File: test_cuda.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (4729 lines) | stat: -rw-r--r-- 209,530 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
# Owner(s): ["module: cuda"]

from itertools import repeat, chain, product
from typing import NamedTuple
import collections
import contextlib
from copy import deepcopy
import ctypes
import gc
import io
import os
import pickle
import queue
import sys
import tempfile
import threading
import unittest
from random import randint

import torch
import torch.cuda
import torch.cuda.comm as comm
from torch.nn.parallel import scatter_gather
from torch.utils.checkpoint import checkpoint_sequential
from torch._six import inf, nan
from torch.testing._internal.common_utils import TestCase, freeze_rng_state, run_tests, \
    NO_MULTIPROCESSING_SPAWN, skipIfRocm, load_tests, IS_REMOTE_GPU, IS_SANDCASTLE, IS_WINDOWS, \
    slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, TEST_WITH_ROCM, TEST_NUMPY, \
    get_cycles_per_ms, parametrize, instantiate_parametrized_tests, subtest
from torch.testing._internal.autocast_test_lists import AutocastTestLists

# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests

# We cannot import TEST_CUDA and TEST_MULTIGPU from torch.testing._internal.common_cuda here,
# because if we do that, the TEST_CUDNN line from torch.testing._internal.common_cuda will be executed
# multiple times as well during the execution of this test suite, and it will
# cause CUDA OOM error on Windows.
TEST_CUDA = torch.cuda.is_available()
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2

if not TEST_CUDA:
    print('CUDA not available, skipping tests', file=sys.stderr)
    TestCase = object  # noqa: F811

TEST_LARGE_TENSOR = TEST_CUDA
TEST_MEDIUM_TENSOR = TEST_CUDA
TEST_CUDNN = TEST_CUDA
TEST_BF16 = False
if TEST_CUDA:
    torch.ones(1).cuda()  # initialize cuda context
    TEST_CUDNN = TEST_CUDA and (TEST_WITH_ROCM or
                                torch.backends.cudnn.is_acceptable(torch.tensor(1., device=torch.device('cuda:0'))))
    TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 12e9
    TEST_MEDIUM_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 6e9
    TEST_BF16 = torch.cuda.is_bf16_supported()


def make_sparse_tensor(t, n, *sizes):
    assert t.is_sparse
    tensor = t()
    i = tensor._indices()
    i = i.new(len(sizes), n).copy_(
        torch.cat([torch.LongTensor(1, n).random_(s) for s in sizes], 0))
    v = tensor._values()
    v = v.new(n).copy_(torch.randn(n))
    return t(i, v, torch.Size(sizes)).coalesce()

_cycles_per_ms = None


class TestCuda(TestCase):
    _do_cuda_memory_leak_check = True
    _do_cuda_non_default_stream = True
    FIFTY_MIL_CYCLES = 50000000

    def setUp(self):
        super(TestCuda, self).setUp()
        self.autocast_lists = AutocastTestLists(torch.device('cuda:0'))

    def tearDown(self):
        del self.autocast_lists
        super(TestCuda, self).tearDown()

    def _check_memory_stat_consistency(self):
        snapshot = torch.cuda.memory_snapshot()

        expected_each_device = collections.defaultdict(lambda: collections.defaultdict(int))

        for segment in snapshot:
            expected = expected_each_device[segment["device"]]
            pool_str = segment["segment_type"] + "_pool"

            expected["segment.all.current"] += 1
            expected["segment." + pool_str + ".current"] += 1

            expected["allocated_bytes.all.current"] += segment["allocated_size"]
            expected["allocated_bytes." + pool_str + ".current"] += segment["allocated_size"]

            expected["reserved_bytes.all.current"] += segment["total_size"]
            expected["reserved_bytes." + pool_str + ".current"] += segment["total_size"]

            expected["active_bytes.all.current"] += segment["active_size"]
            expected["active_bytes." + pool_str + ".current"] += segment["active_size"]

            is_split = len(segment["blocks"]) > 1
            for block in segment["blocks"]:
                if block["state"] == "active_allocated":
                    expected["allocation.all.current"] += 1
                    expected["allocation." + pool_str + ".current"] += 1

                if block["state"].startswith("active_"):
                    expected["active.all.current"] += 1
                    expected["active." + pool_str + ".current"] += 1

                if block["state"] == "inactive" and is_split:
                    expected["inactive_split.all.current"] += 1
                    expected["inactive_split." + pool_str + ".current"] += 1
                    expected["inactive_split_bytes.all.current"] += block["size"]
                    expected["inactive_split_bytes." + pool_str + ".current"] += block["size"]

        for device, expected in expected_each_device.items():
            stats = torch.cuda.memory_stats(device)
            for k, v in expected.items():
                self.assertEqual(v, stats[k])

