overflow if reentrant calls are handled
# in the same thread recursively
DeepReentrant.apply(v).sum().backward()
# Test stack overflow escape mechanism multiple times
# to ensure reusing workers in the pool works fine
v2 = torch.tensor(200.0, requires_grad=True)
DeepReentrant.apply(v2).sum().backward()
def test_reentrant_priority(self):
order = []
class MyFunction(Function):
@staticmethod
def forward(ctx, x):
return x
@staticmethod
def backward(ctx, x):
order.append("MyFunction")
return x
class Reentrant(Function):
@staticmethod
def forward(ctx, x):
with torch.enable_grad():
ctx.x = Variable(x.detach(), requires_grad=True)
ctx.x = ctx.x - 1
return ctx.x.detach()
@staticmethod
def backward(ctx, x):
order.append("Reentrant")
if ctx.x < 0:
return x
with torch.enable_grad():
Reentrant.apply(ctx.x).backward()
return x
a = MyFunction.apply(torch.tensor(6.0, requires_grad=True))
b = Reentrant.apply(torch.tensor(9.0, requires_grad=True))
v = a * b
v.backward()
# The tasks for the Reentrant and MyFunction backward() will be added
# to the queue in the autograd engine at the same time. The backward
# for Reentrant will be executed first, which will then add other
# backward tasks to the queue. We want to ensure all the reentrant tasks
# are prioritized over the MyFunction backward task regardless of their
# sequence numbers
self.assertEqual(len(order), 11)
self.assertEqual(order.count("Reentrant"), 10)
self.assertEqual(order[-1], "MyFunction")
@slowTest
def test_checkpointing(self):
num_inp = 2000
nz_inp = 10
nz_out = 10
nz_bottleneck = 1000
# small proxy network for some complex reasoning we want to do per input
module = nn.Sequential(
nn.Linear(nz_inp, nz_bottleneck),
nn.ReLU(),
nn.Linear(nz_bottleneck, nz_inp)
)
feat_combined = []
for r in range(num_inp):
data_r = torch.empty(1, nz_inp)
data_r.uniform_()
data_r.requires_grad = True
feat_r = checkpoint(module, data_r)
feat_combined.append(feat_r)
# compute mean as a proxy for some joint reasoning
mean_combined = torch.stack(feat_combined).mean()
mean_combined.backward()
def _test_checkpointing_non_reentrant_autocast(self, device_type):
for enabled in [True, False]:
def foo(x, y, z):
# torch.mm is on autocast's list of ops that should run in
# the autocast precision
x = torch.mm(x, y)
y = torch.mm(x, z)
z = torch.mm(z, z)
expected_dtype = (
torch.float32 if not enabled else torch.bfloat16
)
self.assertEqual(expected_dtype, z.dtype)
return z
x = torch.randn(3, 3, requires_grad=True)
y = torch.randn(3, 3, requires_grad=True)
z = torch.randn(3, 3, requires_grad=True)
if device_type == 'cuda':
x = x.cuda()
y = y.cuda()
z = z.cuda()
with torch.autocast(enabled=enabled, device_type=device_type, dtype=torch.bfloat16):
loss = checkpoint(foo, x, y, z, use_reentrant=False)
loss = loss.sum()
# Without saving + recasting the autocast type, would raise error in autograd
# about mismatched dtypes.
loss.backward() # triggers recomputation to check it runs in bfloat
def test_checkpointing_non_reentrant_autocast_cpu(self):
"""
Test that autocast args such as the dtype are preserved during non-reentrant
checkpoint recomputation on CPU.
"""
self._test_checkpointing_non_reentrant_autocast(device_type='cpu')
@unittest.skipIf(
not torch.cuda.is_available() or not torch.cuda.is_bf16_supported(),
"Test requires CUDA bf16 support"
)
def test_checkpointing_non_reentrant_autocast_gpu(self):
"""
Test that autocast args/kwargs such as the dtype are preserved during
non-reentrant checkpoint recomputation on GPU.
"""
self._test_checkpointing_non_reentrant_autocast(device_type='cuda')
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA")
@slowTest
def test_checkpointing_without_reentrant_memory_savings(self):
class MyModel(nn.Module):
def __init__(self, n, use_checkpoint, use_reentrant):
super().__init__()
self.n = n
self.use_checkpoint = use_checkpoint
self.use_reentrant = use_reentrant
self.layers = nn.ModuleList()
for i in range(self.n):
layer = nn.Sequential(
nn.Linear(256, 256), nn.Linear(256, 256), nn.Linear(256, 256)
)
self.layers.append(layer)
# pre-allocate the grad so that increased memory usage is mainly
# due to activations.
for layer in self.layers:
for lin in layer:
lin.weight.grad = torch.ones_like(lin.weight)
lin.bias.grad = torch.ones_like(lin.bias)
def forward(self, x):
for i in range(self.n):
if not self.use_checkpoint:
x = self.layers[i](x)
else:
x = checkpoint(self.layers[i], x, use_reentrant=self.use_reentrant)
return x
model_no_checkpoint = MyModel(8, use_checkpoint=False, use_reentrant=False).cuda()
model_reentrant_checkpoint = MyModel(8, use_checkpoint=True, use_reentrant=True).cuda()
model_no_reentrant_checkpoint = MyModel(8, use_checkpoint=True, use_reentrant=False).cuda()
x = torch.randn(100, 256, requires_grad=True, device='cuda')
torch.cuda.reset_peak_memory_stats()
loss = model_no_checkpoint(x.clone()).sum()
loss.backward()
mem_no_checkpoint = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
loss = model_reentrant_checkpoint(x.clone()).sum()
loss.backward()
mem_reentrant_checkpoint = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
loss = model_no_reentrant_checkpoint(x.clone()).sum()
loss.backward()
mem_no_reentrant_checkpoint = torch.cuda.max_memory_allocated()
self.assertTrue(mem_reentrant_checkpoint < mem_no_checkpoint)
self.assertTrue(mem_no_reentrant_checkpoint < mem_no_checkpoint)
def test_checkpointing_without_reentrant_custom_function_works(self):
class MyFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y, z):
w = x * y * z
out = w + w
ctx.save_for_backward(x, y, z, w, out)
return out
@staticmethod
def backward(ctx, grad_out):
x, y, z, w, out = ctx.saved_tensors
# Accessing the saved Tensors a second time is fine
# as they get cleared only when the SavedVariable
# get cleared which happens after this function returns
x_2, y_2, z_2, w_2, out_2 = ctx.saved_tensors
return x, y, z
x = torch.tensor(1., requires_grad=True)
y = torch.tensor(2., requires_grad=True)
z = torch.tensor(3., requires_grad=True)
def foo(x, y, z):
x = x * y * z
y = y * y * z
z = z * z
out = MyFunc.apply(x, y, z)
return out
out = checkpoint(foo, x, y, z, use_reentrant=False)
out.sum().backward()
def test_access_saved_tensor_twice_without_recomputation_works(self):
def foo(a):
b = a * a
c = a * b
d = torch.exp(a)
return d
a = torch.randn(5, requires_grad=True)
d = checkpoint(foo, a, use_reentrant=False)
# First access
d.grad_fn._saved_result
# Second access still works as the saved variable was not cleared
d.grad_fn._saved_result
# Backward clears the saved variable
d.sum().backward()
# Now it raises an error
with self.assertRaisesRegex(
RuntimeError,
"or directly access saved tensors after they have already been freed"
):
d.grad_fn._saved_result
@slowTest
@parametrize("input_requires_grad", [True, False])
def test_checkpointing_without_reentrant(self, input_requires_grad):
"""
Basic test for checkpoint without reentrant autograd.
"""
num_inp = 2000
nz_inp = 10
nz_out = 10
nz_bottleneck = 1000
# small proxy network for some complex reasoning we want to do per input
module = nn.Sequential(
nn.Linear(nz_inp, nz_bottleneck),
nn.ReLU(),
nn.Linear(nz_bottleneck, nz_inp)
)
# Module holder for testing activation checkpointing with no_reentrant
# supports kwargs.
class MyModule(nn.Module):
def __init__(self, mod):
super().__init__()
self.module = mod
def forward(self, data):
return self.module(data)
module = MyModule(mod=module)
# Run model with and without checkpointing and verify gradients are
# equivalent, regardless of if inputs require grads or not.
module_copy = deepcopy(module)
feat_combined = []
feat_combined_no_checkpoint = []
for r in range(num_inp):
data_r = torch.empty(1, nz_inp)
data_r.uniform_()
data_r.requires_grad = input_requires_grad
data_r_copy = data_r.clone()
feat_r = checkpoint(module, data=data_r, use_reentrant=False)
feat_combined.append(feat_r)
feat_r_no_checkpoint = module_copy(data_r)
feat_combined_no_checkpoint.append(feat_r_no_checkpoint)
# compute mean as a proxy for some joint reasoning
mean_combined = torch.stack(feat_combined).mean()
mean_combined.backward()
mean_combined_no_checkpoint = torch.stack(feat_combined_no_checkpoint).mean()
mean_combined_no_checkpoint.backward()
for checkpoint_param, param in zip(module.parameters(), module_copy.parameters()):
self.assertEqual(checkpoint_param.grad, param.grad)
def test_checkpoint_valid_reset_on_error(self):
a = torch.randn(2, 2, requires_grad=True)
with self.assertRaisesRegex(Exception, "Checkpointing is not compatible with .grad()"):
b = checkpoint(torch.exp, a).sum()
torch.autograd.grad(b, (a,))
c = checkpoint(torch.exp, a).sum()
c.backward()
@parametrize("use_reentrant", [True, False])
def test_checkpointing_without_reentrant_detached_tensor(self, use_reentrant):
class NoGradModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 2, bias=False)
self.lin2 = nn.Linear(2, 2, bias=False)
def forward(self, x):
with torch.no_grad():
return self.lin2(self.linear(x))
module = NoGradModule()
err_ctx = (
self.assertRaisesRegex(
RuntimeError,
"none of output has requires_grad=True"
)
if use_reentrant
else contextlib.suppress()
)
a = torch.randn(2, 2, requires_grad=True)
for _ in range(3):
with err_ctx:
# out does not require grad
out = checkpoint(module, a, use_reentrant=use_reentrant)
# Make loss require grad, otherwise we would run into
# "element 0 of tensors does not require grad and does not have a grad_fn"
out += a
out.sum().backward()
def test_checkpointing_without_reentrant_correct_grad(self):
"""
Verifies that correct gradients are calculated for checkpoint
without reentrant autograd, for both backward() and autograd.grad().
"""
a = torch.randn(2, 2, requires_grad=True)
b = torch.exp(a).sum()
b.backward()
b_grad = a.grad
a.grad = None
c = checkpoint(torch.exp, a, use_reentrant=False).sum()
c.backward()
c_grad = a.grad
a.grad = None
d = checkpoint(torch.exp, a, use_reentrant=False).sum()
d_grad, = torch.autograd.grad(d, (a,))
self.assertEqual(b_grad, c_grad)
self.assertEqual(b_grad, d_grad)
def test_checkpointing_without_reentrant_dataparallel(self):
"""
Verifies gradient correctness when checkpoint without reentrant autograd
is used in conjunction with DataParallel.
"""
class LinearModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 2, bias=False)
def forward(self, inp):
return self.linear(inp)
a = torch.randn(2, 2, requires_grad=True)
if torch.cuda.is_available():
a = a.cuda()
model = LinearModule()
if torch.cuda.is_available():
model = model.cuda()
b = deepcopy(model)(a).sum()
b.backward()
b_grad = a.grad
a.grad = None
module = torch.nn.DataParallel(deepcopy(model))
c = checkpoint(module, a, use_reentrant=False).sum()
c.backward()
c_grad = a.grad
self.assertEqual(b_grad, c_grad)
def test_checkpointing_without_reentrant_parameter_used_in_an_out(self):
"""
Ensures that gradient hooks are only called once per tensor.
"""
w = torch.randn(10, 10, requires_grad=True)
count = 0
def hook(grad):
nonlocal count
count += 1
w.register_hook(hook)
x = torch.rand(10, 10, requires_grad=True)
h = w * x # Using w outside the checkpoint
out = checkpoint(lambda x: w * x, h, use_reentrant=False) # Using w inside the checkpoint
out.sum().backward()
# should only call hook once
self.assertEqual(count, 1)
def test_checkpointing_without_reentrant_arbitrary_input_output(self):
"""
Ensures checkpointing without reentrant autograd works with functions
with arbitrary input/output structures.
"""
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(5, 5, bias=False)
def forward(self, dict_input):
tensor = dict_input["tensor"]
return {
"result": self.layer(tensor)
}
model_no_checkpoint = MyModel()
model_checkpoint_without_reentrant = deepcopy(model_no_checkpoint)
inp = {
"tensor": torch.randn(5, 5)
}
out_no_checkpoint = model_no_checkpoint(inp)["result"].sum()
out_checkpoint = checkpoint(
model_checkpoint_without_reentrant,
inp,
use_reentrant=False
)["result"].sum()
self.assertEqual(out_checkpoint, out_no_checkpoint)
out_no_checkpoint.backward()
out_checkpoint.backward()
for param, checkpoint_param in zip(model_no_checkpoint.parameters(), model_checkpoint_without_reentrant.parameters()):
self.assertEqual(param.grad, checkpoint_param.grad)
def test_callback_adds_callback(self):
called = [0]
def callback_final():
called[0] += 1
def callback_adds_callback():
called[0] += 1
Variable._execution_engine.queue_callback(callback_final)
class MyFunc(Function):
@staticmethod
def forward(ctx, input):
return input
@staticmethod
@once_differentiable
def backward(ctx, grad):
Variable._execution_engine.queue_callback(callback_adds_callback)
return grad
a = torch.rand((3, 3), requires_grad=True)
b = MyFunc.apply(a)
b.sum().backward()
self.assertEqual(called[0], 2)
def _test_reentrant_with_callbacks(self, install_callbacks_in_depths):
counter = {}
counter["inner"] = 0
counter["outer"] = 0
def inc_inner_counter():
counter["inner"] += 1
def inc_outer_counter():
counter["outer"] += 1
class MyFunc(Function):
@staticmethod
def forward(ctx, input):
return input
@staticmethod
@once_differentiable
def backward(ctx, input):
if 1 in install_callbacks_in_depths:
# Add a callback to execute.
Variable._execution_engine.queue_callback(inc_inner_counter)
return input
class MyReentrantFunc(Function):
@staticmethod
def forward(ctx, input):
return input
@staticmethod
@once_differentiable
def backward(ctx, input):
if 0 in install_callbacks_in_depths:
# Add a callback to execute.
Variable._execution_engine.queue_callback(inc_outer_counter)
# Reentrant backward call.
tmp_inp = input.detach().requires_grad_()
with torch.enable_grad():
tmp_out = (MyFunc.apply(tmp_inp)).sum()
tmp_out.backward()
return input
t1 = torch.rand((3, 3), requires_grad=True)
t2 = MyReentrantFunc.apply(t1)
t3 = t2.sum()
torch.autograd.backward([t3])
return counter
def test_reentrant_with_callbacks_depth_0(self):
# Verify callback is called only once.
ret = self._test_reentrant_with_callbacks([0])
self.assertEqual(1, ret["outer"])
self.assertEqual(0, ret["inner"])
def test_reentrant_with_callbacks_depth_1(self):
# Verify callback is called only once.
ret = self._test_reentrant_with_callbacks([1])
self.assertEqual(0, ret["outer"])
self.assertEqual(1, ret["inner"])
def test_reentrant_with_callbacks_both_depths(self):
# Verify callback is called twice.
ret = self._test_reentrant_with_callbacks([0, 1])
self.assertEqual(1, ret["outer"])
self.assertEqual(1, ret["inner"])
def test_reentrant_with_leaf_variable_hook(self):
handle = None
param = torch.rand(10, requires_grad=True)
def add_gradient_penalty_to_grad(grad):
handle.remove()
old_param_grad = grad
param.grad = None
# Add some sort of gradient penalty by directly updating the gradients
with torch.enable_grad():
g = grad.detach().requires_grad_()
new_param = param.detach().requires_grad_()
out = ((g * 2) + new_param).sum()
out.backward()
res = g.grad + grad
param.grad = old_param_grad
return res
handle = param.register_hook(add_gradient_penalty_to_grad)
# Forward pass
tmp = (param * param)
loss = tmp.sum()
# Compute the gradients
loss.backward()
def test_reentrant_with_non_leaf_variable_hook(self):
handle = None
param = torch.rand(10, requires_grad=True)
def manual_increase_gradient(grad):
handle.remove()
# Add some sort of gradient penalty by directly updating the gradients
with torch.enable_grad():
g = grad.detach().requires_grad_()
out = ((g * 2) + 5).sum()
out.backward()
res = g.grad + grad
return res
# Forward pass
tmp = (param * param)
handle = tmp.register_hook(manual_increase_gradient)
loss = tmp.sum()
# Compute the gradients
loss.backward()
self.assertEqual(param.grad, 6 * param)
def test_grad_fn_attr_bindings(self):
# Check that the getter of each type returns what we want
# See `gen_autograd_functions.py` for how the getters are generated
#
# This test is only meant to check if the codegen'd bindings work
# Please help update this test if you update the names of any the fields we check!
#
a = torch.ones(1, requires_grad=True)
b = torch.zeros(1, requires_grad=True)
out1 = torch.stack([a, b], dim=0)
out2 = (a * 2) * b
# TODO: I don't think we have a backward saving a list of tensors
# at the moment. It used to be stack, but for no reason...
# see discussion in #84993
# self.assertEqual(out.grad_fn._saved_tensors, (a, b)) # TewnsorList -> Tuple[Tensor]
self.assertEqual(out2.grad_fn._saved_self, a * 2)
self.assertIsInstance(out2.grad_fn._saved_self, torch.Tensor)
self.assertIsInstance(out2.grad_fn._raw_saved_self, torch._C._autograd.SavedTensor)
self.assertEqual(out1.grad_fn._saved_dim, 0) # int64_t -> int
self.assertIsInstance(out1.grad_fn._saved_dim, int)
out2.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)
out2.sum().backward()
with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
out2.grad_fn._saved_self
# TODO: interestingly, this only happens if indexing into a list grad_fn._raw_saved_tensors[0],
# not when using a saved tensor, see discussion in #84993
# with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
# out2.grad_fn._raw_saved_self
self.assertEqual(out1.grad_fn._saved_dim, 0)
a = torch.ones(2, 2, requires_grad=True)
indices = torch.tensor([0, 1])
out = a[:, indices]
self.assertEqual(out.grad_fn._saved_indices, (None, indices)) # c10::List<c10::optional<Tensor>> -> Tuple[Tensor?]
self.assertIsInstance(out.grad_fn._saved_indices[1], torch.Tensor)
self.assertIsInstance(out.grad_fn._raw_saved_indices[1], torch._C._autograd.SavedTensor)
self.assertEqual(out.grad_fn._saved_self_sizes, a.shape) # IntArrayRef -> Tuple[int]
self.assertIsInstance(out.grad_fn._saved_self_sizes[0], int)
out.grad_fn._raw_saved_indices[1].register_hooks(lambda x: x, lambda x: x)
with self.assertRaisesRegex(RuntimeError, "None is forbidden"):
out.grad_fn._raw_saved_indices[0].register_hooks(lambda x: x, lambda x: x)
a = torch.ones(2, 2, requires_grad=True)
out = a * a
out.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)
out.sum().backward()
with self.assertRaisesRegex(RuntimeError, "after it has been freed"):
out.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)
a = torch.ones(1, 1, 2, requires_grad=True)
out = torch.nn.functional.interpolate(a, 4, mode="linear")
self.assertEqual(out.grad_fn._saved_output_size, (4,)) # c10::optional<IntArrayRef> -> int[]?
self.assertIsInstance(out.grad_fn._saved_output_size[0], int)
self.assertEqual(out.grad_fn._saved_align_corners, False) # bool -> bool
self.assertIsInstance(out.grad_fn._saved_align_corners, bool)
if hasattr(out.grad_fn, '_saved_scale_factors'):
self.assertIsNone(out.grad_fn._saved_scale_factors) # c10::optional<ArrayRef<double>> -> float[]?
else:
self.assertIsNone(out.grad_fn._saved_scales) # c10::optional<ArrayRef<double>> -> float[]?
out = torch.nn.functional.interpolate(a, scale_factor=0.5, mode="linear")
self.assertIsNone(out.grad_fn._saved_output_size)
self.assertEqual(out.grad_fn._saved_scale_factors, (0.5,))
self.assertIsInstance(out.grad_fn._saved_scale_factors[0], float)
a = torch.ones(2, 2, requires_grad=True)
out = torch.pdist(a, p=1)
self.assertEqual(out.grad_fn._saved_p, 1.) # double -> float
self.assertIsInstance(out.grad_fn._saved_p, float)
a = torch.ones(1, 1, 2, requires_grad=True)
out = torch.logit(a, 1.)
self.assertEqual(out.grad_fn._saved_eps, 1.) # c10:optional<double> -> float?
self.assertIsInstance(out.grad_fn._saved_eps, float)
out = torch.logit(a)
self.assertIsNone(out.grad_fn._saved_eps)
if torch._C.has_lapack:
a = torch.ones(1, 1, requires_grad=True)
q, r = torch.linalg.qr(a, mode="reduced")
self.assertEqual(q.grad_fn._saved_mode, "reduced") # std::string -> str
a = torch.tensor([1.], requires_grad=True)
out = torch.div(a, 2., rounding_mode="trunc")
self.assertEqual(out.grad_fn._saved_rounding_mode, "trunc") # c10::optional<std::string> -> str?
out = torch.div(a, 2., rounding_mode=None)
self.assertIsNone(out.grad_fn._saved_rounding_mode) # c10::optional<std::string> -> str?
x = torch.zeros(5, requires_grad=True)
out = torch.threshold(x, threshold=(1 + 0j), value=(1 + 0j))
self.assertIsInstance(out.grad_fn._saved_threshold, complex) # Scalar(complex double) -> complex
cfloat = torch.tensor(1 + 0j, dtype=torch.complex64)
out = torch.threshold(x, threshold=cfloat, value=(1 + 0j))
self.assertIsInstance(out.grad_fn._saved_threshold, complex) # Scalar(complex float) -> complex
out = torch.threshold(x, threshold=1., value=1.)
self.assertIsInstance(out.grad_fn._saved_threshold, float) # Scalar(floating point) -> float
out = torch.threshold(x, threshold=1, value=1)
self.assertIsInstance(out.grad_fn._saved_threshold, int) # Scalar(integral) -> int
out = torch.threshold(x, threshold=False, value=False)
self.assertIsInstance(out.grad_fn._saved_threshold, bool) # Scalar(bool) -> bool
a = torch.ones(2, 2, requires_grad=True)
out = a.as_strided((3,), (1,), 1)
self.assertEqual(out.grad_fn._saved_storage_offset, 1) # c10:optional<int64_t> -> int?
self.assertIsInstance(out.grad_fn._saved_storage_offset, int)
out = a.as_strided((3,), (1,))
self.assertIsNone(out.grad_fn._saved_storage_offset)
a = torch.ones(2, requires_grad=True)
out = torch.tanh(a)
self.assertEqual(out, out.grad_fn._saved_result) # saved variable when output
a = torch.randn(3, 5, requires_grad=True)
b = torch.tensor([1, 0, 4])
loss = nn.NLLLoss()
out = loss(a, b)
self.assertIsNone(out.grad_fn._saved_weight)
loss = nn.NLLLoss(weight=torch.ones((5,)))
out = loss(a, b)
self.assertEqual(out.grad_fn._saved_weight, torch.ones((5,))) # c10:optional<Tensor> -> Tensor?
out.sum().backward()
with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
out.grad_fn._saved_weight
def test_cant_create_saved_tensors(self):
with self.assertRaisesRegex(RuntimeError, "Trying to create a SavedTensor object from Python is forbidden"):
torch.autograd.SavedTensor()
def test_custom_function_saved_tensors(self):
def getFn(save=True):
class MyFn(Function):
@staticmethod
def forward(ctx, x):
if save:
ctx.save_for_backward(x, None)
return x
@staticmethod
def backward(ctx, g):
return g
return MyFn
a = torch.randn(5, requires_grad=True)
y = getFn(True).apply(a)
self.assertEqual((a, None), y.grad_fn.saved_tensors)
saved = y.grad_fn._raw_saved_tensors
self.assertIsInstance(saved[0], torch._C._autograd.SavedTensor)
# We can't tell the underlying tensor is None without unpacking it
self.assertIsInstance(saved[1], torch._C._autograd.SavedTensor)
# We catch that error when the user calls register_hooks on it
with self.assertRaisesRegex(RuntimeError, "None is forbidden"):
saved[1].register_hooks(lambda x: x, lambda x: x)
with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
saved[0].register_hooks(lambda x: x)
with self.assertRaisesRegex(TypeError, "incompatible function arguments"):
saved[0].register_hooks(1, 1)
saved[0].register_hooks(lambda x: x, lambda x: x)
with self.assertRaisesRegex(RuntimeError, "already been set"):
saved[0].register_hooks(lambda x: x, lambda x: x)
y.sum().backward()
# Using a reference to the SavedTensor object after the
# saved variables have been released can lead to undefined behavior
del saved
with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
y.grad_fn._raw_saved_tensors
with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
y.grad_fn.saved_tensors
y = getFn(False).apply(a)
self.assertEqual(y.grad_fn.saved_tensors, ())
self.assertEqual(y.grad_fn._raw_saved_tensors, ())
def test_autograd_views_codegen(self):
# This is not necessarily the absolute correct behavior, but this is the current
# one. This test is here to make sure that any change to this behavior is detected
# and not silent. The TODOs below mark the places with unexpected behavior.
# Note that any change in these test will be BC-breaking and should be done carefully.
# This test checks the behavior of two codegen functions (view_as and unbind)
# with respect to view tracking and inplace operation on the output.
def run_test(grad_mode, requires_grad, is_view, should_raise_tuple):
def maybe_check_raise(fn, should_raise):
self.assertTrue(should_raise is None or isinstance(should_raise, str))
if should_raise is not None:
with self.assertRaisesRegex(RuntimeError, should_raise):
fn()
else:
fn()
inp = torch.rand(2, requires_grad=requires_grad).clone()
with torch.set_grad_enabled(grad_mode):
out = inp.view_as(inp)
# Are they differentiable views?
self.assertTrue(out._is_view() == is_view)
# Are inplace allowed?
maybe_check_raise(lambda: out.add_(1), should_raise_tuple[0])
inp = torch.rand(2, requires_grad=requires_grad).clone()
with torch.set_grad_enabled(grad_mode):
out = inp.unbind()
# Are they differentiable views?
self.assertTrue(out[0]._is_view() == is_view)
self.assertTrue(out[1]._is_view() == is_view)
# Are inplace allowed?
maybe_check_raise(lambda: out[0].add_(1), should_raise_tuple[1])
maybe_check_raise(lambda: out[1].add_(1), should_raise_tuple[2])
# should_raise contains None if it should not raise
# should_raise contains a string of the error if it should raise
# The 3 elements are for view_as, first output of unbind and second output of unbind
run_test(grad_mode=True, requires_grad=False, is_view=True,
should_raise_tuple=(None, None, None))
inp_change_err = "Output {} of UnbindBackward0 is a view and is being modified inplace."
run_test(grad_mode=True, requires_grad=True, is_view=True,
should_raise_tuple=(None, inp_change_err.format("0"), inp_change_err.format("1")))
leaf_grad_err = "A view was created in no_grad mode and is being modified inplace"
run_test(grad_mode=False, requires_grad=True, is_view=True,
should_raise_tuple=(leaf_grad_err, leaf_grad_err, leaf_grad_err))
run_test(grad_mode=False, requires_grad=False, is_view=True,
should_raise_tuple=(None, None, None))
def test_inplace_not_requires_grad(self):
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, inp):
return inp.view_as(inp)
@staticmethod
def backward(ctx, grad):
return grad
# Original Tensor does not require grad
a = torch.rand(1, 2)
# Tensor being written does require grad
b = torch.rand(1, requires_grad=True)
# Take an invalid view on 'a' that should raise an error (warns during deprecation)
view_a = MyFn.apply(a)
with self.assertRaisesRegex(RuntimeError, "This view was created inside a custom Function"):
view_a += b
# Extra test for copy_ that is a manual implementation and could be easily
# forgotten when the codegen is updated (warns during deprecation)
a = torch.rand(1, 2)
b = torch.rand(1, requires_grad=True)
view_a = MyFn.apply(a)
with self.assertRaisesRegex(RuntimeError, "This view was created inside a custom Function"):
view_a.copy_(b)
# Functions that should throw must properly throw
a = torch.rand(1, 2)
b = torch.rand(1, requires_grad=True)
view_a = a.unbind()[0]
with self.assertRaisesRegex(RuntimeError, "This view is the output of a function that returns "
"multiple views."):
view_a.copy_(b)
# Sanity check that views that should work still work
a = torch.rand(1, 2)
b = torch.rand(1, requires_grad=True)
a.select(1, 0).copy_(b)
def _do_test_autograd_simple_views_python(self, dtype):
# This is not necessarily the absolute correct behavior, but this is the current
# one. This test is here to make sure that any change to this behavior is detected
# and not silent. The TODOs below mark the places with unexpected behavior.
# Note that any change in these test will be BC-breaking and should be done carefully.
# This checks the autograd.Function behavior when we return one or multiple outputs
# while one of these is an input, a view of an input or of a temporary tensor.
# This indicator is used to track how many times the backward function was called
bw_called = [0]
# This indicator is used to check if the argument `ga` contains non-zero values
ga_nz = [False]
class IdOneOutput(Function):
@staticmethod
def forward(ctx, a, b, make_view):
if make_view:
a = a.narrow(0, 0, 2)
else:
a = a.clone()
return a
@staticmethod
def backward(ctx, ga):
bw_called[0] += 1
return ga, None, None
class IdTwoOutput(Function):
@staticmethod
def forward(ctx, a, b, make_view):
if make_view:
a = a.narrow(0, 0, 2)
else:
a = a.clone()
return a, a + b
@staticmethod
def backward(ctx, ga, gab):
bw_called[0] += 1
if ga.eq(0).all():
ga_nz[0] = False
else:
ga_nz[0] = True
return ga + gab, gab, None
class ViewOfTemp(Function):
@staticmethod
def forward(ctx, a, make_view):
ctx.save_for_backward(a)
if make_view:
a = a.narrow(0, 0, 2)
else:
a = a.clone()
b = a.clone()
return b.select(0, 0)
@staticmethod
def backward(ctx, grad):
bw_called[0] += 1
a, = ctx.saved_tensors
res = torch.zeros_like(a)
res.select(0, 0).copy_(grad)
return res, None
fn_id_to_inplace_on_view_err_msg = {
"one_output": ("Output 0 of IdOneOutputBackward is a view and is being "
"modified inplace. This view was created inside a custom Function"),
"two_output": ("Output 0 of IdTwoOutputBackward is a view and is being modified inplace."
" This view is the output of a function that returns multiple views."),
"view_of_temp": ("Output 0 of ViewOfTempBackward is a view and is being "
"modified inplace. This view was created inside a custom Function")
}
for fn_id in ["one_output", "two_output", "view_of_temp"]:
for inplace in [True, False]:
for make_view in [True, False]:
# Used for special casing the tests below
output_is_a_view = (make_view or fn_id == "view_of_temp")
def fn(a, b):
# never modify a, b inplace for gracheck
a = a.clone()
b = b.clone()
if fn_id == "two_output":
tmp1, tmp2 = IdTwoOutput.apply(a, b, make_view)
if inplace:
tmp1 += 3
tmp2 += 3
else:
tmp1 = tmp1 + 3
tmp2 = tmp2 + 3
tmp = tmp1 * tmp2
else:
if fn_id == "one_output":
tmp = IdOneOutput.apply(a, b, make_view)
else:
tmp = ViewOfTemp.apply(a + b, make_view)
if inplace:
tmp += 3
else:
tmp = tmp + 3
return tmp.sum()
a = torch.ones(2, dtype=dtype, requires_grad=True)
b = torch.ones(2, dtype=dtype, requires_grad=True)
err_msg = fn_id_to_inplace_on_view_err_msg[fn_id]
if not inplace or not output_is_a_view:
gradcheck(fn, (a, b), check_batched_grad=False)
# Was the custom backward called properly
bw_called[0] = 0
ga_nz[0] = True # For the case where the backward is called
if inplace and output_is_a_view:
with self.assertRaisesRegex(RuntimeError, err_msg):
fn(a, b)
else:
fn(a, b).backward()
expected_called = 1
expected_ga_nz = True
if output_is_a_view and inplace:
expected_called = 0
self.assertTrue(bw_called[0] == expected_called)
self.assertTrue(ga_nz[0] == expected_ga_nz)
def test_autograd_simple_views_python(self):
self._do_test_autograd_simple_views_python(torch.double)
self._do_test_autograd_simple_views_python(torch.cdouble)
def test_autograd_inplace_views_creation_meta(self):
# Tests creation_meta properly handled for inplace views
class Func(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.view_as(x)
@staticmethod
def backward(ctx, x):
return x
view_custom = Func.apply
def run_test(fn, fn_type, grad_mode_view, grad_mode_iview, requires_grad, error1, error2):
# This test checks the behavior of inplace-view functions when
# the views are created in grad mode or not
base = torch.rand(2, 3, requires_grad=requires_grad).clone()
# 1. Create a view with `grad_mode=grad_mode_view`
with torch.set_grad_enabled(grad_mode_view):
if fn_type == "multi_view":
inp = base.unbind()[0]
elif fn_type == "custom" :
inp = view_custom(base)
else:
inp = base.view_as(base)
# 2. Perform inplace view with `grad_mode=grad_mode_iview`
with torch.set_grad_enabled(grad_mode_iview):
if error1 is not None:
with self.assertRaisesRegex(RuntimeError, error1):
fn(inp)
return
else:
# If error is None, check that runs without error
fn(inp)
# 3. Do inplace on the (new) view
if error2 is not None:
with self.assertRaisesRegex(RuntimeError, error2):
inp.add_(1)
else:
# If error is None, check that runs without error
inp.add_(1)
no_grad_err = "A view was created in no_grad mode"
multi_view_err = "function that returns multiple views"
custom_err = "view was created inside a custom Function"
def run_tests(fn):
for fn_type in ("normal", "multi_view", "custom"):
for grad_mode_view in (True, False):
for grad_mode_iview in (True, False):
for requires_grad in (True, False):
error1 = None # expected error when we do inplace_view on original view
error2 = None # expected error when we do inplace on the resulting view
if requires_grad:
if not grad_mode_view and grad_mode_iview:
error1 = no_grad_err
if not grad_mode_view and not grad_mode_iview:
error2 = no_grad_err
if fn_type == "multi_view":
if grad_mode_view and grad_mode_iview:
error1 = multi_view_err
if grad_mode_view and not grad_mode_iview:
error2 = multi_view_err
if fn_type == "custom":
if grad_mode_view and grad_mode_iview:
error1 = custom_err
if grad_mode_view and not grad_mode_iview:
error2 = custom_err
run_test(fn, fn_type, grad_mode_view, grad_mode_iview, requires_grad, error1, error2)
# This list was created by logging gen_inplace_or_view_type.py
# detach_ is excluded for this test because it cannot be applied to
# views and thus does not return a view
run_tests(lambda v: v.as_strided_((1, 0), (2, 2)))
run_tests(lambda v: v.transpose_(0, 0))
run_tests(lambda v: v.t_())
run_tests(lambda v: v.squeeze_(0))
run_tests(lambda v: v.unsqueeze_(0))
run_tests(lambda v: v.swapdims_(0, 0))
run_tests(lambda v: v.swapaxes_(0, 0))
# TODO This is not the correct behavior -
# See https://github.com/pytorch/pytorch/issues/49825#issuecomment-794466627
def test_autograd_inplace_views_cross_dtype(self):
# This test is here to make sure that any change to this behavior is detected
# and not silent. The TODOs below mark the places with unexpected behavior.
a_orig = torch.rand(3, 3, requires_grad=True, dtype=torch.complex64)
a = a_orig.clone()
b = torch.view_as_real(a)
b = b.transpose(0, 1)
b += 1
b.backward(torch.arange(0, 18, dtype=torch.float).view(3, 3, 2))
non_inplace_grad = a_orig.grad
a_orig = torch.rand(3, 3, requires_grad=True, dtype=torch.complex64)
a = a_orig.clone()
b = torch.view_as_real(a)
b.transpose_(0, 1)
b += 1
b.backward(torch.arange(0, 18, dtype=torch.float).view(3, 3, 2))
inplace_grad = a_orig.grad
# TODO: this is a bug!
# once this is fixed, it should have the transpose removed:
# self.assertEqual(non_inplace_grad, inplace_grad)
self.assertEqual(non_inplace_grad.T, inplace_grad)
def test_autograd_multiple_views_python(self):
# This is not necessarily the absolute correct behavior, but this is the current
# one. This test is here to make sure that any change to this behavior is detected
# and not silent. The TODOs below mark the places with unexpected behavior.
# Note that any change in these test will be BC-breaking and should be done carefully.
# This checks that multiples views in the forward are properly traced and how they
# behave with respect to inplace operations.
# This indicator is used to track how many times the backward function was called
bw_called = [0]
class ComplexView(Function):
@staticmethod
def forward(ctx, a, idx):
res = a.narrow(0, idx, 1)
res = a.select(0, idx)
ctx.save_for_backward(a)
ctx.idx = idx
return res
@staticmethod
def backward(ctx, grad):
bw_called[0] += 1
a, = ctx.saved_tensors
res = torch.zeros_like(a)
res.select(0, ctx.idx).copy_(grad)
return res, None
a = torch.ones(2, requires_grad=True)
idx = 1
bw_called[0] = 0
out = ComplexView.apply(a.clone(), idx)
out.sum().backward()
self.assertTrue(bw_called[0] == 1)
out = ComplexView.apply(a.clone(), idx)
with self.assertRaisesRegex(RuntimeError,
"Output 0 of ComplexViewBackward is a view and is being modified inplace"):
out += 1
def test_autograd_python_custom_function_inplace(self):
# This is not necessarily the absolute correct behavior, but this is the current
# one. This test is here to make sure that any change to this behavior is detected
# and not silent. The TODOs below mark the places with unexpected behavior.
# Note that any change in these test will be BC-breaking and should be done carefully.
# This test checks custom autograd.Function that perform inplace operations
bw_called = [0]
# I) Single output
class MyAdder(Function):
@staticmethod
def forward(ctx, a, b):
a.add_(b)
ctx.mark_dirty(a)
return a
@staticmethod
def backward(ctx, grad):
bw_called[0] += 1
return grad, grad
a = torch.ones(2, requires_grad=True)
b = torch.ones(2, requires_grad=True)
# No extra inplace
c = MyAdder.apply(a.clone(), b)
c.sum().backward()
self.assertTrue(bw_called[0] == 1)
# With extra inplace on the output
bw_called[0] = 0
c = MyAdder.apply(a.clone(), b)
c += 2
c.sum().backward()
self.assertTrue(bw_called[0] == 1)
# The input is a view
bw_called[0] = 0
c = MyAdder.apply(a.clone().view_as(a), b)
c.sum().backward()
self.assertTrue(bw_called[0] == 1)
# Should not give non-inputs to mark_dirty
class MyAdderBad(Function):
@staticmethod
def forward(ctx, a, b):
c = 3 * a
c.add_(b)
ctx.mark_dirty(c)
return c
@staticmethod
def backward(ctx, grad):
bw_called[0] += 1
grad = 3 * grad
return grad, grad
a = torch.ones(2, requires_grad=True)
b = torch.ones(2, requires_grad=True)
with warnings.catch_warnings(record=True) as w:
MyAdderBad.apply(a.clone(), b)
self.assertEqual(len(w), 1)
# II) Multiple outputs
class MyBadAdder(Function):
@staticmethod
def forward(ctx, a, b):
a.add_(b)
ctx.mark_dirty(a)
return a, a + b
@staticmethod
def backward(ctx, ga, gab):
bw_called[0] += 1
return ga + gab, ga + gab
# No extra inplace
bw_called[0] = 0
c, d = MyBadAdder.apply(a.clone(), b)
(c * d).sum().backward()
self.assertTrue(bw_called[0] == 1)
# With extra inplace on the output
bw_called[0] = 0
c, d = MyBadAdder.apply(a.clone(), b)
c += 2
(c * d).sum().backward()
self.assertTrue(bw_called[0] == 1)
# The input is a view
inplace_on_view_err = "your Function modifies inplace an input that is a view of another Tensor"
with self.assertRaisesRegex(RuntimeError, inplace_on_view_err):
c, d = MyBadAdder.apply(a.clone().view_as(a), b)
# III) Inplace + other op
class MyOutPlaceAdder(Function):
@staticmethod
def forward(ctx, a, b):
a.add_(b)
ctx.mark_dirty(a)
return a.clone(), a + b
@staticmethod
def backward(ctx, ga, gab):
bw_called[0] += 1
return ga + gab, ga + 2 * gab
# We don't reuse the input
def fn(a, b):
orig_a = a.clone().view_as(a)
c, d = MyOutPlaceAdder.apply(orig_a, b)
return (c * d).sum()
bad_mark_dirty_err = "Some elements marked as dirty during the forward method were not returned as output."