    @staticmethod
    def _test_memory_stats_generator(self, device=None, N=35):
        if device is None:
            device = torch.cuda.current_device()

        m0 = torch.cuda.memory_allocated(device)
        last_m_arr = [torch.cuda.memory_allocated(device)]
        max_m_arr = [torch.cuda.max_memory_allocated(device)]
        last_r_arr = [torch.cuda.memory_reserved(device)]
        max_r_arr = [torch.cuda.max_memory_reserved(device)]

        def alloc(*size):
            with torch.cuda.device(device):
                # NOTE: do **not** use methods that can have additional
                #       memory overhead, e.g., inplace random sampling methods.
                #       they can leave some memory occupied even after being
                #       deallocated, e.g., initialized RNG state, causing some
                #       memory checks below to fail.
                return torch.cuda.FloatTensor(*size)

        def assert_change(comp=1, empty_cache=False, reset_peak=False):
            # comp > 0: increased
            # comp = 0: equal
            # comp < 0: decreased
            new_m = torch.cuda.memory_allocated(device)
            new_max_m = torch.cuda.max_memory_allocated(device)
            if comp > 0:
                self.assertGreater(new_m, last_m_arr[0])
            elif comp < 0:
                self.assertLess(new_m, last_m_arr[0])
            else:
                self.assertEqual(new_m, last_m_arr[0])
            self.assertLessEqual(new_m, new_max_m)
            self.assertGreaterEqual(new_max_m, max_m_arr[0])
            last_m_arr[0] = new_m
            max_m_arr[0] = new_max_m

            new_r = torch.cuda.memory_reserved(device)
            new_max_r = torch.cuda.max_memory_reserved(device)
            # emptying cache may happen (due to allocation or empty_cache), so
            # we can't assert new_c >= last_c
            self.assertLessEqual(new_r, new_max_r)
            self.assertGreaterEqual(new_max_r, max_r_arr[0])
            last_r_arr[0] = new_r
            max_r_arr[0] = new_max_r

            if empty_cache:
                torch.cuda.empty_cache()
                new_r = torch.cuda.memory_reserved(device)
                new_max_r = torch.cuda.max_memory_reserved(device)
                self.assertLessEqual(new_r, last_r_arr[0])
                self.assertLessEqual(new_r, new_max_r)
                self.assertEqual(new_max_r, max_r_arr[0])
                last_r_arr[0] = new_r

            if reset_peak:
                torch.cuda.reset_peak_memory_stats(device)
                self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0])
                self.assertEqual(torch.cuda.max_memory_allocated(device), last_m_arr[0])
                max_m_arr[0] = last_m_arr[0]
                self.assertEqual(torch.cuda.memory_reserved(device), last_r_arr[0])
                self.assertEqual(torch.cuda.max_memory_reserved(device), last_r_arr[0])
                max_r_arr[0] = last_r_arr[0]

        assert_change(0)
        assert_change(0, reset_peak=True)
        assert_change(0, empty_cache=True)
        assert_change(0, reset_peak=True)
        assert_change(0)
        yield

        tensors1 = [alloc(1), alloc(10, 20), alloc(200, 300, 2000)]
        m1 = torch.cuda.memory_allocated(device)
        assert_change(1)
        yield

        tensors2 = []

        for i in range(1, int(N / 2) + 1):
            # small ones
            tensors2.append(alloc(i, i * 4))
            assert_change(1)
            yield

        for i in range(5, int(N / 2) + 5):
            # large ones
            tensors2.append(alloc(i, i * 7, i * 9, i * 11))
            assert_change(1, reset_peak=(i % 2 == 0))
            yield

        tensors2.append(alloc(0, 0, 0))
        assert_change(0)
        yield

        permute = []
        for i in torch.randperm(len(tensors2)):
            permute.append(tensors2[i])
            assert_change(0)
            yield

        del tensors2
        assert_change(0)
        yield
        tensors2 = permute
        assert_change(0)
        yield
        del permute
        assert_change(0, reset_peak=True)
        yield

        for i in range(int(N / 2)):
            x = tensors2[i].numel()
            del tensors2[i]
            assert_change(-x)  # in case that tensors2[i] is empty
            yield

        for i in range(2, int(2 * N / 3) + 2):
            tensors2.append(alloc(i, i * 3, i * 8))
            assert_change(1)
            yield

        del tensors2
        assert_change(-1, reset_peak=True)
        assert_change(0)
        self.assertEqual(torch.cuda.memory_allocated(device), m1)
        yield True

        del tensors1
        assert_change(-1, reset_peak=True)
        self.assertEqual(torch.cuda.memory_allocated(device), m0)

        # test empty_cache and reset_peak
        assert_change(0, empty_cache=True)
        assert_change(0, reset_peak=True)

    def test_cudart_register(self):
        t = torch.ones(20)
        self.assertFalse(t.is_pinned())
        cudart = torch.cuda.cudart()
        r = cudart.cudaHostRegister(t.data_ptr(), t.numel() * t.element_size(), 0)
        self.assertEqual(r, 0)
        self.assertTrue(t.is_pinned())
        r = cudart.cudaHostUnregister(t.data_ptr())
        self.assertEqual(r, 0)
        self.assertFalse(t.is_pinned())

    def test_memory_stats(self):
        gc.collect()
        torch.cuda.empty_cache()
        for _ in self._test_memory_stats_generator(self):
            self._check_memory_stat_consistency()

    def test_memory_allocation(self):
        gc.collect()
        torch.cuda.empty_cache()
        mem = None
        size = 1
        prev = 0
        try:
            prev = torch.cuda.memory_allocated()
            mem = torch.cuda.caching_allocator_alloc(size)
            self.assertGreater(torch.cuda.memory_allocated(), prev)
        finally:
            if mem is not None:
                torch.cuda.caching_allocator_delete(mem)
                self.assertEqual(torch.cuda.memory_allocated(), prev)

    def test_check_error(self):
        # Assert this call doesn't raise.
        torch.cuda.check_error(0)

        with self.assertRaisesRegex(torch.cuda.CudaError,
                                    "out of memory|hipErrorOutOfMemory"):
            torch.cuda.check_error(2)

    def test_cuda_get_device_name(self):
        # Testing the behaviour with None as an argument
        current_device = torch.cuda.current_device()
        current_device_name = torch.cuda.get_device_name(current_device)
        device_name_None = torch.cuda.get_device_name(None)
        self.assertEqual(current_device_name, device_name_None)

        # Testing the behaviour for No argument
        device_name_no_argument = torch.cuda.get_device_name()
        self.assertEqual(current_device_name, device_name_no_argument)

    def test_cuda_get_device_capability(self):
        # Testing the behaviour with None as an argument
        current_device = torch.cuda.current_device()
        current_device_capability = torch.cuda.get_device_capability(current_device)
        device_capability_None = torch.cuda.get_device_capability(None)
        self.assertEqual(current_device_capability, device_capability_None)

        # Testing the behaviour for No argument
        device_capability_no_argument = torch.cuda.get_device_capability()
        self.assertEqual(current_device_capability, device_capability_no_argument)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_memory_stats_multigpu(self):
        # advance a generator with a end flag
        def advance(gen, end):
            if not end:
                try:
                    next(gen)
                except StopIteration:
                    end = True
            return end

        # interlace
        torch.cuda.empty_cache()
        gen0 = self._test_memory_stats_generator(self, device='cuda:0', N=35)
        gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
        end0 = end1 = False
        while not (end0 and end1):
            end0 = advance(gen0, end0)
            end1 = advance(gen1, end1)

        # semi-random order
        torch.cuda.empty_cache()
        gen0 = self._test_memory_stats_generator(self, device=0, N=35)
        gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
        end0 = end1 = False

        while not (end0 and end1):
            end0 = advance(gen0, end0)
            if not end0:
                gen1_max_times = torch.LongTensor(1).random_(0, 3)[0]
            else:
                gen1_max_times = inf
            t = 0
            while t < gen1_max_times and not end1:
                end1 = advance(gen1, end1)
                t += 1

    def test_out_of_memory(self):
        tensor = torch.zeros(1024, device='cuda')

        with self.assertRaisesRegex(RuntimeError, "Tried to allocate 800000000.00 GiB"):
            torch.empty(1024 * 1024 * 1024 * 800000000, dtype=torch.int8, device='cuda')

        with self.assertRaisesRegex(RuntimeError, "Tried to allocate more than 1EB memory"):
            torch.empty(1024 * 1024 * 1024 * 8000000000, dtype=torch.int8, device='cuda')

        # ensure out of memory error doesn't disturb subsequent kernel
        tensor.fill_(1)
        self.assertTrue((tensor == 1).all())

    def test_set_per_process_memory_fraction(self):
        # test invalid fraction value.
        with self.assertRaisesRegex(TypeError, "Invalid type"):
            torch.cuda.set_per_process_memory_fraction(int(1))
        with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
            torch.cuda.set_per_process_memory_fraction(-0.1)
        with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
            torch.cuda.set_per_process_memory_fraction(2.0)

        tensor = torch.zeros(1024, device='cuda')
        torch.cuda.empty_cache()
        total_memory = torch.cuda.get_device_properties(0).total_memory
        torch.cuda.set_per_process_memory_fraction(0.5, 0)