with self.assertRaisesRegex(RuntimeError, bad_mark_dirty_err):
fn(a, b)
def test_named_tensor_for_complex_views(self):
names = ["batch", "height", "width", "complex"]
z = torch.ones((5, 12, 14, 2), requires_grad=True)
z_named = z.refine_names(*names)
z_complex = torch.view_as_complex(z_named.rename(None)).refine_names(*names[:-1])
z_complex.sum().backward()
self.assertEqual(z.grad, torch.view_as_real(torch.ones_like(z_complex).rename(None)))
def test_custom_function_return_view_in_nograd(self):
class Alias(Function):
@staticmethod
def forward(ctx, x):
return x[:]
@staticmethod
def backward(ctx, gx):
return gx
inp = torch.rand(2, requires_grad=True)
with torch.no_grad():
output = Alias.apply(inp)
with torch.no_grad():
expected_output = inp[:]
# Calling the custom function should operate as if we called an equivalent op
self.assertEqual(output.requires_grad, expected_output.requires_grad)
# Check that in-place modification on view throws
leaf_grad_err = "A view was created in no_grad mode and is being modified inplace"
with self.assertRaisesRegex(RuntimeError, leaf_grad_err):
output.zero_()
def test_grad_mode_restored_reentrant(self):
class MyFunction(Function):
@staticmethod
def forward(ctx, inp):
return inp.clone()
@staticmethod
def backward(ctx, go):
original = torch._C.is_grad_enabled()
with torch.enable_grad():
self.assertTrue(torch._C.is_grad_enabled())
foo = torch.rand(go.size(), requires_grad=True)
grad, = torch.autograd.grad(
foo ** 3, foo, grad_outputs=go
)
self.assertTrue(torch._C.is_grad_enabled())
self.assertTrue(torch._C.is_grad_enabled() == original)
return grad
inp = torch.rand(3, requires_grad=True)
# Case where original==False
MyFunction.apply(inp).sum().backward()
# Case where original==True
MyFunction.apply(inp).sum().backward(create_graph=True)
def test_power_function(self):
a = torch.tensor([0., 0., 0.])
b = torch.tensor([-1., 0., 1.], requires_grad=True)
c = torch.sum(a**b)
c.backward()
self.assertEqual(b.grad, torch.tensor([-inf, 0., 0.]))
s = 0
b = torch.tensor([-1., 0., 1.], requires_grad=True)
c = torch.sum(s**b)
c.backward()
self.assertEqual(b.grad, torch.tensor([-inf, 0., 0.]))
def test_custom_function_error(self):
class BadFw(Function):
@staticmethod
def backward(ctx, foo):
return foo
class BadBw(Function):
@staticmethod
def forward(ctx, foo):
return foo.clone()
class BadBw2(Function):
@staticmethod
def forward(ctx, foo):
return foo.clone()
@staticmethod
def backward(ctx, foo):
return foo
@staticmethod
def vjp(ctx, foo):
return foo
class BadJvp(Function):
@staticmethod
def forward(ctx, foo):
return foo.clone()
inp = torch.rand(1, requires_grad=True)
with self.assertRaisesRegex(NotImplementedError, "must implement the forward"):
BadFw.apply(inp)
with self.assertRaisesRegex(RuntimeError, "must implement either the backward"):
BadBw.apply(inp).sum().backward()
with self.assertRaisesRegex(RuntimeError, "Implementing both 'backward' and 'vjp'"):
BadBw2.apply(inp).sum().backward()
with self.assertRaisesRegex(RuntimeError, "must implement the jvp function"):
with fwAD.dual_level():
d = fwAD.make_dual(inp, torch.rand_like(inp))
res = BadJvp.apply(d)
def test_custom_function_forward_mode_view_checks(self):
flag_to_error = {
"ok": None,
"not_a_view": "jvp is not returning a view",
"not_a_view_of_inp": "jvp is not returning a view of the given",
"not_a_view_of_inp_base": "jvp is not returning a view of the same base",
}
class ViewFn(Function):
@staticmethod
def forward(ctx, foo, flag):
ctx.flag = flag
ctx.size = foo.size()
return foo.narrow(0, 0, 2)
@staticmethod
def vjp(ctx, gO):
gI = gO.new_zeros(ctx.size)
gI.narrow(0, 0, 2).copy_(gO)
return gI, None
@staticmethod
def jvp(ctx, gI, _):
res = gI.narrow(0, 0, 2)
if ctx.flag != "ok":
# Break the view in the gradients!
res = res.clone()
if ctx.flag in ["not_a_view_of_inp", "not_a_view_of_inp_base"]:
# Result should be a view, just of the wrong thing
res = res.view_as(res)
return res
inp = torch.rand(4, 4, dtype=torch.double, requires_grad=True)
for flag, msg in flag_to_error.items():
def test_fn(inp):
if flag == "not_a_view_of_inp_base":
inp = inp.view_as(inp)
return ViewFn.apply(inp, flag)
if msg is None:
gradcheck(test_fn, inp, check_forward_ad=True)
else:
with self.assertRaisesRegex(RuntimeError, msg):
gradcheck(test_fn, inp, check_forward_ad=True)
def test_custom_function_forward_mode_inplace_checks(self):
class InplaceFn(Function):
@staticmethod
def forward(ctx, foo, flag):
ctx.mark_dirty(foo)
ctx.flag = flag
foo.mul_(2)
return foo
@staticmethod
def vjp(ctx, gO):
return 2 * gO, None
@staticmethod
def jvp(ctx, gI, _):
if ctx.flag:
# Don't do the change inplace
return 2 * gI
else:
gI.mul_(2)
return gI
inp = torch.rand(4, 4, dtype=torch.double, requires_grad=True)
def test_fn(inp, flag):
inp = inp.clone()
return InplaceFn.apply(inp, flag)
gradcheck(test_fn, (inp, False), check_forward_ad=True)
with self.assertRaisesRegex(RuntimeError, "inplace custom Function is not modifying the forward mode gradients inplace"):
gradcheck(test_fn, (inp, True), check_forward_ad=True)
def test_custom_function_forward_mode_wrong_formula(self):
class UserFn(Function):
@staticmethod
def forward(ctx, foo, should_fail):
ctx.should_fail = should_fail
return foo * 2
@staticmethod
def vjp(ctx, gO):
return 2 * gO, None
@staticmethod
def jvp(ctx, gI, _):
if ctx.should_fail:
# Wrong gradient formula
return 3 * gI
else:
return 2 * gI
inp = torch.rand(10, dtype=torch.double, requires_grad=True)
gradcheck(UserFn.apply, (inp, False), check_forward_ad=True)
with self.assertRaisesRegex(RuntimeError, "Jacobian computed with forward mode mismatch for output 0"):
gradcheck(UserFn.apply, (inp, True), check_forward_ad=True)
def test_custom_function_forward_mode_non_tensor_before_tensor_args(self):
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, nt, x, nt2, y):
return x * 2 + y * 3
@staticmethod
def jvp(ctx, nt, x_t, nt2, y_t):
self.assertIsNone(nt)
self.assertIsNone(nt2)
return x_t * 2 + y_t * 3
x = torch.tensor(1., dtype=torch.double)
t = torch.tensor(1., dtype=torch.double)
y = torch.tensor(1., dtype=torch.double)
with fwAD.dual_level():
dual_x = fwAD.make_dual(x, t)
MyFn.apply(1, dual_x, 1, y)
gradcheck(MyFn.apply, (1, x.requires_grad_(True), 1, y.requires_grad_(True)), check_forward_ad=True,
check_backward_ad=False, check_batched_grad=False)
def test_custom_function_forward_mode_forward_is_no_op(self):
error_regex = "A custom Function's forward is returning a view \\(or an input as-is\\)"
return_lambdas = {
# If we return an input as-is in forward, that is treated
# as if self.view_as(self) is performed. If jvp returns x.view_as(x),
# this is OK.
"view_as": lambda x: x.view_as(x),
# Expect this to raise an error
"self": lambda x: x,
# Expect this to raise the same error
"mul_by_2": lambda x: x * 2,
}
for k, fn in return_lambdas.items():
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
return x + y, x
@staticmethod
def vjp(ctx, gO1, gO2):
return gO1 + gO2, gO1
@staticmethod
def jvp(ctx, x_t, y_t):
return x_t + y_t, fn(x_t)
a = torch.tensor(1., dtype=torch.double, requires_grad=True)
t = torch.tensor(1., dtype=torch.double)
b = torch.tensor(1., dtype=torch.double, requires_grad=True)
c = torch.tensor(1., dtype=torch.double)
t2 = torch.tensor(1., dtype=torch.double)
d = torch.tensor(1., dtype=torch.double)
with fwAD.dual_level():
a_dual = fwAD.make_dual(a, t)
c_dual = fwAD.make_dual(c, t2)
if k == "view_as":
_, out2 = MyFn.apply(a_dual, b)
self.assertTrue(fwAD.unpack_dual(out2).tangent._base is t)
_, out2 = MyFn.apply(c_dual, d)
self.assertTrue(fwAD.unpack_dual(out2).tangent._base is t2)
else:
with self.assertRaisesRegex(RuntimeError, error_regex):
MyFn.apply(a_dual, b)
with self.assertRaisesRegex(RuntimeError, error_regex):
MyFn.apply(c_dual, d)
if k == "view_as":
gradcheck(MyFn.apply, (a, c), check_forward_ad=True)
else:
with self.assertRaisesRegex(RuntimeError, error_regex):
gradcheck(MyFn.apply, (a, c), check_forward_ad=True)
def test_custom_function_save_for_forward(self):
class Func(torch.autograd.Function):
@staticmethod
def forward(ctx, x: torch.Tensor, y: torch.Tensor, z: int):
ctx.save_for_backward(x, y)
ctx.save_for_forward(x, y)
ctx.z = z
ctx.prod = x * y
return z * ctx.prod
@staticmethod
def jvp(ctx, x_t, y_t, _):
x_p, y_p = ctx.saved_tensors
z = ctx.z
return z * (y_p * x_t + x_p * y_t)
@staticmethod
def vjp(ctx, grad_out):
x, y = ctx.saved_tensors
z = ctx.z
return z * grad_out * y, z * grad_out * x, None
a = torch.tensor(1., requires_grad=True, dtype=torch.double)
t = torch.tensor(1., dtype=torch.double)
b = torch.tensor(2., requires_grad=True, dtype=torch.double)
c = 4
with fwAD.dual_level():
a_dual = fwAD.make_dual(a, t)
out = Func.apply(a_dual, b, c)
out.backward()
gradcheck(Func.apply, (a, b, c), check_forward_ad=True)
# When saved for backward, but not saved for forward
class Func(torch.autograd.Function):
@staticmethod
def forward(ctx, x: torch.Tensor):
ctx.save_for_backward(x)
return x.clone()
@staticmethod
def jvp(ctx, x_t):
self.assertEqual(len(ctx.saved_tensors), 0)
return x_t
@staticmethod
def vjp(ctx, grad_out):
x, = ctx.saved_tensors
self.assertEqual(len(ctx.saved_tensors), 1)
return grad_out
with fwAD.dual_level():
a_dual = fwAD.make_dual(a, t)
out = Func.apply(a_dual)
out.backward()
gradcheck(Func.apply, (a,), check_forward_ad=True)
def test_custom_function_local_inplace(self):
class MyFn(torch.autograd.Function):
@staticmethod
def forward(ctx, inp, inplace):
view = inp.clone()[:3]
if inplace:
view += 2
return view
@staticmethod
def backward(ctx, grad):
return grad, None
base = torch.rand(10, requires_grad=True)
foo = MyFn.apply(base, False)
self.assertEqual(foo.grad_fn.__class__.__name__, "MyFnBackward")
foo = MyFn.apply(base, True)
self.assertEqual(foo.grad_fn.__class__.__name__, "MyFnBackward")
def test_integer_outputs(self):
inp = torch.rand(4, requires_grad=True)
out = inp.argmax()
self.assertFalse(out.dtype.is_floating_point)
self.assertFalse(out.requires_grad)
out = inp.argmin()
self.assertFalse(out.dtype.is_floating_point)
self.assertFalse(out.requires_grad)
out = inp.argsort()
self.assertFalse(out.dtype.is_floating_point)
self.assertFalse(out.requires_grad)
val = torch.rand((), requires_grad=True)
out = torch.searchsorted(inp, val)
self.assertFalse(out.dtype.is_floating_point)
self.assertFalse(out.requires_grad)
bins = torch.linspace(0, 1.0, steps=100, requires_grad=True)
vals = torch.rand(5, 5, requires_grad=True)
out = torch.bucketize(vals, bins)
self.assertFalse(out.dtype.is_floating_point)
self.assertFalse(out.requires_grad)
val = torch.empty(5).requires_grad_()
out = val.count_nonzero()
self.assertFalse(out.requires_grad)
def assert_only_first_requires_grad(res):
if not isinstance(res, tuple):
res = (res,)
self.assertTrue(res[0].requires_grad)
for out in res[1:]:
if out is not None:
self.assertFalse(out.requires_grad)
for sort in [True, False]:
for return_inverse in [True, False]:
for return_counts in [True, False]:
res = torch.unique(inp, sorted=sort, return_inverse=return_inverse,
return_counts=return_counts)
assert_only_first_requires_grad(res)
res = torch.unique(inp, sorted=sort, return_inverse=return_inverse,
return_counts=return_counts, dim=0)
assert_only_first_requires_grad(res)
res = torch.unique_consecutive(inp, return_inverse=return_inverse,
return_counts=return_counts)
assert_only_first_requires_grad(res)
res = torch.unique_consecutive(inp, return_inverse=return_inverse,
return_counts=return_counts, dim=0)
assert_only_first_requires_grad(res)
# Here we test the internal functions to make sure all of them are
# covered on top of the public API
res = torch._unique(inp, sorted=sort, return_inverse=return_inverse)
assert_only_first_requires_grad(res)
# This looks public but is actually manually deleted from the
# torch namespace in torch/functional.py
res = torch._VF.unique_dim(inp, dim=0, sorted=sort, return_inverse=return_inverse,
return_counts=return_counts)
assert_only_first_requires_grad(res)
# We don't test `unique_dim_consecutive` here.
# It looks public but the python binding is actually manually disabled in
# tools/autograd/gen_python_functions.py
res = torch._unique2(inp, sorted=sort, return_inverse=return_inverse,
return_counts=return_counts)
assert_only_first_requires_grad(res)
def test_custom_function_cycle(self):
class MyFn(Function):
@staticmethod
def forward(ctx, x, metadata):
x = x.clone()
ctx.meta = metadata
ctx.save_for_backward(x)
return x
@staticmethod
def backward(ctx, gO):
x, = ctx.saved_tensors
self.assertEqual(x, 3.14)
self.assertEqual(ctx.meta["foo"], 3.14)
return gO * x, None
def get_refs(with_backward):
a = torch.tensor(3.14, requires_grad=True)
metadata = {}
out = MyFn.apply(a, metadata)
metadata["foo"] = out
if with_backward:
out.sum().backward()
self.assertEqual(a.grad, a)
return torch._C._WeakTensorRef(out)
with disable_gc():
ref = get_refs(False)
self.assertFalse(ref.expired())
gc.collect()
self.assertTrue(ref.expired())
# The backward clears the saved_variables but not the __dict__
with disable_gc():
ref = get_refs(True)
self.assertFalse(ref.expired())
gc.collect()
self.assertTrue(ref.expired())
def test_create_graph_and_full_backward_hook_cycle(self):
# If BackwardHook saves grad_output, it can create a cycle when we perform backward
# with create_graph=True
#
# grad_output -> grad_output.grad_fn -> graph -> hook -> grad_output
#
class TestCls():
# Dummy class for the purpose of creating a weakref
pass
def get_ref(input_requires_grad, nb_hooks):
t = torch.randn(10, requires_grad=input_requires_grad)
a = torch.tensor(1., requires_grad=True)
class Test(nn.Module):
def forward(self, x):
return x ** 2 * a ** 2
mod = Test()
for _ in range(nb_hooks):
mod.register_full_backward_hook(lambda a, b, c: None)
tmp = mod(t)
# Save dummy object to graph and get a weak ref to it
test = TestCls()
ref = weakref.ref(test)
tmp.grad_fn.metadata["a"] = test
with set_warn_always_context(True):
with warnings.catch_warnings(record=True) as w:
tmp.exp().sum().backward(create_graph=True)
self.assertTrue(len(w) == 1)
self.assertTrue("Using backward() with create_graph=True" in str(w[0].message))
# Remove the backward + create_graph=True cycle
a.grad = None
t.grad = None
return ref
for nb_hooks in (1, 2, 3):
for input_requires_grad in (True, False):
ref_ = get_ref(
input_requires_grad=input_requires_grad,
nb_hooks=nb_hooks,
)
gc.collect()
self.assertIsNone(ref_())
def test_full_backward_hook_double_backward(self):
x = torch.rand(1, requires_grad=True)
y = torch.rand_like(x)
func = torch.nn.MSELoss()
counter = [0]
def hook(module, grad_input, grad_output):
counter[0] += 1
func.register_full_backward_hook(hook)
f = func(x, y)
(gradx_f,) = torch.autograd.grad(f, x, create_graph=True)
self.assertEqual(counter[0], 1)
_ = torch.autograd.grad(gradx_f, x)
# We should not error, and counter should not be incremented
self.assertEqual(counter[0], 1)
def test_input_buffer_accum(self):
leaf = torch.rand(2, 2, requires_grad=True)
# An op that returns sparse gradients
ind = torch.tensor([[0, 0]], dtype=torch.long)
out2 = leaf.gather(0, ind, sparse_grad=True)
# An op that returns the gradients as-is
out1 = leaf.clone()
grad_out1_original = torch.rand_like(out1)
grad_out1 = grad_out1_original.clone()
grad_out2 = torch.rand_like(out2)
torch.autograd.backward((out1, out2), (grad_out1, grad_out2))
# Given gradients should not be modified inplace
self.assertEqual(grad_out1, grad_out1_original)
def test_no_unnecessary_unwrapping(self):
a = torch.randn(5, requires_grad=True)
a_orig = a.detach().clone()
b = a * a
c = a * b
d = torch.exp(a)
# a is leaf
self.assertIs(b.grad_fn._saved_self, a)
self.assertIs(b.grad_fn._saved_other, a)
self.assertIs(c.grad_fn._saved_self, a)
# b is not an output
self.assertIs(c.grad_fn._saved_other, b)
# d is an output
self.assertEqual(d.grad_fn._saved_result, d)
self.assertIsNot(d.grad_fn._saved_result, d)
c.sum().backward()
with self.assertRaisesRegex(RuntimeError, "after they have already been freed"):
c.grad_fn._saved_self
# a is left untouched
self.assertEqual(a, a_orig)
def test_saved_variable_version_counter(self):
a = torch.rand(2, requires_grad=True)
b = torch.exp(a)
b_unpacked = b.grad_fn._saved_result
self.assertEqual(b, b_unpacked)
self.assertEqual(b._version, b_unpacked._version)
with torch.no_grad():
b += 1
self.assertEqual(b, b_unpacked)
self.assertEqual(b._version, b_unpacked._version)
def test_saved_variable_packing_unpacking_saved_original_with_hooks(self):
# Tests that packing/unpacking a SavedVariable works correctly with user-defined hooks
# The saved_original / did_not_save_original distinction corresponds to the `save_original`
# attribute of `SavedVariable`.
def test(get_input, is_leaf):
a = get_input()
grad_fn = a.grad_fn
y = a * a
y.grad_fn._raw_saved_self.register_hooks(lambda x: 2 * x, lambda x: x / 2)
self.assertEqual(a, y.grad_fn._saved_self)
if not is_leaf:
self.assertIs(grad_fn, y.grad_fn._saved_self.grad_fn)
y.sum().backward()
else:
y.sum().backward()
self.assertEqual(2 * a, a.grad)
a = get_input()
grad_fn = a.grad_fn
y = a * a
y.grad_fn._raw_saved_self.register_hooks(lambda x: 2 * x, lambda x: x)
self.assertEqual(2 * a, y.grad_fn._saved_self)
if not is_leaf:
self.assertIs(grad_fn, y.grad_fn._saved_self.grad_fn)
y.sum().backward()
else:
y.sum().backward()
self.assertEqual(3 * a, a.grad)
# double backward
a = get_input()
grad_fn = a.grad_fn
y = a ** 3
y.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: x)
s = torch.sum(y)
g, = torch.autograd.grad(s, (a, ), create_graph=True)
if not is_leaf:
self.assertIs(grad_fn, y.grad_fn._saved_self.grad_fn)
g.sum().backward()
else:
g.sum().backward()
self.assertEqual(6 * a, a.grad)
a = get_input()
y = a * a
y.grad_fn._raw_saved_self.register_hooks(lambda x: x, lambda x: 1)
with self.assertRaisesRegex(TypeError, "Output of saved tensor unpack_hook expected to be a Tensor"):
print(y.grad_fn._saved_self)
a = get_input()
y = a * a
with self.assertRaisesRegex(TypeError, "missing 1 required positional argument"):
y.grad_fn._raw_saved_self.register_hooks(lambda x, b: x, lambda x: x)
a = get_input()
y = a * a
with self.assertRaisesRegex(TypeError, "missing 1 required positional argument"):
y.grad_fn._raw_saved_self.register_hooks(lambda x, b: (x, b), lambda x: x)
def inplace_double(x):
x *= 2
return x
a = get_input()
t = a * a
with self.assertRaisesRegex(RuntimeError, "A saved tensor pack hook is modifying its input in place."):
t.grad_fn._raw_saved_self.register_hooks(inplace_double, lambda x: x / 2)
# leaf
test(lambda: torch.randn(5, requires_grad=True), True)
# not leaf, not output
test(lambda: (1 + torch.randn(5, requires_grad=True)), False)
def test_saved_variable_packing_unpacking_did_not_save_original_with_hooks(self):
# Tests that packing/unpacking a SavedVariable works correctly with user-defined hooks
# The saved_original / did_not_save_original distinction corresponds to the `save_original`
# attribute of `SavedVariable`.
a = torch.randn(5, requires_grad=True)
y = torch.exp(a)
y.grad_fn._raw_saved_result.register_hooks(lambda x: x, lambda x: x)
self.assertEqual(y, y.grad_fn._saved_result)
self.assertIs(y.grad_fn, y.grad_fn._saved_result.grad_fn)
y.sum().backward()
self.assertEqual(a.grad, y)
def test_saved_variable_packing_unpacking_saved_original_with_default_hooks(self):
# Tests that default hooks are properly registered, used and reset
# The saved_original / did_not_save_original distinction corresponds to the `save_original`
# attribute of `SavedVariable`.
# See also:
# - test_saved_variable_packing_unpacking_saved_original_with_hooks
def pack(x):
warnings.warn("pack")
return x
with torch.autograd.graph.saved_tensors_hooks(pack, lambda x: x):
a = torch.ones(5, requires_grad=True)
warnings.simplefilter('always')
with warnings.catch_warnings(record=True) as w:
y = a * a
# should raise two warnings from a being saved twice
self.assertEqual(len(w), 2)
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
a = torch.randn(5, requires_grad=True)
y = a * a
self.assertEqual(a, y.grad_fn._saved_self)
self.assertEqual(a, y.grad_fn._saved_other)
y.sum().backward()
self.assertEqual(2 * a, a.grad)
with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x / 2):
a = torch.randn(5, requires_grad=True)
y = a * a
self.assertEqual(a, y.grad_fn._saved_self)
self.assertEqual(a, y.grad_fn._saved_other)
y.sum().backward()
self.assertEqual(2 * a, a.grad)
with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
a = torch.randn(5, requires_grad=True)
y = a * a
self.assertEqual(2 * a, y.grad_fn._saved_self)
self.assertEqual(2 * a, y.grad_fn._saved_other)
y.sum().backward()
self.assertEqual(4 * a, a.grad)
# Exited hooks correctly
a = torch.randn(5, requires_grad=True)
y = a * a
self.assertEqual(a, y.grad_fn._saved_self)
self.assertEqual(a, y.grad_fn._saved_other)
y.sum().backward()
self.assertEqual(2 * a, a.grad)
def test_saved_variable_packing_unpacking_did_not_save_original_with_default_hooks(self):
# See also test_saved_variable_packing_unpacking_did_not_save_original_with_hooks
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
a = torch.randn(5, requires_grad=True)
y = torch.exp(a)
self.assertEqual(y, y.grad_fn._saved_result)
y.sum().backward()
self.assertEqual(a.grad, y)
def test_setting_default_saved_variable_hooks_twice_should_not_fail(self):
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
pass
def test_setting_default_saved_variable_hooks_twice_should_use_inner(self):
with torch.autograd.graph.saved_tensors_hooks(lambda x: 3 * x, lambda x: 3 * x):
b = torch.randn(5, requires_grad=True)
with torch.autograd.graph.saved_tensors_hooks(lambda x: 5 * x, lambda x: 5 * x):
a = torch.randn(5, requires_grad=True)
y = a * a
z = b * b
y.sum().backward()
z.sum().backward()
self.assertEqual(2 * 5 * 5 * a, a.grad)
self.assertEqual(2 * 3 * 3 * b, b.grad)
def test_disabling_saved_tensor_hooks(self):
with torch.autograd.graph.disable_saved_tensors_hooks("error message"):
with self.assertRaisesRegex(RuntimeError, "error message"):
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
pass
self.assertTrue(torch._C._autograd._saved_tensors_hooks_is_enabled())
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
with self.assertRaisesRegex(RuntimeError, "error message"):
with torch.autograd.graph.disable_saved_tensors_hooks("error message"):
pass
self.assertTrue(torch._C._autograd._saved_tensors_hooks_is_enabled())
def test_disabling_saved_tensor_hooks_nested(self):
with torch.autograd.graph.disable_saved_tensors_hooks("outer"):
with torch.autograd.graph.disable_saved_tensors_hooks("inner"):
with self.assertRaisesRegex(RuntimeError, "inner"):
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
pass
self.assertFalse(torch._C._autograd._saved_tensors_hooks_is_enabled())
self.assertTrue(torch._C._autograd._saved_tensors_hooks_is_enabled())
def test_save_on_cpu_and_checkpoint(self):
a = torch.randn(2, 2, requires_grad=True)
b = a.pow(2).pow(2).pow(2).pow(2)
b.sum().backward()
b_grad = a.grad.clone()
a.grad.zero_()
with torch.autograd.graph.save_on_cpu():
h = a.pow(2)
h = checkpoint(lambda x: x.pow(2).pow(2), h, use_reentrant=False)
c = h.pow(2)
c.sum().backward()
c_grad = a.grad.clone()
a.grad.zero_()
def f(a):
h = a.pow(2)
with torch.autograd.graph.save_on_cpu():
h = h.pow(2).pow(2)
return h.pow(2)
d = checkpoint(f, a, use_reentrant=False)
d.sum().backward()
d_grad = a.grad.clone()
self.assertEqual(b_grad, c_grad)
self.assertEqual(b_grad, d_grad)
def test_pack_hook_with_inplace_modification_should_fail(self):
a = torch.randn(5, requires_grad=True)
def inc(x):
x += 1
return x
with torch.autograd.graph.saved_tensors_hooks(inc, lambda x: x):
with self.assertRaisesRegex(RuntimeError, "A saved tensor pack hook is modifying its input in place."):
y = torch.exp(a)
y = torch.exp(a)
with self.assertRaisesRegex(RuntimeError, "A saved tensor pack hook is modifying its input in place."):
y.grad_fn._raw_saved_result.register_hooks(inc, lambda x: x)
def test_saving_variable_to_disk(self):
with tempfile.TemporaryDirectory() as tmp_dir:
def pack(x):
name = os.path.join(tmp_dir, str(uuid.uuid4()))
torch.save(x, name)
return name
def unpack(name):
return torch.load(name)
with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
a = torch.ones(5, requires_grad=True)
y = a * a
self.assertEqual(a, y.grad_fn._saved_self)
y.sum().backward()
self.assertEqual(2 * a, a.grad)
def test_default_saved_variable_hooks_double_backward(self):
with torch.autograd.graph.saved_tensors_hooks(lambda x: x, lambda x: x):
a = torch.randn(5, requires_grad=True)
y = a ** 3
s = torch.sum(y)
g, = torch.autograd.grad(s, (a, ), create_graph=True)
g.sum().backward()
self.assertEqual(6 * a, a.grad)
with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
a = torch.randn(5, requires_grad=True)
y = a ** 3
s = torch.sum(y)
g, = torch.autograd.grad(s, (a, ), create_graph=True)
g.sum().backward()
# factor 2 because only a is saved once
self.assertEqual(6 * 2 * a, a.grad)
a = torch.randn(5, requires_grad=True)
y = a ** 3
s = torch.sum(y)
with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
g, = torch.autograd.grad(s, (a, ), create_graph=True)
g.sum().backward()
# factor 4 because pow_backward is grad * (exp * self.pow(exp - 1))
# so grad is saved and self (i.e. a) is saved
self.assertEqual(6 * 4 * a, a.grad)
with torch.autograd.graph.saved_tensors_hooks(lambda x: 2 * x, lambda x: x):
a = torch.randn(5, requires_grad=True)
y = a ** 3
s = torch.sum(y)
g, = torch.autograd.grad(s, (a, ), create_graph=True)
g.sum().backward()
# combining the two above blocks: 2 * 4 = 8
# note that in that sense, a is saved twice
self.assertEqual(6 * 8 * a, a.grad)
def test_graph_save_on_cpu(self):
def test(get_input, cuda, pin_memory):
with torch.autograd.graph.save_on_cpu(pin_memory):
a = get_input()
if cuda:
a.cuda()
y = a * a
self.assertEqual(a, y.grad_fn._saved_self)
self.assertEqual(a, y.grad_fn._saved_other)
self.assertEqual(a.dtype, y.grad_fn._saved_self.dtype)
self.assertEqual(a.layout, y.grad_fn._saved_self.layout)
if y.is_sparse:
y = y.to_dense()
y.sum().backward()
actual = 2 * a
expected = a.grad
if a.is_sparse:
actual = actual.coalesce()
expected = expected.coalesce()
self.assertEqual(actual, expected)
for cuda in [False] + ([True] if torch.cuda.is_available() else []):
for pin_memory in [True, False]:
# FloatTensor
test(lambda: torch.randn(5, requires_grad=True), cuda, pin_memory)
# DoubleTensor
test(lambda: torch.randn(5, requires_grad=True, dtype=torch.double), cuda, pin_memory)
# Sparse tensor
x = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]), requires_grad=True)
test(lambda: x, cuda, pin_memory)
@unittest.skipIf(not TEST_CUDA, "test requires CUDA")
def test_graph_save_on_cpu_cuda(self):
def f(x):
a = x + 1
return a * a
# with grad
a = torch.ones(1, requires_grad=True, device="cuda")
y = f(a)
memory_with_grad = torch.cuda.memory_allocated()
del a
del y
# without grad
a = torch.ones(1, requires_grad=True, device="cuda")
with torch.no_grad():
y = f(a)
memory_without_grad = torch.cuda.memory_allocated()
self.assertGreater(memory_with_grad, memory_without_grad)
del a
del y
# with hooks
with torch.autograd.graph.save_on_cpu():
a = torch.ones(1, requires_grad=True, device="cuda")
y = f(a)
memory_with_hooks = torch.cuda.memory_allocated()
self.assertEqual(memory_with_hooks, memory_without_grad)
def test_pynode_destruction_deadlock(self):
script = """
import torch
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone()
@staticmethod
def forward(ctx, gO):
return gO.clone()
def get_out():
inp = torch.rand(2, requires_grad=True)
# The python function is first so that it runs
# last in the backward pass
right = Foo.apply(inp)
# An op that creates new memory
left1 = inp.clone()
# An op that saves its input
left2 = left1 ** 2
# Inplace modify so that the backward for
# left2 always raises an error
left1 += 1
# An op that takes both side as input.
# After running, both side's last op will be in
# the ready queue
# And the op for left will run first as it was
# executed last during the forward
out = left2 + right
return out
# Nothing should be global variables here as, from what
# I can see, python leaks all the global objects
get_out().sum().backward()
# This used to deadlock when the PyNode is being destroyed after
# the error is raised.
"""
try:
subprocess.check_output(
[sys.executable, '-c', script],
stderr=subprocess.STDOUT,
# On Windows, opening the subprocess with the default CWD makes `import torch`
# fail, so just set CWD to this script's directory
cwd=os.path.dirname(os.path.realpath(__file__)),
# It is ok to have an extra long timeout here as a timeout means the test failed
timeout=20)
except subprocess.TimeoutExpired as e:
self.fail(msg="Example code timed out! See the code sample in the test for details.")
except subprocess.CalledProcessError as e:
err_msg = "RuntimeError: one of the variables needed for gradient computation"
self.assertTrue(err_msg in e.output.decode("utf-8"))
def index_perm_variable(shape, max_indices):
if not isinstance(shape, tuple):
shape = (shape,)
index = torch.randperm(max_indices).narrow(0, 0, reduce(mul, shape)).view(shape)
return index
def bernoulli_scalar():
return torch.tensor(0, dtype=torch.uint8).bernoulli_()
class TestAutogradForwardModeBatchedGrad(TestCase):
def test_out_of_place_basic(self):
a = torch.rand(4, 4, dtype=torch.double, requires_grad=True)
b = torch.rand(4, 4, dtype=torch.double, requires_grad=True)
self.assertTrue(gradcheck(torch.sin, a, check_forward_ad=True, check_batched_grad=True,
check_batched_forward_grad=True))
self.assertTrue(gradcheck(torch.add, (a, b), check_forward_ad=True, check_batched_grad=True,
check_batched_forward_grad=True))
def test_out_of_place_not_same_layout(self):
input = torch.zeros([2, 2]).transpose(0, 1)
tangent = torch.zeros([2, 2, 2])
def jvp(tangent):
with fwAD.dual_level():
x = fwAD.make_dual(input, tangent)
return fwAD.unpack_dual(x)[1]
x_tangent = torch._vmap_internals._vmap(jvp, 0, 0)(tangent)
self.assertIsNot(x_tangent, tangent)
def test_inplace_on_view_same_layout(self):
input = torch.zeros([2, 2])
tangent = torch.zeros([2, 2, 2])
base = torch.zeros([2, 2])
view = base.view_as(base)
def jvp(tangent):
with fwAD.dual_level():
x = fwAD.make_dual(input, tangent)
view.copy_(x)
return fwAD.unpack_dual(x)[1], fwAD.unpack_dual(view)[1], fwAD.unpack_dual(view._base)[1]
x_tangent, view_tangent, base_tangent = torch._vmap_internals._vmap(jvp, 0, 0)(tangent)
self.assertFalse(view_tangent._is_view()) # Optimization to share the same tensor!
self.assertIs(view_tangent, base_tangent)
self.assertIs(x_tangent, tangent)
def test_inplace_on_view_not_same_layout(self):
input = torch.zeros([2, 2])
tangent = torch.zeros([2, 2, 2])
view = torch.zeros([2, 2]).transpose(0, 1)
def jvp(tangent):
with fwAD.dual_level():
x = fwAD.make_dual(input, tangent)
view.copy_(x)
return fwAD.unpack_dual(x)[1], fwAD.unpack_dual(view)[1], fwAD.unpack_dual(view._base)[1]
x_tangent, view_tangent, base_tangent = torch._vmap_internals._vmap(jvp, 0, 0)(tangent)
self.assertIs(view_tangent._base, base_tangent)
self.assertIs(x_tangent, tangent)
self.assertIsNot(view_tangent, tangent)
def test_metadata_check_for_storage_numel_skipped(self):
# See: test_metadata_check_checks_storage_numel for the reverse of this test
primal = torch.randn(5)[:4].detach()
self.assertEqual(len(primal.storage()), 5)
tangent = torch.randn(10, 4)
def jvp(tangent):
with fwAD.dual_level():
dual = fwAD.make_dual(primal, tangent)
_, unpacked_tangent = fwAD.unpack_dual(dual)
# No copy is made
self.assertIs(tangent, unpacked_tangent)
# as_strided raises
with self.assertRaisesRegex(RuntimeError, "can access memory outside of `tensor`"):
dual.as_strided((5,), (1,), 0)
return unpacked_tangent
torch._vmap_internals._vmap(jvp, 0, 0)(tangent)
class TestAutogradForwardMode(TestCase):
def tearDown(self):
# Ensure that a failing test won't make others fail
while fwAD._current_level >= 0:
fwAD.exit_dual_level()
super().tearDown()
def test_forward_level_cleanup(self):
def get_tensor_and_weak_ref():
# Create a new Tensor and weak reference
t = torch.rand(2, requires_grad=True)
return t, torch._C._WeakTensorRef(t)
# Sanity check that the helper function works as expected
t, t_ref = get_tensor_and_weak_ref()
self.assertFalse(t_ref.expired())
del t
self.assertTrue(t_ref.expired())
# Main test code
foo = torch.rand(2)
with fwAD.dual_level():
tangent, tangent_ref = get_tensor_and_weak_ref()
self.assertFalse(tangent_ref.expired())
dual = fwAD.make_dual(foo, tangent)
self.assertFalse(tangent_ref.expired())
# Make sure that the tangent we provided has been re-used as is
self.assertTrue(fwAD.unpack_dual(dual)[1] is tangent)
# Make sure that dual is keeping the tangent alive
del tangent
self.assertFalse(tangent_ref.expired())
# Make sure that the dual level does not keep the c++
# version of the tangent alive
del dual
self.assertTrue(tangent_ref.expired())
def test_size_check(self):
foo = torch.rand(2)
tangent = torch.rand(3)
with fwAD.dual_level():
with self.assertRaisesRegex(RuntimeError, "Trying to set a forward gradient that has a different size"):
dual = fwAD.make_dual(foo, tangent)
dual = fwAD.make_dual(foo, tangent[1:])
def test_metadata_check_checks_storage_numel(self):
primal = torch.randn(5)[:4].detach()
self.assertEqual(len(primal.storage()), 5)
tangent = torch.randn(4)
with fwAD.dual_level():
dual = fwAD.make_dual(primal, tangent)
_, unpacked_tangent = fwAD.unpack_dual(dual)
# # Verify that mutating unpacked tangent does not affect the original tangent
tangent_clone = tangent.clone()
unpacked_tangent *= 2
self.assertTrue(torch.allclose(tangent_clone, tangent))
# as_strided runs without error
dual.as_strided((5,), (1,), 0)
def test_metadata_check_checks_ignores_size_zero(self):
a = torch.ones(0).as_strided((0, 1,), (1, 1,), 0)
b = torch.ones(0).as_strided((0, 1,), (1, 0,), 0)
with fwAD.dual_level():
dual = fwAD.make_dual(a, b)
torch.diagonal(dual, offset=0)
input = torch.rand([0, 1], dtype=torch.complex128, requires_grad=True)
func = partial(torch.diagonal, offset=0)
torch.autograd.gradcheck(func, (input,), check_forward_ad=True)
def test_metadata_check_when_primal_has_conj_bit(self):