        # test 0.499 allocation is ok.
        application = int(total_memory * 0.499) - torch.cuda.max_memory_reserved()
        tmp_tensor = torch.empty(application, dtype=torch.int8, device='cuda')
        del tmp_tensor
        torch.cuda.empty_cache()

        application = int(total_memory * 0.5)
        # it will get OOM when try to allocate more than half memory.
        with self.assertRaisesRegex(RuntimeError, "out of memory"):
            torch.empty(application, dtype=torch.int8, device='cuda')

        # ensure out of memory error doesn't disturb subsequent kernel
        tensor.fill_(1)
        self.assertTrue((tensor == 1).all())

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_autogpu(self):
        x = torch.randn(5, 5).cuda()
        y = torch.randn(5, 5).cuda()
        self.assertEqual(x.get_device(), 0)
        self.assertEqual(x.get_device(), 0)
        with torch.cuda.device(1):
            z = torch.randn(5, 5).cuda()
            self.assertEqual(z.get_device(), 1)
            q = x.add(y)
            self.assertEqual(q.get_device(), 0)
            w = torch.randn(5, 5).cuda()
            self.assertEqual(w.get_device(), 1)
            self.assertEqual(y.cuda().get_device(), 1)
        z = z.cuda()
        self.assertEqual(z.get_device(), 0)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_new(self):
        x = torch.randn(3, 3).cuda()
        self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
        self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)

        with torch.cuda.device(1):
            self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
            self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_copy_device(self):
        x = torch.randn(5, 5).cuda()
        with torch.cuda.device(1):
            y = x.cuda()
            self.assertEqual(y.get_device(), 1)
            self.assertIs(y.cuda(), y)
            z = y.cuda(0)
            self.assertEqual(z.get_device(), 0)
            self.assertIs(z.cuda(0), z)

        x = torch.randn(5, 5)
        with torch.cuda.device(1):
            y = x.cuda()
            self.assertEqual(y.get_device(), 1)
            self.assertIs(y.cuda(), y)
            z = y.cuda(0)
            self.assertEqual(z.get_device(), 0)
            self.assertIs(z.cuda(0), z)

    def _test_copy_sync_current_stream(self, x, y):
        x_plus_one = x + 1
        s0 = torch.cuda.Stream(device=x.device)
        s1 = torch.cuda.Stream(device=y.device)
        s2 = torch.cuda.Stream(device=x.device)
        s3 = torch.cuda.Stream(device=y.device)

        # same dst stream different src streams
        with torch.cuda.stream(s0):
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
            with torch.cuda.stream(s1):
                y.copy_(x_plus_one)

        with torch.cuda.stream(s2), torch.cuda.stream(s1):
            y.copy_(x)

        s1.synchronize()
        # The copy() is synchronized on the current streams of both src and dst.
        # In the above test, the _sleep() op on s0 will not block the copy() on
        # s2, but both copies are synchronized on s1 in the dst device. Hence,
        # x is copied to y after x_plus_one is copied to y. If x and y are on
        # the same device, both copy() ops are synchronized on s1.
        self.assertEqual(y, x)

        # same src stream different dst streams
        with torch.cuda.stream(s1):
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
            with torch.cuda.stream(s0):
                y.copy_(x_plus_one)

        with torch.cuda.stream(s3), torch.cuda.stream(s0):
            y.copy_(x)

        s0.synchronize()
        # Similarly, both copy() ops are synchronized on s0.
        self.assertEqual(y, x)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_copy_streams(self):
        d0 = torch.device('cuda:0')
        x0 = torch.zeros(5, 5, device=d0)

        d1 = torch.device('cuda:1')
        x1 = torch.zeros(5, 5, device=d1)
        self._test_copy_sync_current_stream(x0, x1)

        x2 = torch.zeros(5, 5, device=d0)
        self._test_copy_sync_current_stream(x0, x2)

    def test_copy_non_blocking(self):
        def _test_copy_non_blocking(a, b):
            event = torch.cuda.Event()
            a.copy_(b, non_blocking=True)
            event.record()
            event.synchronize()
            self.assertEqual(a, b)

        # 10MB copies
        x = torch.ones(10000000, dtype=torch.uint8).cuda()
        y = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
        _test_copy_non_blocking(x, y)

        x = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
        y = torch.ones(10000000, dtype=torch.uint8).cuda()
        _test_copy_non_blocking(x, y)