# Make sure the _has_same_storage_numel is a fallthrough, so that
# conj bit does not materialize. If it materializes it would
# cause the layout check to fail for views that do not index the
# the entire storage.
a = torch.randn(2, 2, dtype=torch.cdouble).conj()
b = torch.rand_like(a)
self.assertTrue(torch.is_conj(a))
self.assertEqual(len(a.storage()), len(b.storage()))
with fwAD.dual_level():
dual = fwAD.make_dual(a, b)
dual[1:]
def test_metadata_check_when_primal_has_neg_bit(self):
# Make sure the _has_same_storage_numel is a fallthrough, so that
# conj bit does not materialize. If it materializes it would
# cause the layout check to fail for views that do not index the
# the entire storage.
a = torch.randn(2, 2, dtype=torch.cdouble).conj().imag
b = torch.randn(2, 2, dtype=torch.cdouble).imag
self.assertTrue(torch.is_neg(a))
self.assertEqual(len(a.storage()), len(b.storage()))
with fwAD.dual_level():
dual = fwAD.make_dual(a, b)
dual[1:]
def test_metadata_check_check_conj(self):
keys = {
"NEITHER": lambda x: x,
"CONJ": lambda x: x.conj(),
"NEG": lambda x: x._neg_view()
}
for primal_key, tangent_key in product(keys, keys):
x = keys[primal_key](torch.randn(2, 3, 4, dtype=torch.cdouble))
t = keys[tangent_key](torch.randn(2, 3, 4, dtype=torch.cdouble))
if primal_key == tangent_key:
with fwAD.dual_level():
dual = fwAD.make_dual(x, t)
self.assertTrue(fwAD.unpack_dual(dual).tangent is t)
torch.real(dual)
torch.imag(dual)
else:
with fwAD.dual_level():
dual = fwAD.make_dual(x, t)
self.assertTrue(fwAD.unpack_dual(dual).tangent is not t)
torch.real(dual)
torch.imag(dual)
def test_metadata_check_ignore_storage_offset_for_zero_numel_tensor(self):
# See https://github.com/pytorch/pytorch/issues/80507
a = torch.tensor([1.]).as_strided((0,), (1,), 1)
b = torch.tensor([1.]).as_strided((0,), (1,), 2)
with fwAD.dual_level():
dual_input = fwAD.make_dual(a, b)
# Check that no copy is made
self.assertIs(fwAD.unpack_dual(dual_input).tangent, b)
a = torch.tensor([1.]).as_strided((1,), (2,), 0)
b = torch.tensor([1.]).as_strided((1,), (1,), 0)
with fwAD.dual_level():
dual_input = fwAD.make_dual(a, b)
dual_input[1:]
# The following test functions want to ensure all the following behaviors:
# - Ensure that default level system in the python binding works
# - Ensure that only level 0 exists and nesting is properly disabled
# - Ensure that printing works fine
# - Ensure that basic packing/unpacking works
# - Ensure that advanced packing/unpacking works
# - For memory / version counter share
# - For backward AD (regular ops)
# - Ensure that view + inplace for both modes work fine
# - Ensure we do proper cleanup on exit of a level
def test_default_level(self):
foo = torch.rand(2)
bar = torch.rand(2)
with fwAD.dual_level():
baz = fwAD.make_dual(foo, bar)
baz_primal, baz_tangent = fwAD.unpack_dual(baz)
self.assertEqual(baz_primal, foo)
# We don't actually need to enforce that these two are the exact same python
# object, feel free to relax in the future
self.assertIs(baz_tangent, bar)
baz_primal, baz_tangent = fwAD.unpack_dual(baz)
self.assertEqual(baz_primal, foo)
self.assertEqual(baz_tangent, None)
def test_nested_level(self):
with fwAD.dual_level() as level:
# For now only level 0 exists
self.assertEqual(level, 0)
with fwAD.dual_level():
with self.assertRaisesRegex(RuntimeError, "Nested forward mode AD is not supported at the moment"):
nest_level = fwAD.enter_dual_level()
def test_set_fw_grad_having_own_fw_grad_at_same_level(self):
foo = torch.rand(2)
bar = torch.rand(2)
baz = torch.rand(2)
with fwAD.dual_level():
dual = fwAD.make_dual(foo, bar)
with self.assertRaisesRegex(RuntimeError, "has a forward gradient at the same level"):
fwAD.make_dual(baz, dual)
def test_codegen_ignores_undefined_outputs(self):
# This test checks that codegen silently ignores undefined outputs
# Below, grad_input is specified as False in grad_output_mask, so
# convolution backward will return a undefined tensor in that position.
# Note that for this test to work we need to make sure either grad_output
# or weight to be a dual tensor, so grad_input requires forward grad
weight = torch.randn(6, 1, 30, 30)
inp = torch.rand((1, 1, 32, 32))
out = torch.nn.functional.conv2d(inp, weight)
grad_out = torch.ones_like(out)
with fwAD.dual_level():
dual_weight = fwAD.make_dual(weight, torch.ones_like(weight))
grad_input, _, _ = torch.ops.aten.convolution_backward(
grad_out, inp, dual_weight, (0,),
(1, 1), (0, 0), (1, 1), False, (0, 0), 1, (False, True, False))
self.assertIsNone(grad_input)
def test_make_dual_inference_tensor_in_inference_mode(self):
with torch.inference_mode():
foo = torch.rand(2)
bar = torch.rand(2)
foo_copy = foo.clone()
with fwAD.dual_level():
dual = fwAD.make_dual(foo, bar)
self.assertFalse(dual._is_view())
dual += 1
self.assertFalse(torch.allclose(foo, foo_copy))
def test_make_dual_torch_dispatch(self):
counter = [0]
class MySubclass(torch.Tensor):
def __new__(cls, data=None):
return torch.Tensor._make_subclass(cls, data)
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func.overloadpacket == torch.ops.aten.alias:
counter[0] += 1
# Make sure we can re-enable autograd here
with torch.overrides.enable_reentrant_dispatch():
foo = torch.rand(1, requires_grad=True)
self.assertIsNotNone(foo.exp().grad_fn)
with no_dispatch():
return func(*args, **kwargs)
a = torch.tensor(1.)
s = MySubclass(a)
with fwAD.dual_level():
# Only the primal has "alias" called on it
fwAD.make_dual(s, torch.rand_like(s))
self.assertEqual(counter[0], 1)
fwAD.make_dual(torch.rand_like(s), s)
self.assertEqual(counter[0], 1)
def test_make_dual_forbid_integral_dtype(self):
primal_f = torch.ones(2, 2, dtype=torch.float)
primal_l = torch.ones(2, 2, dtype=torch.long)
tangent_f = torch.ones(2, 2, dtype=torch.float)
tangent_l = torch.ones(2, 2, dtype=torch.long)
with fwAD.dual_level():
# Float Primal and Long Tangent
with self.assertRaisesRegex(ValueError, "Expected tangent to be floating point or complex"):
fwAD.make_dual(primal_f, tangent_l)
# Long Primal and Long Tangent
with self.assertRaisesRegex(ValueError, "Expected primal to be floating point or complex"):
fwAD.make_dual(primal_l, tangent_l)
# Long Primal and Float Tangent
with self.assertRaisesRegex(ValueError, "Expected primal to be floating point or complex"):
fwAD.make_dual(primal_l, tangent_f)
def test_print(self):
with fwAD.dual_level() as level:
a = torch.rand(3)
self.assertFalse("tangent=" in str(a))
b = fwAD.make_dual(a, torch.rand(3))
self.assertFalse("tangent=" in str(a))
self.assertTrue("tangent=" in str(b))
b_primal, b_tangent = fwAD.unpack_dual(b)
self.assertFalse("tangent=" in str(b_primal))
self.assertFalse("tangent=" in str(b_tangent))
def test_basic_packing_unpacking(self):
foo = torch.rand(2)
bar = torch.rand(2)
with fwAD.dual_level():
baz = fwAD.make_dual(foo, bar)
baz_primal, baz_tangent = fwAD.unpack_dual(baz)
self.assertEqual(baz_primal, foo)
self.assertIs(baz_tangent, bar)
# Check unpacked dual is returned as a named tuple
# NB: Every invocation of unpack_dual returns a new tensor view
self.assertIsNot(baz_primal, fwAD.unpack_dual(baz).primal)
self.assertEqual(baz_primal, fwAD.unpack_dual(baz).primal)
self.assertIs(baz_tangent, fwAD.unpack_dual(baz).tangent)
# Check that packing/unpacking did not change the input
foo_primal, foo_tangent = fwAD.unpack_dual(foo)
self.assertEqual(foo_primal, foo)
self.assertIsNone(foo_tangent)
def test_advanced_packing_unpacking(self):
foo = torch.rand(2)
bar = torch.ones(2)
# Memory and version counter check
with fwAD.dual_level():
dual = fwAD.make_dual(foo, bar)
# Ensure that they are sharing memory and version counter
self.assertEqual(dual.storage().data_ptr(), foo.storage().data_ptr())
# Ensure we properly share the version counter
self.assertEqual(foo._version, dual._version)
foo.add_(1)
self.assertEqual(foo._version, dual._version)
# Unpacking should only create aliases as well
dual_primal, dual_tangent = fwAD.unpack_dual(dual)
self.assertEqual(dual_primal.storage().data_ptr(), foo.storage().data_ptr())
self.assertEqual(dual_tangent.storage().data_ptr(), bar.storage().data_ptr())
# And the tangent is actually re-used as-is so it is still the same Tensor
self.assertIs(dual_tangent, bar)
# Ensure we properly share the version counter
self.assertEqual(foo._version, dual_primal._version)
foo.add_(1)
self.assertEqual(foo._version, dual_primal._version)
self.assertEqual(bar._version, dual_tangent._version)
bar.add_(1)
self.assertEqual(bar._version, dual_tangent._version)
# backward mode check
with fwAD.dual_level():
foo.requires_grad_()
bar.requires_grad_()
# Check that backward gradients properly propagates through packing/unpacking
dual = fwAD.make_dual(foo, bar)
p, t = fwAD.unpack_dual(dual)
gfoo, gbar = torch.autograd.grad(p.sum(), (foo, bar), retain_graph=True, allow_unused=True)
self.assertEqual(gfoo, torch.ones_like(foo))
self.assertIsNone(gbar)
gfoo, gbar = torch.autograd.grad(t.sum(), (foo, bar), retain_graph=True, allow_unused=True)
self.assertIsNone(gfoo)
self.assertEqual(gbar, torch.ones_like(bar))
# Check that forward gradients are impacted by detach()
detached_dual = dual.detach()
out = detached_dual * 2
p, t = fwAD.unpack_dual(out)
self.assertFalse(p.requires_grad)
self.assertEqual(p, foo * 2)
self.assertIsNone(t)
# Check that forward gradients are not impacted by no_grad
with torch.no_grad():
out = dual * 3
p, t = fwAD.unpack_dual(out)
self.assertFalse(p.requires_grad)
self.assertFalse(t.requires_grad)
self.assertEqual(p, foo * 3)
self.assertEqual(t, bar * 3)
# Check that forward gradients are not impacted by inplace detach
dual = dual.clone()
dual.detach_()
out = dual * 2
p, t = fwAD.unpack_dual(out)
self.assertFalse(p.requires_grad)
self.assertEqual(p, foo * 2)
self.assertIsNone(t)
def test_view_inplace_non_differentiable_views(self):
original_foo = torch.rand(2, dtype=torch.double)
original_bar = torch.ones(2, dtype=torch.double)
# Do clones to be able to compare the values updated inplace
# with the original content of these Tensors
foo = original_foo.clone()
bar = original_bar.clone()
with fwAD.dual_level():
# Note that in this test, we use "update" to mean computing the right tangent for the dual
# All the inplace operations here are expected to update the primal value of the Tensors but
# not always their tangents.
# Also all mentions of "non differentiable view" here means non forward differentiable view
# unless specified otherwise.
# See note [Forward Grad View/inplace] for more details on how these views work.
# Check that inplace ops do not update non-differentiable views
# Non differentiable view
dual = fwAD.make_dual(foo, bar)
dual *= 2
# Check that non differentiable view's tangent was not updated
self.assertIsNone(fwAD.unpack_dual(foo)[1])
# Check that the computed result is correct
self.assertEqual(bar, original_bar * 2)
self.assertEqual(fwAD.unpack_dual(dual)[1], original_bar * 2)
self.assertEqual(foo, original_foo * 2)
self.assertEqual(fwAD.unpack_dual(dual)[0], original_foo * 2)
# Other non differentiable view
dual_primal, dual_tangent = fwAD.unpack_dual(dual)
self.assertIsNone(fwAD.unpack_dual(dual_primal)[1])
self.assertIsNone(fwAD.unpack_dual(dual_tangent)[1])
dual_primal *= 2
# Ensure dual's tangent did not change
self.assertEqual(fwAD.unpack_dual(dual)[0], original_foo * 4)
self.assertEqual(fwAD.unpack_dual(dual)[1], original_bar * 2)
dual_tangent *= 2
# Ensure dual's primal did not change
self.assertEqual(fwAD.unpack_dual(dual)[0], original_foo * 4)
self.assertEqual(fwAD.unpack_dual(dual)[1], original_bar * 4)
def test_view_inplace_differentiable_views(self):
original_foo = torch.rand(2)
original_bar = torch.ones(2)
# Do clones to be able to compare the values updated inplace
# with the original content of these Tensors
foo = original_foo.clone()
bar = original_bar.clone()
with fwAD.dual_level():
# Check that inplace ops do update differentiable view but stop at non differentiable ones
# A non differentiable view
dual = fwAD.make_dual(foo, bar)
# A differentiable view
view = dual.narrow(0, 0, 1)
view *= 2
# Check that non differentiable view was not updated
self.assertIsNone(fwAD.unpack_dual(foo)[1])
# Check that differentiable view was updated
self.assertEqual(fwAD.unpack_dual(dual)[1], torch.tensor([2., 1.]))
self.assertEqual(fwAD.unpack_dual(view)[1], torch.tensor([2.]))
# Check that we track differentiable view even for Tensors that are not dual
baz = torch.rand(2)
baz += dual
self.assertEqual(fwAD.unpack_dual(baz)[1], fwAD.unpack_dual(dual)[1])
# Updates on view should as well
baz = torch.rand(2)
baz[0] = dual[0]
self.assertEqual(fwAD.unpack_dual(baz)[1][0], fwAD.unpack_dual(dual)[1][0])
# Unused values get a gradient of 0
self.assertEqual(fwAD.unpack_dual(baz)[1][1], 0.)
# Check that forward non-differentiable views do prevent gradient update
baz = torch.rand(2)
view = baz.detach()
view += dual
self.assertIsNone(fwAD.unpack_dual(baz)[1])
def test_view_inplace_always_creates_a_view(self):
# See https://github.com/pytorch/pytorch/issues/67800
# The codepath may depend on the op. At the time writing, when self is not a dual tensor
# the resulting forward grad for self for...
# - add_ has the same layout as self
# - mul_ has the same layout as other
# This is kind of fragile because the above depends on how the forward grad expression
# is written. For add and mul at least, the output inherits the layout of LHS.
# We want to handle at least these two cases.
inplace_binary_ops = ( # Add more to this list?
lambda x, y: x.add_(y),
lambda x, y: x.mul_(y),
lambda x, y: x.copy_(y),
)
for inplace_binary_op in inplace_binary_ops:
base = torch.randn(2, 2)
view = base.transpose(0, 1)
primal = torch.randn(2, 2)
tangent = torch.randn(2, 2)
with fwAD.dual_level():
dual = fwAD.make_dual(primal, tangent)
inplace_binary_op(view, dual)
# Verify that a view relationship is created for both the primal and tangent
p, t = fwAD.unpack_dual(base)
p_clone = p.clone()
t_clone = t.clone()
view *= 2
p, t = fwAD.unpack_dual(base)
self.assertTrue(torch.allclose(p_clone * 2, p))
self.assertTrue(torch.allclose(t_clone * 2, t))
def test_grad_cleanup(self):
foo = torch.rand(2)
bar = torch.rand(2)
baz = torch.rand(2)
with fwAD.dual_level():
dual = fwAD.make_dual(foo, bar)
self.assertIsNone(fwAD.unpack_dual(foo)[1])
self.assertIs(fwAD.unpack_dual(dual)[1], bar)
self.assertIsNone(fwAD.unpack_dual(dual)[1])
with fwAD.dual_level():
self.assertIsNone(fwAD.unpack_dual(foo)[1])
new_dual = fwAD.make_dual(foo, baz)
dual_primal, dual_tangent = fwAD.unpack_dual(dual)
new_dual_primal, new_dual_tangent = fwAD.unpack_dual(new_dual)
self.assertEqual(dual_primal, new_dual_primal)
self.assertIsNone(dual_tangent)
self.assertEqual(new_dual_tangent, baz)
def test_detach_view_tracking(self):
# Default detach is both forward and backward non-differentiable
foo = torch.rand(2)
foo_weak = torch._C._WeakTensorRef(foo)
out = foo.detach()
del foo
self.assertTrue(foo_weak.expired())
def test_out_variant(self):
with fwAD.dual_level():
foo = fwAD.make_dual(torch.rand(2), torch.rand(2))
bar = torch.rand(2)
with self.assertRaisesRegex(RuntimeError, "out= function"):
torch.add(bar, bar, out=foo)
with self.assertRaisesRegex(RuntimeError, "out= function"):
torch.add(foo, bar, out=bar)
def test_non_differentiable(self):
with fwAD.dual_level():
foo = fwAD.make_dual(torch.rand(2), torch.rand(2))
bar = torch.rand(2)
# No differentiable outputs, shouldn't error
eq = foo == bar
# Inplace
foo.eq_(bar)
def test_create_new_zeros_with_same_meta(self):
new_zeroes_fn = torch.ops.aten._new_zeros_with_same_feature_meta
def check(a, b):
def assert_same_meta(t, target):
for num_bdim in range(t.dim()):
result = new_zeroes_fn(t, target, self_num_batch_dims=num_bdim)
self.assertEqual(result.dim(), target.dim() + num_bdim)
# Check size/strides match for feature dims only
for i in range(num_bdim, result.dim()):
self.assertEqual(result.size()[i], target.size()[i - num_bdim])
self.assertEqual(result.stride()[i], target.stride()[i - num_bdim])
# Check that we generate strides reasonably
if target.is_contiguous():
self.assertTrue(result.is_contiguous())
self.assertEqual(result.storage_offset(), target.storage_offset())
prod_of_t_bdims = reduce(operator.mul, t.size()[:num_bdim], 1)
self.assertEqual(len(result.storage()), len(target.storage()) * prod_of_t_bdims)
# TensorOptions is same
self.assertEqual(result.dtype, target.dtype)
assert_same_meta(a, b)
assert_same_meta(b, a)
a = torch.randn(5, dtype=torch.float)
b = torch.randn(2, 3, 4, dtype=torch.double)
check(a, b)
# non-contiguous case
a = torch.randn(2, 3, 4).transpose(0, 1).contiguous().transpose(0, 1)
b = torch.randn(2, 3, 4)
check(a, b)
a = torch.randn(5).narrow(0, 1, 2)
b = torch.randn(2)
check(a, b)
# tensor is not a view, but still does not index entirety of storage
a = torch.randn(5).resize_(4)
b = torch.randn(4)
check(a, b)
# Zero-numel tensors
a = torch.randn(1, 0, 2)
b = torch.randn(1, 2)
check(a, b)
# Scalar tensor
a = torch.tensor(1.)
b = torch.randn(1, 2)
check(a, b)
def test_backward_graph_destruction(self):
def fn():
a = torch.rand(10, requires_grad=True)
da = fwAD.make_dual(torch.rand_like(a), a)
# Create an object with a c++ cycle as:
# db -> AutogradMeta -> ForwardGrad -> db's grad
# db's grad -> AutogradMeta -> MulBackward
# MulBackward -> SavedVariable -> db
db = da.exp()
with fwAD.dual_level():
fn()
# This test make sure that we don't deadlock on exit of this
# context manager. If you do, there is something wrong with the
# locking of the forward ad level most likely
# Generic device type autograd tests.
class TestAutogradDeviceType(TestCase):
def test_min_max_median_backprops_to_all_values(self, device):
for f in [torch.min, torch.max, torch.median, torch.nanmedian]:
x1 = torch.tensor([1., 0., 1., 0., 1., 0.], device=device, requires_grad=True)
x2 = torch.tensor([float('nan'), float('nan'), float('nan')], requires_grad=True)
for x in [x1, x2]:
y = f(x)
y.backward()
self.assertEqual(x.grad.sum(), 1.)
self.assertEqual((x.grad == 1 / 3).sum(), 3)
def test_scatter_index_reduce_amin_amax_backprops_to_all_values(self, device):
# tests that gradients are evenly distributed when there are multiple max/min values
# tested here instead of adding a SampleInput as the backward for this case is non-differentiable for gradgrad
# as is the case for test_min_max_median_backprops_to_all_values above
fns = (torch.scatter_reduce, torch.index_reduce)
reduces = ('amin', 'amax')
for fn, reduction in product(fns, reduces):
input = torch.randn((2, 3), device=device, dtype=torch.float64, requires_grad=True)
src = input.clone().detach_().requires_grad_(True)
idx = torch.arange(2).to(dtype=torch.long, device=device)
if fn == torch.scatter_reduce:
idx = idx.unsqueeze(-1).expand((2, 3))
gradcheck(fn, (input, 0, idx, src, reduction), check_batched_grad=False)
def test_scatter_index_reduce_prod_gradgrad_error(self, device):
# test that double backward raises an error for the case where 2 zeros in src
# are scattered to the same position in self
input = torch.tensor([1.], device=device, dtype=torch.float64, requires_grad=True)
src = torch.tensor([0., 0.], device=device, dtype=torch.float64, requires_grad=True)
idx = torch.tensor([0, 0], device=device, dtype=torch.long)
for fn in (torch.scatter_reduce, torch.index_reduce):
# check that this case passes on gradcheck
gradcheck(fn, (input, 0, idx, src, 'prod'), check_batched_grad=False)
with self.assertRaisesRegex(RuntimeError, "Double backward is unsupported for"):
gradgradcheck(fn, (input, 0, idx, src, 'prod'))
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_parameter_resize(self, device):
asd = torch.nn.Parameter(torch.ones(16, dtype=torch.double, device=device))
for i in range(2):
with torch.no_grad():
asd.set_(asd[1:])
asd.grad = None
m = torch.cat((asd, asd))
m.sum().backward()
@skipIfMps # the test doesn't work on MPS as double types are not supported
@dtypes(torch.double, torch.cdouble)
def test_sparse_ctor_getter_backward(self, device, dtype):
# See NOTE [ Sparse: autograd and API ] on the expected behavior of this test
def _test(size, sparse_dim, nnz, device):
v_size = [nnz] + list(size[sparse_dim:])
i = torch.rand(sparse_dim, nnz)
i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i))
i = i.to(torch.long)
inp = torch.randn(v_size, dtype=torch.double, device=device, requires_grad=True)
other = self.genSparseTensor(size, sparse_dim, nnz, is_uncoalesced=True, device=device,
dtype=dtype)[0]
def fn(v):
x = torch.sparse_coo_tensor(i, v, size, dtype=dtype, device=device)
y = (x + other).coalesce()
yv = y.values()
new_v = yv.tanh()
z = torch.sparse_coo_tensor(y.indices(), new_v, y.size())
return z.coalesce().values()
gradcheck(fn, (inp,), check_batched_grad=False)
# FIXME: make gradgradcheck work.
# gradgradcheck(fn, (inp,), check_batched_grad=False)
# assert that _values is non-differentiable
with self.assertRaisesRegex(RuntimeError, "does not have a grad_fn"):
other.detach().requires_grad_()._values().backward(torch.ones_like(other._values()))
for empty_i, empty_v, empty_nnz in product([True, False], repeat=3):
sparse_size = [] if empty_i else [2, 1]
dense_size = [1, 0, 2] if empty_v else [1, 2]
nnz = 0 if empty_nnz else 5
_test(sparse_size + dense_size, len(sparse_size), nnz, device)
@skipMeta
@skipIfMps
@dtypes(torch.double, torch.cdouble)
def test_sparse_backward(self, device, dtype):
class FixedGradientFunction(Function):
@staticmethod
def forward(ctx, x, grad_x):
ctx.save_for_backward(grad_x)
return x
@staticmethod
def backward(ctx, grad_x):
saved_grad_x, = ctx.saved_tensors
return saved_grad_x, None
size = torch.Size([6, 3, 2])
i1 = torch.tensor([
[0, 3, 4],
[0, 2, 2],
], dtype=torch.long)
v1 = make_tensor([3, 2], dtype=dtype, device=device)
sparse_grad1 = torch.sparse_coo_tensor(i1, v1, size, dtype=dtype, device=device)
i2 = torch.tensor([
[0, 1, 3, 4],
[0, 1, 2, 2],
], dtype=torch.long)
v2 = make_tensor([4, 2], dtype=dtype, device=device)
sparse_grad2 = torch.sparse_coo_tensor(i2, v2, size, dtype=dtype, device=device)
dense_grad = torch.rand(size, device=device, dtype=dtype)
fn = FixedGradientFunction
# sparse first
x = torch.randn(size, dtype=dtype, device=device, requires_grad=True)
(fn.apply(x, sparse_grad1) + fn.apply(x, dense_grad) + fn.apply(x, sparse_grad2)).sum().backward()
self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2)
# dense first
x = torch.randn(size, dtype=dtype, device=device, requires_grad=True)
(fn.apply(x, dense_grad) + fn.apply(x, sparse_grad1) + fn.apply(x, sparse_grad2)).sum().backward()
self.assertEqual(x.grad, dense_grad + sparse_grad1 + sparse_grad2)
# sparse only
x = torch.randn(size, dtype=dtype, device=device, requires_grad=True)
(fn.apply(x, sparse_grad1) + fn.apply(x, sparse_grad2)).sum().backward()
self.assertEqual(x.grad, sparse_grad1 + sparse_grad2)
# autograd tests via common_method_invocations don't allow input tensors to
# be sparse (RuntimeError: gradcheck expects all tensor inputs are dense when
# check_sparse_nnz is set to False.)
@skipIfMps
def test_sparse_mask_autograd(self, device):
tensor = torch.randn(3, requires_grad=True, device=device)
mask = torch.ones(3, device=device)
mask[1] = 0
mask = mask.to_sparse()
converted = tensor.sparse_mask(mask).to_dense()
converted.sum().backward()
self.assertEqual(tensor.grad, mask.to_dense())
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_pyscalar_conversions(self, device):
def _test_pyscalar_conversions(t, integral_conv):
# integral -> integral
l = t(torch.zeros(1, 1, 1, dtype=torch.long))
pyscalar = -12345
l[0] = pyscalar
self.assertEqual(integral_conv(l), pyscalar)
# floating point -> floating point
f = Variable(t(torch.randn(1, 1, dtype=torch.double)))
pyscalar = -12345.1
f[0] = pyscalar
self.assertEqual(float(f), pyscalar)
f[0] = nan
self.assertTrue(math.isnan(float(f)))
f[0] = inf
self.assertEqual(float(f), inf)
f[0] = -inf
self.assertEqual(float(f), -inf)
# integral -> floating point
# check we can convert something that loses precision
pyscalar = 1234567890123456789
self.assertNotEqual(pyscalar, integral_conv(float(pyscalar)))
l[0] = pyscalar
self.assertEqual(float(l), float(pyscalar))
# floating point -> integral
f[0] = nan
self.assertRaises(ValueError, lambda: integral_conv(f[0]))
f[0] = inf
self.assertRaises(OverflowError, lambda: integral_conv(f[0]))
f[0] = -inf
self.assertRaises(OverflowError, lambda: integral_conv(f[0]))
f[0] = sys.float_info.max
self.assertEqual(integral_conv(f), sys.float_info.max)
# bool, nonzero
def test_nonzero(tensor, value, expected):
tensor[0] = value
self.assertEqual(expected, bool(tensor))
self.assertEqual(expected, True if tensor else False)
test_nonzero(l, 0, False)
test_nonzero(l, -2, True)
test_nonzero(f, 0.0, False)
test_nonzero(f, sys.float_info.min, True)
test_nonzero(f, nan, bool(nan))
test_nonzero(f, inf, bool(inf))
test_nonzero(f, -inf, bool(-inf))
_test_pyscalar_conversions(lambda x: x.to(device), lambda x: int(x))
@dtypesIfMPS(torch.float32)
@dtypesIfCUDA(torch.half, torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64)
@dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64)
def test_set_requires_grad_only_for_floats(self, device, dtype):
def f1():
a = torch.ones(1, dtype=dtype, device=device)
a.requires_grad_()
def f2():
a = torch.ones(1, dtype=dtype, device=device)
a.requires_grad = True
def f3():
torch.ones(1, dtype=dtype, device=device, requires_grad=True)
a = torch.ones(1, dtype=dtype, device=device)
a.requires_grad = False # should always work
a.requires_grad_(False)
for f in [f1, f2, f3]:
if dtype.is_floating_point:
f()
else:
with self.assertRaisesRegex(RuntimeError, 'floating point', msg="dt: {} device: {}".format(a.dtype, a.device)):
f()
@onlyCUDA
def test_advanced_indexing_backwards_large(self, device):
# See https://github.com/pytorch/pytorch/issues/22843
n = (1 << 16)
x = torch.rand(n, 1, device=device, requires_grad=True)
a = x[:, [0]]
a.sum().backward()
self.assertEqual(x.grad, torch.ones(n, 1, device=device))
def test_advanced_indexing_backwards_memory_format(self, device):
# See https://github.com/pytorch/pytorch/issues/36956
shape = (2, 8, 1, 2)
i = torch.randint(1, shape, device=device).contiguous(memory_format=torch.channels_last)
x = torch.randn(shape, requires_grad=True, device=device)
x[i].sum().backward()
def _test_reentrant_parent_error_on_cpu(self, device):
t1 = torch.rand([3, 3], requires_grad=True)
t2 = torch.rand([3, 3], device=device, requires_grad=True)
t3 = torch.rand([3, 3], device=device, requires_grad=True)
# Parent graph cpu graph.
t4 = t1 * t1
t5 = TestAutograd.SimulateBackwardError.apply(t4)
# Child gpu graph (much longer than parent graph).
prev = t2 * t2
for i in range(10):
prev = prev * t2
reentrant_root = prev
class ReentrantFunc(Function):
@staticmethod
def forward(ctx, inp):
return inp.clone()
@staticmethod
def backward(ctx, grad):
# Reentrant backward in child will take much longer.
reentrant_root.backward()
return grad
# Parent gpu graph.
t6 = ReentrantFunc.apply(t3)
t7 = t6 * t6
# Parent graph will error out first, while child graph will continue executing.
with self.assertRaisesRegex(Exception, "Simulate error"):
torch.autograd.backward([t5.sum(), t7.sum()])
# No grads should be accumulated since child graph will stop execution
# after parent receives error.
self.assertIsNone(t2.grad)
self.assertIsNone(t1.grad)
self.assertIsNone(t3.grad)
@onlyCUDA
def test_reentrant_parent_error_on_cpu(self, device):
def _get_cuda_memory_usage():
# we don't need CUDA synchronize because the statistics are not tracked at
# actual freeing, but at when marking the block as free.
num_devices = torch.cuda.device_count()
gc.collect()
return tuple(torch.cuda.memory_allocated(i) for i in range(num_devices))
before = _get_cuda_memory_usage()
# Run as separate function so that gc can clean up everything when we
# check for memory usage.
self._test_reentrant_parent_error_on_cpu(device)
# Wait for autograd thread to cleanup failed tasks.
after = _get_cuda_memory_usage()
start = time.time()
while before != after and time.time() - start < 30:
time.sleep(0.1)
after = _get_cuda_memory_usage()
self.assertEqual(before, after)
@skipIfMps # the test doesn't work on MPS
# TODO: see if these tests can be ported to OpInfos or moved to where's test suite
def test_where_functional(self, device):
x = torch.randn(5, 5, dtype=torch.double, device=device, requires_grad=True)
y = torch.randn(5, 5, dtype=torch.double, device=device, requires_grad=True)
cond = mask_not_all_zeros((5, 5)).to(device=device)
def where(cond, x, y):
return torch.where(cond, x, y)
gradcheck(where, [cond, x, y], raise_exception=True)
gradgradcheck(where, [cond, x, y], [torch.randn(5, 5, device=device)])
x = torch.randn(5, 1, 5, dtype=torch.double, device=device, requires_grad=True)
y = torch.randn(5, 5, 1, dtype=torch.double, device=device, requires_grad=True)
gradcheck(where, [cond, x, y], raise_exception=True)
gradgradcheck(where, [cond, x, y], [torch.randn(5, 5, 5, device=device)])
@skipIfMps # the test doesn't work on MPS
def test_where_scalar(self, device):
x = torch.randn(5, 5, dtype=torch.double, device=device, requires_grad=True)
scalar = 4.
cond = mask_not_all_zeros((5, 5)).to(device=device)
def where_scalar_first(cond, x):
return torch.where(cond, scalar, x)
def where_scalar_second(cond, x):
return torch.where(cond, x, scalar)
gradcheck(where_scalar_first, (cond, x))
gradgradcheck(where_scalar_first, (cond, x))
gradcheck(where_scalar_second, (cond, x))
gradgradcheck(where_scalar_second, (cond, x))
@onlyCUDA
def test_free_unneeded_tensor(self, device):
x = torch.randn(2, 3, 10, 10, device=device, requires_grad=True)
m = torch.randn(1, 3, 1, 1, device=device)
z = x.sum()
base_mem = torch.cuda.memory_allocated()
z = ((x + 2) * m).sum()
end_mem = torch.cuda.memory_allocated()
# In the end the memory usage should remain equal, because neither of
# (x + 2) and ((x + 2) * m) should be kept alive for backward, while the
# previous allocation of z had the same size as the current one.
self.assertEqual(base_mem, end_mem)
@onlyCUDA
def test_pin_memory(self, device):
x = torch.randn(2, 2, dtype=torch.double, requires_grad=True)
self.assertEqual(x, x.pin_memory())
self.assertIsNot(x, x.pin_memory())
self.assertTrue(x.pin_memory().requires_grad)
gradcheck(lambda x: x.pin_memory(), [x])
gradgradcheck(lambda x: x.pin_memory(), [x])
@onlyCUDA
def test_profiler_emit_nvtx(self, device):
# This test is not intended to ensure correctness of nvtx ranges.
# That would require something a great deal more complex (you'd have to create a
# profile in a subprocess, open it, and parse the sql somehow).
# This test is merely intended to catch if emit_nvtx breaks on construction.
a = torch.tensor([1, 2, 3], dtype=torch.float32, device=device)
with torch.cuda.profiler.profile():
with emit_nvtx():
a.add(1.0)
@onlyCUDA
def test_rnn_backward_to_input_but_not_parameters(self, device):
# this checks whether it is possible to not require
# weight parameters, but require inputs, see #7722
l = torch.nn.LSTM(2, 3).to(device)
for p in l.parameters():
p.requires_grad = False
s = torch.randn(1, 1, 2, requires_grad=True, device=device)
out, _ = l(s)
out.sum().backward()
self.assertFalse(s.grad is None or s.grad.abs().sum().item() == 0)
@unittest.skipIf(not torch.profiler.itt.is_available(), "ITT is required")
def test_profiler_emit_itt(self, device):
# This test is not intended to ensure correctness of itt ranges.
# That would require something a great deal more complex (you'd have to create a
# profile in a subprocess, open it, and parse the sql somehow).
# This test is merely intended to catch if emit_itt breaks on construction.
a = torch.tensor([1, 2, 3], dtype=torch.float32, device=device)
with emit_itt():
a.add(1.0)
@skipIfMps # the test doesn't work as randn is not supported with type long
@deviceCountAtLeast(1)
def test_grad_assignment(self, devices):
x = torch.randn(5, 5, device=devices[0])
# Tests that the wrong type raises
with self.assertRaisesRegex(TypeError, "expected to be a Tensor or None"):
x.grad = 0
# Tests that the wrong shape raises
with self.assertRaises(RuntimeError):
x.grad = torch.randn(2, 2, device=devices[0])
# Tests that the wrong dtype raises
with self.assertRaises(RuntimeError):
x.grad = torch.randn(5, 5, dtype=torch.long, device=devices[0])
# Tests that self-assignment raises
with self.assertRaises(RuntimeError):
x.grad = x
# Tests device -> cpu grad assignment raises
if self.device_type != 'cpu':
with self.assertRaises(RuntimeError):
t_cpu = torch.rand(5, 5)
t_cpu.grad = torch.randn(5, 5, device=devices[0])
# Tests half type on CUDA
if self.device_type == 'cuda':
x = x.to(dtype=torch.half, device=devices[0])
x.grad = torch.zeros_like(x)
# Tests cross-device assignment raises
if len(devices) > 1:
x = torch.randn(5, 5, device=devices[0])
with self.assertRaises(RuntimeError):
x.grad = torch.randn(5, 5, device=devices[1])
@dtypesIfMPS(torch.float32)
@deviceCountAtLeast(1)
@dtypes(torch.float, torch.double)
def test_requires_grad_factory(self, devices, dtype):
fns = [torch.ones_like, torch.randn_like]
x = torch.randn(2, 3, dtype=dtype, device=devices[0])
for fn in fns:
for requires_grad in [True, False]:
output = fn(x, dtype=dtype, device=devices[0], requires_grad=requires_grad)
self.assertEqual(requires_grad, output.requires_grad)
self.assertIs(dtype, output.dtype)
self.assertEqual(devices[0], str(x.device))
@deviceCountAtLeast(2)
def test_unused_output_device(self, devices):
from torch.nn.parallel._functions import Broadcast
x = torch.randn(5, 5, dtype=torch.float, device=devices[0], requires_grad=True)
outputs = Broadcast.apply(list(range(len(devices))), x)
y = outputs[-1] * 2
y.sum().backward()
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(x.grad, torch.ones(5, 5) * 2)
@deviceCountAtLeast(2)
def test_backward_device(self, devices):
# check that current device matches the variable's device
device = [None]
class Identity(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return x.clone()
@staticmethod
def backward(ctx, grad_output):
device[0] = grad_output.device
return grad_output.clone()
v = torch.randn(1, device=devices[1], requires_grad=True)
Identity.apply(v).backward()
self.assertEqual(str(device[0]), devices[1])
@deviceCountAtLeast(2)
def test_inputbuffer_add_multidevice(self, devices):
input = torch.randn(1, device=devices[0], requires_grad=True)
output = input.to(device=devices[1]) + input.to(device=devices[1])
output.backward()
@onlyCPU
def test_copy_(self, device):
# At the time of writing this test, copy_ is not generated from native_functions.yaml
# there was a bug that bfloat16 was not recognized as floating.
x = torch.randn(10, device=device, requires_grad=True)
floating_dt = floating_types_and(torch.half, torch.bfloat16)
for dt in floating_dt:
y = torch.empty(10, device=device, dtype=dt)
y.copy_(x)
self.assertTrue(y.requires_grad)
z = x.to(torch.bfloat16)
self.assertTrue(z.requires_grad)
def test_copy_forward_ad_broadcasting(self, device):
# copy_ allows the src to have a different shape from self as long as src is
# broadcastable to self. Make sure forward AD handles this case.
primal = torch.rand(3, 3, device=device)
tangent = torch.rand(3, 3, device=device)
non_dual = torch.rand(1, 3, 3, device=device)
with fwAD.dual_level():
dual = fwAD.make_dual(primal, tangent)
non_dual.copy_(dual)
def test_copy_forward_ad_same_layout_copies_grad(self, device):
primal = torch.tensor([[3.], [4.]], device=device)
tangent = torch.tensor([[5.], [6.]], device=device)
with fwAD.dual_level():
x_dual = fwAD.make_dual(primal, tangent)
non_dual = torch.tensor([[1.], [2.]])