        # Test the case where the pinned data_ptr is not equal to the storage data_ptr.
        x_base = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
        x = x_base[1:]
        self.assertTrue(x.is_pinned())
        self.assertTrue(x_base.is_pinned())
        self.assertNotEqual(x_base.data_ptr(), x.data_ptr())
        self.assertEqual(x_base.storage().data_ptr(), x.storage().data_ptr())
        y = torch.ones(10000000 - 1, dtype=torch.uint8).cuda()
        _test_copy_non_blocking(x, y)


    def test_to_non_blocking(self):
        stream = torch.cuda.current_stream()

        def _test_to_non_blocking(a, non_blocking, dst):
            torch.cuda.synchronize()
            # Pushes an 0.1 second spin to stream so if the copy is non blocking,
            # stream will almost surely be active when we query().
            torch.cuda._sleep(int(100 * get_cycles_per_ms()))
            b = a.to(device=dst, non_blocking=non_blocking)
            self.assertEqual(stream.query(), not non_blocking)
            stream.synchronize()
            self.assertEqual(a, b)
            self.assertTrue(b.is_pinned() == (non_blocking and dst == "cpu"))

        for dst, try_non_blocking in product(("cuda", "cpu"), (True, False)):
            # Creates source on the opposite device from destination.
            src = torch.randn(1000000,
                              device="cuda" if dst == "cpu" else "cpu",
                              pin_memory=True if dst == "cuda" else False)
            _test_to_non_blocking(src, try_non_blocking, dst)

    def test_to_cpu_blocking_by_default(self):
        src = torch.randn(1000000, device="cuda")
        torch.cuda.synchronize()
        torch.cuda._sleep(int(100 * get_cycles_per_ms()))
        dst = src.to(device="cpu")
        self.assertEqual(torch.cuda.current_stream().query(), True)
        self.assertEqual(src, dst)
        self.assertFalse(dst.is_pinned())

    def test_serialization_array_with_storage(self):
        x = torch.randn(5, 5).cuda()
        y = torch.IntTensor(2, 5).fill_(0).cuda()
        q = [x, y, x, y.storage()]
        with tempfile.NamedTemporaryFile() as f:
            torch.save(q, f)
            f.seek(0)
            q_copy = torch.load(f)
        self.assertEqual(q_copy, q, atol=0, rtol=0)
        q_copy[0].fill_(5)
        self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0)
        self.assertTrue(isinstance(q_copy[0], torch.cuda.FloatTensor))
        self.assertTrue(isinstance(q_copy[1], torch.cuda.IntTensor))
        self.assertTrue(isinstance(q_copy[2], torch.cuda.FloatTensor))
        self.assertTrue(isinstance(q_copy[3], torch.storage.TypedStorage))
        self.assertTrue(isinstance(q_copy[3]._storage, torch.UntypedStorage))
        q_copy[1].fill_(10)
        self.assertEqual(q_copy[3], torch.cuda.IntStorage(10).fill_(10))

    def test_cublas_allow_tf32_get_set(self):
        skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\
            int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE'])
        if skip_tf32_cublas:
            self.assertTrue(torch.backends.cuda.matmul.allow_tf32)
            return

        orig = torch.backends.cuda.matmul.allow_tf32
        self.assertEqual(torch._C._get_cublas_allow_tf32(), orig)
        torch.backends.cuda.matmul.allow_tf32 = not orig
        self.assertEqual(torch._C._get_cublas_allow_tf32(), not orig)
        torch.backends.cuda.matmul.allow_tf32 = orig

    def test_float32_matmul_precision_get_set(self):
        self.assertEqual(torch.get_float32_matmul_precision(), 'highest')
        skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\
            int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE'])
        if not skip_tf32_cublas:
            self.assertFalse(torch.backends.cuda.matmul.allow_tf32)
        for p in ('medium', 'high'):
            torch.set_float32_matmul_precision(p)
            self.assertEqual(torch.get_float32_matmul_precision(), p)
            if not skip_tf32_cublas:
                self.assertTrue(torch.backends.cuda.matmul.allow_tf32)
        torch.set_float32_matmul_precision('highest')
        self.assertEqual(torch.get_float32_matmul_precision(), 'highest')
        if not skip_tf32_cublas:
            self.assertFalse(torch.backends.cuda.matmul.allow_tf32)

    def test_cublas_allow_fp16_reduced_precision_reduction_get_set(self):
        orig = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
        self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), orig)
        torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = not orig
        self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), not orig)
        torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig

    def test_cudnn_allow_tf32_get_set(self):
        with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False):
            self.assertFalse(torch.backends.cudnn.allow_tf32)
        with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True):
            self.assertTrue(torch.backends.cudnn.allow_tf32)

    def test_type_conversions(self):
        x = torch.randn(5, 5)
        self.assertIsInstance(x.float(), torch.FloatTensor)
        self.assertIsInstance(x.cuda().double(), torch.cuda.DoubleTensor)
        self.assertIsInstance(x.cuda().float(), torch.cuda.FloatTensor)
        self.assertIsInstance(x.cuda().float().cpu(), torch.FloatTensor)
        self.assertIsInstance(x.cuda().float().cpu().int(), torch.IntTensor)

        y = x.storage()
        self.assertIsInstance(y.float(), torch.FloatStorage)
        self.assertIsInstance(y.cuda().double(), torch.cuda.DoubleStorage)
        self.assertIsInstance(y.cuda().float(), torch.cuda.FloatStorage)
        self.assertIsInstance(y.cuda().float().cpu(), torch.FloatStorage)
        self.assertIsInstance(y.cuda().float().cpu().int(), torch.IntStorage)

    @unittest.skip("was disabled due to not enough memory, but actually it always fail")
    def test_arithmetic_large_tensor(self):
        x = torch.empty(2**30, device='cuda')

        x.fill_(1)
        self.assertEqual(x.sum(), 2**30)

        x += 1
        self.assertEqual(x.sum(), 2**31)

        x.fill_(1)
        x -= 0.5
        self.assertEqual(x.sum(), 2**29)

        x.fill_(1)
        x *= 2
        self.assertEqual(x.sum(), 2**31)

        x.fill_(1)
        x /= 2
        self.assertEqual(x.sum(), 2**29)

    def test_gather_bool(self):
        t = torch.tensor([[False, True], [True, True]], device='cuda')
        self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]], device='cuda')),
                         torch.tensor([[False, False], [True, True]], device='cuda'))

    def test_torch_manual_seed_seeds_cuda_devices(self):
        with freeze_rng_state():
            x = torch.zeros(4, 4).float().cuda()
            torch.manual_seed(2)
            self.assertEqual(torch.cuda.initial_seed(), 2)
            x.uniform_()
            torch.manual_seed(2)
            y = x.clone().uniform_()
            self.assertEqual(x, y)
            self.assertEqual(torch.cuda.initial_seed(), 2)

    def test_manual_seed(self):
        with freeze_rng_state():
            x = torch.zeros(4, 4).float().cuda()
            torch.cuda.manual_seed(2)
            self.assertEqual(torch.cuda.initial_seed(), 2)
            x.uniform_()
            a = torch.bernoulli(torch.full_like(x, 0.5))
            torch.cuda.manual_seed(2)
            y = x.clone().uniform_()
            b = torch.bernoulli(torch.full_like(x, 0.5))
            self.assertEqual(x, y)
            self.assertEqual(a, b)
            self.assertEqual(torch.cuda.initial_seed(), 2)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_cat_autogpu(self):
        x = torch.randn(4, 4).cuda(1)
        y = torch.randn(4, 4).cuda(1)
        z = torch.cat([x, y], 0)
        self.assertEqual(z.get_device(), x.get_device())

    @unittest.skipIf(torch.cuda.device_count() >= 10, "Loading a cuda:9 tensor")
    def test_load_nonexistent_device(self):
        # Setup: create a serialized file object with a 'cuda:9' restore location
        tensor = torch.randn(2, device='cuda')
        buf = io.BytesIO()
        torch.save(tensor, buf)
        # NB: this might not work in the future if serialization changes
        buf = io.BytesIO(buf.getvalue().replace(b'cuda:0', b'cuda:9'))

        msg = r'Attempting to deserialize object on CUDA device 9'
        with self.assertRaisesRegex(RuntimeError, msg):
            _ = torch.load(buf)

    def test_specify_improper_device_name(self):
        import os
        fname = "tempfile.pt"
        try:
            with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
                torch.save([torch.nn.Parameter(torch.randn(10, 10))], fname,
                           _use_new_zipfile_serialization=True)
                torch.load(fname, 'cuda0')
        finally:
            if os.path.exists(fname):
                os.remove(fname)

    def test_get_device_index(self):
        from torch.cuda._utils import _get_device_index
        with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
            _get_device_index('cuda0', optional=True)

        with self.assertRaisesRegex(ValueError, "Expected a cuda device"):
            cpu_device = torch.device('cpu')
            _get_device_index(cpu_device, optional=True)

    def test_serialization_array_with_empty(self):
        x = [torch.randn(4, 4).cuda(), torch.cuda.FloatTensor()]
        with tempfile.NamedTemporaryFile() as f:
            torch.save(x, f)
            f.seek(0)
            x_copy = torch.load(f)
        for original, copy in zip(x, x_copy):
            self.assertEqual(copy, original)
            self.assertIs(type(copy), type(original))
            self.assertEqual(copy.get_device(), original.get_device())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_multigpu_serialization_remap(self):
        x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]

        def gpu_remap(storage, location):
            if location == 'cuda:1':
                return storage.cuda(0)

        with tempfile.NamedTemporaryFile() as f:
            torch.save(x, f)
            f.seek(0)
            x_copy = torch.load(f, map_location=gpu_remap)

        for original, copy in zip(x, x_copy):
            self.assertEqual(copy, original)
            self.assertIs(type(copy), type(original))
            self.assertEqual(copy.get_device(), 0)