non_dual.copy_(x_dual)
self.assertTrue(fwAD.unpack_dual(non_dual).tangent is not tangent)
@onlyCUDA
def test_simple_reentrant_cross_device(self, device):
class ReentrantFunc(Function):
_cpu_mode = True
@staticmethod
def forward(ctx, x):
return x * (x + 2)
@staticmethod
def backward(ctx, grad_output):
with torch.enable_grad():
if ReentrantFunc._cpu_mode:
new_param = torch.randn(2, 2, requires_grad=True)
(new_param ** 2).sum().backward()
else:
new_param = torch.randn(2, 2, device=device, requires_grad=True)
(new_param ** 2).sum().backward()
return grad_output
# Reentrant starts on GPU thread, finishs on GPU thread
x = torch.randn(2, 2, device=device, requires_grad=True)
out = ReentrantFunc.apply(x)
out.sum().backward()
# Reentrant starts on CPU thread, finishs on GPU thread
x = torch.randn(2, 2, requires_grad=True)
# set ReentrantFunc node to GPU to emit tasks to GPU queue
ReentrantFunc._cpu_mode = False
out = ReentrantFunc.apply(x)
out.sum().backward()
# Reentrant starts on GPU thread, finishs on CPU thread
x = torch.randn(2, 2, device=device, requires_grad=True)
# set ReentrantFunc node to CPU to emit tasks to CPU queue
ReentrantFunc._cpu_mode = True
out = ReentrantFunc.apply(x)
out.sum().backward()
@onlyCUDA
def test_cross_device_reentrant_autograd(self, device):
# Output on gpu so that this task will be associated with the gpu thread
def fn_on_gpu(inp):
# Artificially increase the priority of the next op to make sure it runs
# as soon as we reach it before the ops of branch1.
dummy = inp * 2 * 2 * 2 * 2
return inp.to(device=device)
def parent_on_cpu(inp):
# Slow branch of ops on gpu so that the work queue for the gpu thread
# won't empty too quickly. They also have smaller priorities than the
# ones created by fn_on_gpu
branch1 = inp.to(device=device)
branch1 = branch1 / branch1
branch1 = branch1 / branch1
branch1 = branch1 / branch1
# Perform checkpoint on cpu tensors. So the last op performed in the reentrant
# autograd is an AccumulateGrad that runs on the cpu thread for the gpu thread.
# So the cpu thread will notify the gpu thread with an empty NodeTask.
branch2 = checkpoint(fn_on_gpu, inp)
out = branch2 + branch1
return out
inp = torch.rand(2, requires_grad=True)
out = parent_on_cpu(inp)
# This will segfault if the empty NodeTask is not handled properly in the
# gpu thread ReadyQueue
out.sum().backward()
def test_inplace_on_view_backprop_base(self, device):
# modify view and back-prop through base
root = torch.randn(2, 2, device=device, requires_grad=True)
x = root.clone()
v1 = x.narrow(0, 0, 1)
v1.mul_(2)
x.sum().backward()
self.assertEqual(root.grad.tolist(), [[2, 2], [1, 1]])
def test_inplace_on_view_backprop_view_of_view(self, device):
# modify view and backprop through view-of-view
root = torch.randn(2, 2, device=device, requires_grad=True)
x = root.clone()
v1 = x.narrow(0, 0, 1)
v2 = x.narrow(0, 0, 1)
v1.mul_(2)
v2.sum().backward()
self.assertEqual(root.grad.tolist(), [[2, 2], [0, 0]])
def test_inplace_on_view_of_view(self, device):
# modify view-of-view and backprop through base
root = torch.randn(2, 2, device=device, requires_grad=True)
x = root.clone()
v1 = x.narrow(0, 0, 1)
v2 = v1.narrow(1, 1, 1)
v2.mul_(2)
x.sum().backward()
self.assertEqual(root.grad.tolist(), [[1, 2], [1, 1]])
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_inplace_on_view_then_no_grad(self, device):
# Perform an in-place operation on a view of a non-leaf variable.
a = torch.ones(3, 1, dtype=torch.double, device=device, requires_grad=True)
b = a * 2
c = b.view_as(b)
c[0][0] = 3
# Force a graph update with grad disabled.
with torch.no_grad():
c.grad_fn
c.sum().backward()
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_inplace_on_view_gradcheck(self, device):
# gradcheck modifications to views
a = torch.randn(4, 4, dtype=torch.double, device=device, requires_grad=True)
b = torch.randn(2, 2, dtype=torch.double, device=device, requires_grad=True)
def func(root, b):
x = root.clone()
x.narrow(1, 2, 2).narrow(0, 1, 2).mul_(b)
x.narrow(1, 0, 2).narrow(0, 1, 2).mul_(b)
return x
gradcheck(func, [a, b], raise_exception=True)
go = torch.randn(a.size(), dtype=torch.double, device=device, requires_grad=True)
gradgradcheck(func, (a, b), (go,))
def test_inplace_on_view_multiple_outputs(self, device):
root = torch.arange(9., dtype=torch.double).reshape(3, 3).requires_grad_()
x = root.clone()
v1 = x.unbind()
with self.assertRaises(RuntimeError):
v1[0].mul_(2)
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_inplace_on_view_of_multiple_output_view(self, device):
a = torch.rand(10, dtype=torch.double, device=device, requires_grad=True).clone()
b = a.unbind(0)
c = b[0].view_as(b[0])
with self.assertRaises(RuntimeError):
c.mul_(2)
@skipIfMps # MPS backend doesn't support double types
def test_inplace_multiple_output_view_of_view(self, device):
a = torch.rand(10, dtype=torch.double, device=device, requires_grad=True).clone()
b = a.view_as(a)
c = b.unbind(0)
with self.assertRaises(RuntimeError):
c[0].mul_(2)
@skipIfMps # MPS backend doesn't support double types
def test_inplace_on_view_makes_base_require_grad(self, device):
# in-place modification to view makes base require grad
a = torch.randn(4, 4, dtype=torch.double, device=device, requires_grad=False)
b = torch.randn(4, 2, dtype=torch.double, device=device, requires_grad=True)
def func(root, b):
x = root.clone()
self.assertFalse(x.requires_grad)
x.narrow(1, 2, 2).mul_(b)
self.assertTrue(x.requires_grad)
return x
gradcheck(func, [a, b], raise_exception=True)
go = torch.randn(a.size(), dtype=torch.double, device=device, requires_grad=True)
gradgradcheck(func, (a, b), (go,))
def test_inplace_on_view_backprop_view(self, device):
# modify view and backprop through view
a = torch.tensor([2., 5.], device=device, requires_grad=False)
b = torch.tensor([3.], device=device, requires_grad=True)
res = a.narrow(0, 1, 1).mul_(b)
res.sum().backward()
self.assertEqual(b.grad.tolist(), [5])
self.assertIsNone(a.grad)
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_inplace_on_view_modify_base(self, device):
# Test that an in-place operation on a base that forced it to require
# grad also forces any previous views to require grad and backprop
# correctly
r = torch.ones(1, dtype=torch.double, device=device, requires_grad=True)
def fn(r):
x = torch.ones(5, dtype=torch.double, device=device)
v = x.select(0, 1)
self.assertFalse(v.requires_grad)
self.assertIsNone(v.grad_fn)
x.add_(r) # v is now dependent on r due to the in-place op on x
self.assertTrue(v.requires_grad)
return v
gradcheck(fn, [r])
gradgradcheck(fn, [r])
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_inplace_on_view_python(self, device):
# in-place modifications of Python-autograd created view
a = torch.randn(4, 4, dtype=torch.double, device=device, requires_grad=True)
b = torch.randn(2, 2, dtype=torch.double, device=device, requires_grad=True)
class PyAdd(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
ctx.mark_dirty(x)
x.add_(y)
return x
@staticmethod
def backward(ctx, grad):
return grad, grad
def func(root, b):
x = root.clone()
PyAdd.apply(x.narrow(1, 2, 2).narrow(0, 1, 2), b)
PyAdd.apply(x.narrow(1, 0, 2).narrow(0, 1, 2), b)
return x
gradcheck(func, [a, b], raise_exception=True)
go = torch.randn(a.size(), dtype=torch.double, device=device, requires_grad=True)
gradgradcheck(func, (a, b), (go,))
def test_inplace_on_view_non_contig(self, device):
root = torch.ones(2, 3, 2, device=device).select(2, 1).t().requires_grad_(True)
x = root.clone()
v1 = x.narrow(0, 0, 1)
v2 = v1.narrow(1, 1, 1)
v2.mul_(2)
x.sum().backward()
self.assertEqual(root.grad.tolist(), [[1, 2], [1, 1], [1, 1]])
def test_inplace_on_view_multi_output_unsafe(self, device):
for f in [lambda t: t.unsafe_split(1),
lambda t: t.unsafe_split_with_sizes((1, 1, 1)),
lambda t: t.unsafe_chunk(3)]:
a = torch.randn(3, 3, device=device, requires_grad=True)
b = a + a
s1, s2, s3 = f(b)
s1.mul_(s2)
s1.sum().backward()
def test_inplace_on_view_multi_output_safe(self, device):
for f in [lambda t: t.split(1),
lambda t: t.split_with_sizes((1, 1, 1)),
lambda t: t.chunk(3)]:
a = torch.randn(3, 3, device=device, requires_grad=True)
b = a + a
s1, s2, s3 = f(b)
error_msg = 'This view is the output of a function that returns multiple views.'
with self.assertRaisesRegex(RuntimeError, error_msg):
s1.mul_(s2)
@skipIfMps # the test doesn't work on MPS as double types are not supported
def test_mv_grad_stride_0(self, device):
# Reference: https://github.com/pytorch/pytorch/issues/38315
mat = torch.randn(2, 2, dtype=torch.double, device=device)
vec = torch.randn(1, dtype=torch.double, device=device).requires_grad_(True)
def fn(vec):
# Expand inside the function to make sure the input to
# gradcheck does not have overlapping memory
vec = vec.expand(2)
return (mat @ vec).sum()
gradcheck(fn, (vec))
gradgradcheck(fn, (vec))
@onlyCUDA
def test_gradcheck_input_output_different_device(self, device):
x = torch.ones((1,), dtype=torch.double, device="cuda", requires_grad=True)
gradcheck(lambda x: x.to("cpu"), (x,))
x = torch.ones((1,), dtype=torch.double, device="cpu", requires_grad=True)
gradcheck(lambda x: x.to("cuda"), (x,))
def test_strided_leaf_grad_layout(self, device):
# (1) If leaf is non-overlapping and dense, grad's layout should match its leaf.
for fmt_a in (torch.contiguous_format, torch.channels_last):
for fmt_b in (torch.contiguous_format, torch.channels_last):
a = torch.rand((2, 3, 4, 5), device=device).to(memory_format=fmt_a)
b = torch.rand((2, 3, 4, 5), device=device).to(memory_format=fmt_b)
a.requires_grad_()
b.requires_grad_()
# checks (1) for broadcasted gradients
a.sum().backward()
self.assertEqual(a.grad.stride(), a.stride())
b.sum().backward()
self.assertEqual(b.grad.stride(), b.stride())
# checks (1) for non-broadcasted gradients
a.grad = None
b.grad = None
(a * b).sum().backward()
self.assertEqual(a.grad.stride(), a.stride())
self.assertEqual(b.grad.stride(), b.stride())
# (2) If leaf isn't dense, checks that grads are rowmajor contiguous.
c = torch.empty_strided((2, 2), (4, 2), device=device).copy_(torch.rand((2, 2), device=device))
c.requires_grad_()
d = torch.rand((2, 2), device=device)
# checks (2) for broadcasted gradients
c.sum().backward()
self.assertEqual(c.grad.stride(), (2, 1))
# checks (2) for non-broadcasted gradients
c.grad = None
(c * d).sum().backward()
self.assertEqual(c.grad.stride(), (2, 1))
@skipIfMps
def test_copy_r_to_c(self, device):
out_c = torch.empty(3, 2, dtype=torch.cdouble, device=device)
inp_r = torch.randn(3, 2, dtype=torch.double, device=device,
requires_grad=True)
def do_test():
out_c.copy_(inp_r)
out_c.sum().backward()
self.assertEqual(inp_r.grad, torch.ones_like(inp_r))
self.assertNotWarn(do_test)
def test_to_r_to_c(self, device):
def do_test():
inp_r = torch.randn(3, 2, dtype=torch.double, device=device,
requires_grad=True)
out = inp_r.to(torch.complex128)
out.sum().backward()
self.assertEqual(inp_r.grad, torch.ones_like(inp_r))
self.assertNotWarn(do_test)
def test_non_differentiable_ops(self, device):
# Just make sure the op doesn't raise an error
# and resulting tensor has requires_grad=False.
x = torch.tensor([[1, 2], [3, 4.]], requires_grad=True, device=device)
out = torch.isin(x, torch.tensor([2, 3], device=device))
self.assertFalse(out.requires_grad)
x = torch.randn(3, 3, requires_grad=True)
out = torch.signbit(x)
self.assertFalse(out.requires_grad)
def test_warning_in_backward(self, device):
# Test warning during backward are always propagated as python warnings (gh-50209)
# NOTE: For device=cuda, warning gets propagated from a worker thread
a = torch.zeros((), device=device, requires_grad=True)
b = torch._C._nn._test_warn_in_autograd(a)
with self.assertWarnsRegex(UserWarning, "Warn from backward"):
b.backward()
class TestAutogradInferenceMode(TestCase):
def _is_inference_tensor(self, tensor):
try:
err_msg = "Inference tensors do not track version counter"
with self.assertRaisesRegex(RuntimeError, err_msg):
tensor._version
return True
except AssertionError as e:
return False
def test_inference_mode_context_manager(self):
self.assertFalse(torch.is_inference_mode_enabled())
with torch.inference_mode():
self.assertTrue(torch.is_inference_mode_enabled())
with torch.inference_mode(False):
self.assertFalse(torch.is_inference_mode_enabled())
self.assertTrue(torch.is_inference_mode_enabled())
self.assertFalse(torch.is_inference_mode_enabled())
def test_inference_mode_decorator(self):
for mode in (True, False):
@torch.inference_mode(mode)
def func(x):
self.assertEqual(torch.is_inference_mode_enabled(), mode)
return x * x
for requires_grad in (True, False):
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
d = func(c)
self.assertTrue(not mode or torch.is_inference(d))
self.assertEqual(d.requires_grad, requires_grad and not mode)
def test_inference_mode_tensor_creation(self):
with torch.inference_mode():
# new tensors created through constructors are inference tensors
c = torch.ones(1, 2, 3)
self.assertFalse(c.requires_grad)
self.assertTrue(torch.is_inference(c))
# requires_grad doesn't change inference tensor behavior in InferenceMode
tmp = torch.ones(1, 2, 3, requires_grad=True)
self.assertTrue(tmp.requires_grad)
self.assertTrue(torch.is_inference(tmp))
tmp = torch.ones(1, 2, 3).requires_grad_(False)
self.assertFalse(tmp.requires_grad)
self.assertTrue(torch.is_inference(tmp))
def test_inference_mode_existing_autograd_session(self):
s = torch.ones(1, 2, 3, requires_grad=True)
a = s.clone()
# `a` gets saved outside of inference mode
out = a * a
with torch.inference_mode():
a.add_(2)
self.assertFalse(torch.is_inference(a))
# tensors created outside of inference mode aren't
# inference tensors, so they will still have their
# version counters tracked
err_msg = ("one of the variables needed for gradient computation has been "
"modified by an inplace operation")
with self.assertRaisesRegex(RuntimeError, err_msg):
out.backward(torch.ones_like(out))
def test_inference_mode_inf_tensor_in_inf_mode_functional_op(self):
def functional_op(x):
return x * x
with torch.inference_mode():
for requires_grad in (True, False):
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
# performing a non-view operation produces a inference tensor
# that does not require grad
func_out = functional_op(c)
self.assertTrue(torch.is_inference(func_out))
self.assertFalse(func_out.requires_grad)
def test_inference_mode_inf_tensor_in_inf_mode_inplace_op(self):
@torch.inference_mode()
def run_test(fn):
for requires_grad in (True, False):
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
# after performing inplace operation, tensor is still
# an inference tensor
fn(c)
self.assertTrue(torch.is_inference(c))
self.assertEqual(c.requires_grad, requires_grad)
run_test(lambda x: x.add_(2))
run_test(lambda x: x.transpose_(0, 1))
def test_inference_mode_inf_tensor_in_inf_mode_view_op(self):
with torch.inference_mode():
for requires_grad in (True, False):
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
# perform view operation produces inference tensor
# that does not require grad
view_out = c.view(-1)
self.assertTrue(torch.is_inference(view_out))
self.assertFalse(view_out.requires_grad)
def test_inference_mode_inf_tensor_in_normal_mode_functional_op(self):
def functional_op(x):
return x * x
for requires_grad in (True, False):
with torch.inference_mode():
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
func_out = functional_op(c)
self.assertFalse(torch.is_inference(func_out))
self.assertFalse(func_out.requires_grad)
self.assertTrue(func_out.is_leaf)
def test_inference_mode_inf_tensor_in_normal_mode_inplace_op(self):
def run_test(fn):
for requires_grad in (False, True):
with torch.inference_mode():
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
if requires_grad:
# leaf variable that requires grad is being used in an inplace
# operation when requires_grad=True
pass
else:
err_msg = "Inplace update to inference tensor outside InferenceMode"
with self.assertRaisesRegex(RuntimeError, err_msg):
fn(c)
run_test(lambda x: x.add_(2))
run_test(lambda x: x.transpose_(0, 1))
def test_inference_mode_inf_tensor_in_normal_mode_view_op(self):
for requires_grad in (True, False):
with torch.inference_mode():
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
out = c.view(-1)
self.assertTrue(torch.is_inference(out))
self.assertFalse(out.requires_grad)
self.assertFalse(out._is_view())
self.assertTrue(out.is_leaf)
def test_normal_tensor_inplace_output_in_inference_mode(self):
def run_test(fn):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
a = s.clone()
with torch.inference_mode():
fn(a)
self.assertFalse(torch.is_inference(a))
self.assertEqual(a.requires_grad, requires_grad)
# inplace -> inplace
fn(a)
self.assertFalse(torch.is_inference(a))
self.assertEqual(a.requires_grad, requires_grad)
# inplace -> inplace -> view
view_out = a.view(-1)
self.assertFalse(torch.is_inference(view_out))
self.assertEqual(view_out.requires_grad, requires_grad)
run_test(lambda x: x.add_(2))
run_test(lambda x: x.transpose_(0, 1))
def test_normal_tensor_inplace_output_in_normal_mode(self):
def run_test(fn):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
a = s.clone()
with torch.inference_mode():
fn(a)
self.assertFalse(torch.is_inference(a))
self.assertEqual(a.requires_grad, requires_grad)
fn(a)
self.assertFalse(torch.is_inference(a))
self.assertEqual(a.requires_grad, requires_grad)
# inplace -> inplace
fn(a)
self.assertFalse(torch.is_inference(a))
self.assertEqual(a.requires_grad, requires_grad)
# inplace -> inplace -> view
view_out = a.view(-1)
self.assertFalse(torch.is_inference(view_out))
self.assertEqual(view_out.requires_grad, requires_grad)
run_test(lambda x: x.add_(2))
run_test(lambda x: x.transpose_(0, 1))
def test_normal_tensor_view_output_in_inference_mode(self):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
a = s.clone()
with torch.inference_mode():
out = a.view(-1)
self.assertFalse(torch.is_inference(out))
self.assertEqual(out.requires_grad, requires_grad)
self.assertTrue(out._is_view())
# view -> view
tmp = out.view(-1)
self.assertFalse(torch.is_inference(tmp))
self.assertEqual(tmp.requires_grad, requires_grad)
self.assertTrue(tmp._is_view())
self.assertTrue(tmp.is_leaf)
# view -> view -> inplace
self.assertTrue(torch.is_inference_mode_enabled())
tmp.add_(2)
self.assertFalse(torch.is_inference(tmp))
self.assertEqual(tmp.requires_grad, requires_grad)
# Accessing is_leaf in python tries to update grad_fn and raises:
# A view was created in inference mode and its base or
# another view of its base has been modified inplace in normal mode
# tmp.is_leaf
self.assertEqual(a._version, tmp._version)
def test_normal_tensor_view_output_in_normal_mode(self):
def functional_op(x):
return x * x
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
a = s.clone()
with torch.inference_mode():
out = a.view(-1)
self.assertFalse(torch.is_inference(out))
self.assertEqual(out.requires_grad, requires_grad)
self.assertTrue(out._is_view())
self.assertTrue(out.is_leaf)
tmp = functional_op(out)
self.assertFalse(torch.is_inference(tmp))
self.assertEqual(tmp.requires_grad, requires_grad)
if requires_grad:
err_msg = "A view was created in inference mode and is being modified inplace"
with self.assertRaisesRegex(RuntimeError, err_msg):
out.add_(2)
pass
else:
out.add_(2)
tmp = out.view(2, 3)
self.assertFalse(torch.is_inference(tmp))
self.assertEqual(tmp.requires_grad, requires_grad)
def test_mix_inference_and_normal_tensor_functional_op(self):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
with torch.inference_mode():
c = torch.ones(1, 2, 3, requires_grad=requires_grad)
# add is safe since it doesn't save any variable for backward
out = c.add(s)
self.assertFalse(torch.is_inference(out))
self.assertEqual(out.requires_grad, requires_grad)
if requires_grad:
# leaf inference tensor with requires_grad=True can still have gradient
out.backward(torch.ones_like(out))
self.assertEqual(c.grad, torch.ones_like(c))
if requires_grad:
err_msg = "Inference tensors cannot be saved for backward"
with self.assertRaisesRegex(RuntimeError, err_msg):
c * s
# TODO: Test this with an autograd.Function when it works
# stack stopped capturing a TensorList input
# # inference tensor in TensorList input
# inputs = [s, c]
# with self.assertRaisesRegex(RuntimeError, err_msg):
# torch.stack(inputs)
def test_mix_inference_and_normal_tensor_inplace_op(self):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
a = s.clone()
with torch.inference_mode():
c = torch.ones(1, 2, 3)
self.assertTrue(torch.is_inference(c))
if requires_grad:
err_msg = "Inference tensors cannot be saved for backward"
with self.assertRaisesRegex(RuntimeError, err_msg):
a.mul_(c)
# inference tensor in TensorList input
err_msg = ("out=... arguments don't support automatic differentiation, "
"but one of the arguments requires grad")
with self.assertRaisesRegex(RuntimeError, err_msg):
torch.mul(s, s, out=c)
else:
a.mul_(c)
err_msg = "Inplace update to inference tensor outside InferenceMode is not allowed"
with self.assertRaisesRegex(RuntimeError, err_msg):
torch.mul(s, s, out=c)
def test_mix_inference_and_normal_tensor_view_op(self):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
with torch.inference_mode():
c = torch.ones(1, 2, 3)
# view_as is a composite op which calls view with only one
# tensor argument. So there isn't a mixed inference and normal
# tensor inputs for view ops
tmp1 = c.view_as(s)
self.assertTrue(torch.is_inference(tmp1))
self.assertFalse(tmp1.requires_grad)
# this is fine since its equivalent as s.view(c.sizes()) which
# isn't a mixed input scenario
tmp2 = s.view_as(c)
self.assertFalse(torch.is_inference(tmp2))
self.assertEqual(tmp2.requires_grad, requires_grad)
def test_inference_mode_handle_direct_view_on_rebase(self):
def run_test(fn):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
a = s.clone()
with torch.inference_mode():
view_out = a.view_as(a)
if requires_grad:
err_msg = "A view was created in inference mode and is being modified inplace"
with self.assertRaisesRegex(RuntimeError, err_msg):
fn(view_out)
pass
else:
fn(view_out)
run_test(lambda x: x.add_(2))
run_test(lambda x: x.transpose_(0, 1))
def test_inference_mode_handle_indirect_view_on_rebase(self):
def run_test(fn):
for requires_grad in (True, False):
s = torch.ones(1, 2, 3, requires_grad=requires_grad)
a = s.clone()
with torch.inference_mode():
view_out = a.view(-1)
fn(a)
if requires_grad:
err_msg = "A view was created in inference mode and its base or another view "
with self.assertRaisesRegex(RuntimeError, err_msg):
view_out.grad_fn
pass
else:
view_out.grad_fn
run_test(lambda x: x.add_(2))
run_test(lambda x: x.transpose_(0, 1))
class TestMultithreadAutograd(TestCase):
def _run_py_multithread_fn(self, fn, args=(), num_threads=10, kwargs=None):
class PropagatingThread(threading.Thread):
'''Helper class to propagate exception from child
thread to main thread on join.