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_multigpu_serialization_remap_dict(self):
        x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
        with tempfile.NamedTemporaryFile() as f:
            torch.save(x, f)
            f.seek(0)
            x_copy = torch.load(f, map_location={'cuda:1': 'cuda:0'})
        for original, copy in zip(x, x_copy):
            self.assertEqual(copy, original)
            self.assertIs(type(copy), type(original))
            self.assertEqual(copy.get_device(), 0)

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_multigpu_storage_clone(self):
        x = torch.randn(4, 4, device='cuda:1').storage()
        y = x.clone()
        self.assertEqual(x.get_device(), y.get_device())
        for t in ['byte', 'char', 'short', 'int', 'long', 'half', 'double']:
            self.assertEqual(getattr(x, t)().get_device(), x.get_device())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_cuda_set_device(self):
        x = torch.randn(5, 5)
        with torch.cuda.device(1):
            self.assertEqual(x.cuda().get_device(), 1)
            torch.cuda.set_device(0)
            self.assertEqual(x.cuda().get_device(), 0)
            with torch.cuda.device(1):
                self.assertEqual(x.cuda().get_device(), 1)
            self.assertEqual(x.cuda().get_device(), 0)
            torch.cuda.set_device(1)
        self.assertEqual(x.cuda().get_device(), 0)

    def test_cuda_synchronize(self):
        torch.cuda.synchronize()
        torch.cuda.synchronize('cuda')
        torch.cuda.synchronize('cuda:0')
        torch.cuda.synchronize(0)
        torch.cuda.synchronize(torch.device('cuda:0'))

        if TEST_MULTIGPU:
            torch.cuda.synchronize('cuda:1')
            torch.cuda.synchronize(1)
            torch.cuda.synchronize(torch.device('cuda:1'))

        with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"):
            torch.cuda.synchronize(torch.device("cpu"))

        with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"):
            torch.cuda.synchronize("cpu")

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_current_stream(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')

        s0 = torch.cuda.current_stream()
        s1 = torch.cuda.current_stream(device=1)
        s2 = torch.cuda.current_stream(device=0)

        self.assertEqual(d0, s0.device)
        self.assertEqual(d1, s1.device)
        self.assertEqual(d0, s2.device)
        self.assertEqual(s0, s2)

        with torch.cuda.device(d1):
            s0 = torch.cuda.current_stream()
            s1 = torch.cuda.current_stream(1)
            s2 = torch.cuda.current_stream(d0)

        self.assertEqual(d1, s0.device)
        self.assertEqual(d1, s1.device)
        self.assertEqual(d0, s2.device)
        self.assertEqual(s0, s1)

        with self.assertRaisesRegex(ValueError,
                                    "Expected a cuda device, but got: cpu"):
            torch.cuda.current_stream(torch.device('cpu'))

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    @skipCUDANonDefaultStreamIf(True)
    def test_default_stream(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')

        with torch.cuda.device(d0):
            s0 = torch.cuda.default_stream()

        with torch.cuda.device(d1):
            s1 = torch.cuda.default_stream()

        s2 = torch.cuda.default_stream(device=0)
        s3 = torch.cuda.default_stream(d1)

        self.assertEqual(d0, s0.device)
        self.assertEqual(d1, s1.device)
        self.assertEqual(d0, s2.device)
        self.assertEqual(d1, s3.device)
        self.assertEqual(s0, s2)
        self.assertEqual(s1, s3)

        with torch.cuda.device(d0):
            self.assertEqual(torch.cuda.current_stream(), s0)

        with torch.cuda.device(d1):
            self.assertEqual(torch.cuda.current_stream(), s1)

        with self.assertRaisesRegex(ValueError,
                                    "Expected a cuda device, but got: cpu"):
            torch.cuda.default_stream(torch.device('cpu'))

    @skipCUDANonDefaultStreamIf(True)
    def test_streams(self):
        default_stream = torch.cuda.current_stream()
        user_stream = torch.cuda.Stream()
        self.assertEqual(torch.cuda.current_stream(), default_stream)
        self.assertNotEqual(default_stream, user_stream)
        self.assertEqual(default_stream.cuda_stream, 0)
        self.assertNotEqual(user_stream.cuda_stream, 0)
        with torch.cuda.stream(user_stream):
            self.assertEqual(torch.cuda.current_stream(), user_stream)
        self.assertTrue(user_stream.query())
        tensor1 = torch.ByteTensor(5).pin_memory()
        tensor2 = tensor1.cuda(non_blocking=True) + 1
        default_stream.synchronize()
        self.assertTrue(default_stream.query())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_stream_event_device(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')
        e0 = torch.cuda.Event()