Reference: https://stackoverflow.com/a/31614591/5602957
'''
def run(self):
self.exception = None
try:
self.ret = super(PropagatingThread, self).run()
except Exception as e:
self.exception = e
def join(self, timeout=None):
super(PropagatingThread, self).join(timeout)
if self.exception:
raise self.exception from self.exception
return self.ret
threads = []
for _ in range(num_threads):
p = PropagatingThread(target=fn, args=args)
p.start()
threads.append(p)
for p in threads:
p.join()
def test_multithreaded_exception_propagation(self):
# Test whether exception in child thread
# are propagated to main thread.
def fn():
self.assertTrue(False)
with self.assertRaises(AssertionError):
self._run_py_multithread_fn(fn)
def test_simple_backward(self):
# simple multithreaded backward that create threads in the beginning of training
# and everything else is training separately, i.e. inputs, operations, etc.
def train_fn():
x = torch.ones(5, 5, requires_grad=True)
y = (x + 3) * (x + 4) * 0.5
y.sum().backward()
self.assertEqual(x.grad, x + 3.5)
self._run_py_multithread_fn(train_fn)
def test_simple_backward_same_input(self):
# simple multithreaded backward with only shared inputs (i.e. This is common
# for things like Hogwild multithreaded training with multiple CPU threads)
def train_fn_backward(x):
y = (x + 3) * (x + 4) * 0.5
y.sum().backward()
x = torch.ones(5, 5, requires_grad=True)
self._run_py_multithread_fn(train_fn_backward, (x,))
# Since we are calling backward from multiple threads
# and all threads share the same input, when we do backward
# concurrently, different backwards will all accumulate to
# the same .grad for each input, and the gradients should
# be equal to num_threads * gradient
self.assertEqual(x.grad, 10 * (x + 3.5))
def train_fn_grad(x):
y = (x + 3) * (x + 4) * 0.5
grads = torch.autograd.grad(y.sum(), x)
self.assertEqual(len(grads), 1)
self.assertEqual(grads[0], x + 3.5)
# since we use functional grad() api, gradients will not
# be accumulate to the same place and should be the same
self._run_py_multithread_fn(train_fn_grad, (x,))
def test_multithread_saved_tensors_hooks(self):
def pack(x):
warnings.warn("pack")
return x
def registers_hooks_for_each_thread():
with torch.autograd.graph.saved_tensors_hooks(pack, lambda x: x):
x = torch.ones(5, 5, requires_grad=True)
with warnings.catch_warnings(record=True) as w:
y = x * x
# should raise two warnings from x being saved twice
self.assertEqual(len(w), 2)
y.sum().backward()
def test_dataparallel_saved_tensors_hooks(self):
def pack(x):
warnings.warn("pack")
return x
_self = self
class Model(torch.nn.Module):
def forward(self, x):
with warnings.catch_warnings(record=True) as w:
y = x * x
if torch.cuda.device_count() >= 2:
# DataParallel is calling the forward in different threads
# without progating TLS, so hooks should not be called here
_self.assertEqual(len(w), 0)
else:
# DataParallel only uses one thread
# so hooks should be called here
_self.assertGreater(len(w), 0)
x = torch.ones(5, 5, requires_grad=True)
model = torch.nn.DataParallel(Model())
with torch.autograd.graph.saved_tensors_hooks(pack, lambda x: x):
model(x)
with warnings.catch_warnings(record=True) as w:
y = x * x
# hooks should be called here
_self.assertGreater(len(w), 0)
def test_python_thread_in_middle(self):
# User might write a network that starts on one CPU thread, then runs its second half
# concurrently with other threads (either via python threading or fork/join calls),
# then calls backward()/grad() on BOTH threads, like a Y pattern from input at the
# bottom to output at the top. This way part of the GraphTask is being shared across
# different threads and we need to ensure user specify retain_graph=True, otherwise
# error out with the correct error message
# Case 1: multiple backward with python threads, retain_graph=False
# should throw error in some threads with no retain_graph.
success_vs_raises = [0, 0]
def train_fn_no_retain_graph(x):
y = x + x ** 2
try:
y.sum().backward()
success_vs_raises[0] += 1
except RuntimeError as error:
success_vs_raises[1] += 1
self.assertRegex(str(error), "Specify retain_graph=True")
x_no_retain = torch.ones(5, 5, requires_grad=True)
y_no_retain = x_no_retain + x_no_retain ** 2
self._run_py_multithread_fn(train_fn_no_retain_graph, (y_no_retain,), num_threads=5)
# at least one thread will be success in this case, all other threads should raise
# with the error that throw to user to recommend them specify retain_graph=True
self.assertTrue(success_vs_raises[0] >= 1)
# multiple backward with python threads, no error with retain_graph=True
def train_fn_retain_graph(x):
y = x + x ** 2
y.sum().backward(retain_graph=True)
x_retain = torch.ones(5, 5, requires_grad=True)
y_retain = x_retain + x_retain ** 2
self._run_py_multithread_fn(train_fn_retain_graph, (y_retain,), num_threads=5)
# result should equal to num_thread * gradients
self.assertEqual(x_retain.grad, 5 * (4 * x_retain ** 3 + 6 * (x_retain ** 2) + 4 * x_retain + 1))
def test_fork_join_in_middle(self):
# multiple backward with jit threads (fork/join primitive)
# similar to test_python_thread_in_middle, we test with retain_graph=False/True
# Case 1: multiple grad() calls with jit threads, retain_graph=False
# should throw error in some threads with no retain_graph.
@torch.jit.script
def train_fn_jit_no_retain(middle, orig_x):
y = middle + middle ** 2
return torch.autograd.grad([y.sum()], [orig_x])
@torch.jit.script
def train_fn_fork_join_calls_no_retain(x):
y_no_retain = (x + 3) * (x + 4) * 0.5
fut = torch.jit._fork(train_fn_jit_no_retain, y_no_retain, x)
grad_hat = train_fn_jit_no_retain(y_no_retain, x)
grad = torch.jit._wait(fut)
return grad, grad_hat
try:
train_fn_fork_join_calls_no_retain(torch.randn(5, 5, requires_grad=True))
except RuntimeError as error:
self.assertRegex(str(error), "Specify retain_graph=True")
# Case 2: no error with retain_graph=True
@torch.jit.script
def train_fn_jit_retain(middle, orig_x):
y = middle + middle ** 2
return torch.autograd.grad([y.sum()], [orig_x], retain_graph=True)
@torch.jit.script
def train_fn_fork_join_calls_retain(x):
y_retain = (x + 3) * (x + 4) * 0.5
fut1 = torch.jit._fork(train_fn_jit_retain, y_retain, x)
fut2 = torch.jit._fork(train_fn_jit_retain, y_retain, x)
grad = train_fn_jit_retain(y_retain, x)
grad1 = torch.jit._wait(fut1)
grad2 = torch.jit._wait(fut2)
return grad, grad1, grad2
grad, grad1, grad2 = train_fn_fork_join_calls_retain(torch.randn(5, 5, requires_grad=True))
self.assertEqual(grad, grad1)
self.assertEqual(grad, grad2)
def test_preserve_backtrace(self):
class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
return input
@staticmethod
def backward(ctx, *grad):
raise ValueError("something")
t = torch.rand(10, requires_grad=True)
try:
Foo.apply(t).sum().backward()
except Exception:
import traceback
tb = sys.exc_info()[2]
tb_str = "\n".join(traceback.format_tb(tb))
self.assertTrue('raise ValueError("something")' in tb_str)
# TODO(@anjali411): add an OpInfo based test for torch.cat
# Issue: https://github.com/pytorch/pytorch/issues/51627
# https://github.com/pytorch/pytorch/issues/75852
def test_cat_stack_r_to_c(self):
inp_c = torch.rand(3, 2, dtype=torch.cdouble, requires_grad=True)
inp_r = torch.randn(3, 2, dtype=torch.double, requires_grad=True)
def fn(x1, x2):
return torch.cat((x1, x2), dim=-1)
def fn2(x1, x2):
return torch.stack((x1, x2), dim=-1)
torch.autograd.gradcheck(fn, [inp_r, inp_c], check_forward_ad=True)
torch.autograd.gradcheck(fn, [inp_c, inp_r], check_forward_ad=True)
torch.autograd.gradcheck(fn2, [inp_r, inp_c], check_forward_ad=True)
torch.autograd.gradcheck(fn2, [inp_c, inp_r], check_forward_ad=True)
class TestAutogradMultipleDispatch(TestCase):
def test_autograd_multiple_dispatch_registrations(self, device):
t = torch.randn(3, 3, device=device, requires_grad=True)
# using _test_autograd_multiple_dispatch.fullcoverage which has
# registrations in derivatives.yaml for Default, AutogradCUDA and NestedTensorAutograd
out = torch._test_autograd_multiple_dispatch(t)
grad = torch.randn(3, 3, device=device)
out.backward(grad)
if 'cuda' not in device:
# bogus default gradient registered for Autograd is grad + 1
self.assertEqual(t.grad, grad + 1)
else:
# bogus gradient registered for AutogradCUDA is grad * 2
self.assertEqual(t.grad, grad * 2)
# test registered AutogradNestedTensor formula
a = torch.arange(6, dtype=torch.float, device=device).reshape(2, 3).requires_grad_(True)
b = torch.arange(8, dtype=torch.float, device=device).reshape(2, 4).requires_grad_(True)
nt = torch.nested.as_nested_tensor([a, b], dtype=torch.float, device=device)
nt_out = torch._test_autograd_multiple_dispatch(nt)
c = torch.randn(2, 3, device=device)
d = torch.randn(2, 4, device=device)
nt_grad = torch.nested.nested_tensor([c, d], dtype=torch.float, device=device)
nt_out.backward(nt_grad)
# bogus gradient for AutogradNestedTensor is grad * grad
self.assertEqual(a.grad, c * c)
self.assertEqual(b.grad, d * d)
def test_autograd_composite_implicit_and_dispatch_registration(self, device):
t = torch.randn(3, 3, device=device, requires_grad=True)
# using _test_autograd_multiple_dispatch.ntonly
# which has registrations in derivatives.yaml for NestedTensorAutograd and otherwise is CompositeImplicit
out = torch._test_autograd_multiple_dispatch(t, True)
grad = torch.randn(3, 3, device=device)
out.backward(grad)
# t.grad is just out.grad by composite op since _test_autograd_multiple_dispatch is just a clone
self.assertEqual(t.grad, grad)
# test registered AutogradNestedTensor formula
a = torch.arange(6, dtype=torch.float, device=device).reshape(2, 3).requires_grad_(True)
b = torch.arange(8, dtype=torch.float, device=device).reshape(2, 4).requires_grad_(True)
nt = torch.nested.as_nested_tensor([a, b], dtype=torch.float, device=device)
nt_out = torch._test_autograd_multiple_dispatch(nt, True)
c = torch.randn(2, 3, device=device)
d = torch.randn(2, 4, device=device)
nt_grad = torch.nested.nested_tensor([c, d], dtype=torch.float, device=device)
nt_out.backward(nt_grad)
# bogus gradient for AutogradNestedTensor is grad * grad + grad
self.assertEqual(a.grad, c * c + c)
self.assertEqual(b.grad, d * d + d)
def test_foward_mode_AD(self, device):
# check that forward mode AD is only registered for the Default
# dispatch for _test_autograd_multiple_dispatch.fullcoverage and not AutogradCUDA
primal = torch.randn(3, device=device)
tangent = torch.randn(3, device=device)
with fwAD.dual_level():
dual_input = fwAD.make_dual(primal, tangent)
err_msg = r"Trying to use forward AD with .* that does not support it"
hint_msg = "Running forward AD for an OP that does not implement it should raise a NotImplementedError"
if 'cuda' in device:
with self.assertRaisesRegex(NotImplementedError, err_msg, msg=hint_msg):
torch._test_autograd_multiple_dispatch(dual_input)
else:
torch._test_autograd_multiple_dispatch(dual_input)
def test_view_copy(self, device):
# tests that view_copy derivative formulas are also generated per dispatch key
# from their respective view ops in derivatives.yaml
t = torch.randn(2, 2, device=device, requires_grad=True)
t_ref = t.clone().detach().requires_grad_()
# _test_autograd_multiple_dispatch_view does a .view(-1) on the input
t_view = torch._test_autograd_multiple_dispatch_view(t_ref)
t_view_copy = torch._test_autograd_multiple_dispatch_view_copy(t)
grad = torch.randn(4, device=device)
t_view_copy.backward(grad)
t_view.backward(grad.clone())
# forward and backward give the same shape + result
self.assertEqual(t_view_copy, t_view)
self.assertEqual(t.grad, t_ref.grad)
# backward results are per-dispatch-key in derivatives.yaml
if 'cuda' in device:
# gradient registered to AutogradCUDA is grad.reshape_as(self) + 1
self.assertEqual(t.grad, grad.reshape_as(t) + 1)
else:
# Default gradient registered is grad.reshape_as(self)
self.assertEqual(t.grad, grad.reshape_as(t))
@onlyCPU
def test_per_dispatch_key_input_saving(self, device):
# Tests that sum.dim_IntList's input is not saved for regular tensors but is saved for nested tensors
def foo(x):
# Don't modify the input inplace
x = x.clone()
res = x.sum(-1, keepdim=True)
x.add_(x)
return res
inp = torch.rand(2, device=device, requires_grad=True)
# sum's input is not saved for regular Tensors
foo(inp).backward()
# sum's input is saved for Nested Tensors
nt = torch.nested.nested_tensor([torch.rand(2), torch.rand(2)], device=device, requires_grad=True)
with self.assertRaisesRegex(RuntimeError, "modified by an inplace operation"):
foo(nt).backward(torch.nested.nested_tensor([torch.rand(1), torch.rand(1)], device=device))
# Import test cases from below autograd/ here. These are found
# implicitly by the loader, so Flake8 thinks they are unused, hence
# the suppressions.
from autograd.test_complex import TestAutogradComplex # noqa: F401
from autograd.test_functional import TestAutogradFunctional # noqa: F401
# e.g., TestAutogradDeviceTypeCPU and TestAutogradDeviceTypeCUDA
instantiate_device_type_tests(
TestAutogradDeviceType,
globals(),
except_for=None
)
instantiate_device_type_tests(
TestAutogradMultipleDispatch,
globals(),
only_for=('cpu', 'cuda')
)
instantiate_parametrized_tests(TestAutograd)
if __name__ == '__main__':
run_tests()
|