        self.assertEqual(None, e0.device)

        with torch.cuda.device(d0):
            s0 = torch.cuda.current_stream()
            s0.record_event(e0)

        with torch.cuda.device(d1):
            s1 = torch.cuda.Stream()
            e1 = s1.record_event()

        self.assertEqual(s0.device, torch.device('cuda:0'))
        self.assertEqual(e0.device, torch.device('cuda:0'))
        self.assertEqual(s1.device, torch.device('cuda:1'))
        self.assertEqual(e1.device, torch.device('cuda:1'))

    def test_stream_event_repr(self):
        s = torch.cuda.current_stream()
        self.assertTrue("torch.cuda.Stream" in s.__repr__())
        e = torch.cuda.Event()
        self.assertTrue("torch.cuda.Event" in e.__repr__())
        s.record_event(e)
        self.assertTrue("torch.cuda.Event" in e.__repr__())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_stream_context(self):
        s0 = torch.cuda.current_stream()
        s1 = torch.cuda.Stream(device=1)
        s2 = torch.cuda.Stream(device=0)

        with torch.cuda.device(s1.device):
            prev_stream_on_cuda1 = torch.cuda.current_stream()

        self.assertEqual(torch.cuda.current_stream(), s0)
        self.assertEqual(0, torch.cuda.current_device())
        with torch.cuda.stream(s1):
            self.assertEqual(torch.cuda.current_stream(), s1)
            self.assertEqual(1, torch.cuda.current_device())
            with torch.cuda.stream(s2):
                self.assertEqual(torch.cuda.current_stream(), s2)
                self.assertEqual(0, torch.cuda.current_device())
                with torch.cuda.stream(s0):
                    self.assertEqual(torch.cuda.current_stream(), s0)
                    self.assertEqual(0, torch.cuda.current_device())
                self.assertEqual(torch.cuda.current_stream(), s2)
                self.assertEqual(0, torch.cuda.current_device())
            self.assertEqual(torch.cuda.current_stream(), s1)
            self.assertEqual(1, torch.cuda.current_device())

        with torch.cuda.device(s1.device):
            self.assertEqual(prev_stream_on_cuda1, torch.cuda.current_stream())

        self.assertEqual(torch.cuda.current_stream(), s0)
        self.assertEqual(0, torch.cuda.current_device())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_streams_multi_gpu(self):
        default_stream = torch.cuda.current_stream()
        self.assertEqual(default_stream.device, torch.device('cuda:0'))
        stream = torch.cuda.Stream(device=1)
        self.assertEqual(stream.device, torch.device('cuda:1'))
        with torch.cuda.device(1):
            self.assertEqual(
                torch.cuda.current_stream().device, torch.device('cuda:1'))
            self.assertNotEqual(torch.cuda.current_stream(), default_stream)

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_streams_multi_gpu_query(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')
        torch.cuda.synchronize(d0)
        torch.cuda.synchronize(d1)

        with torch.cuda.device(d0):
            s0 = torch.cuda.current_stream()

        with torch.cuda.device(d1):
            s1 = torch.cuda.current_stream()
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)

        self.assertTrue(s0.query())
        self.assertFalse(s1.query())

        with torch.cuda.device(d0):
            self.assertTrue(s0.query())
            self.assertFalse(s1.query())

        with torch.cuda.device(d1):
            self.assertTrue(s0.query())
            self.assertFalse(s1.query())

        # deliberately using a different device
        with torch.cuda.device(d0):
            s1.synchronize()

        self.assertTrue(s0.query())
        self.assertTrue(s1.query())

        with torch.cuda.device(d0):
            self.assertTrue(s0.query())
            self.assertTrue(s1.query())

        with torch.cuda.device(d1):
            self.assertTrue(s0.query())
            self.assertTrue(s1.query())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_streams_multi_gpu_eq(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')

        with torch.cuda.device(d0):
            s0 = torch.cuda.current_stream()
            s1 = torch.cuda.current_stream()

        with torch.cuda.device(d1):
            s2 = torch.cuda.current_stream()
            s3 = torch.cuda.current_stream()

        self.assertTrue(s0 == s0)
        self.assertTrue(s0 == s1)
        self.assertTrue(s2 == s2)
        self.assertTrue(s2 == s3)
        self.assertFalse(s0 == s2)
        self.assertFalse(s1 == s3)

        self.assertEqual(s0.device, s1.device)
        self.assertEqual(s0.cuda_stream, s1.cuda_stream)
        self.assertEqual(s2.device, s3.device)
        self.assertEqual(s2.cuda_stream, s3.cuda_stream)
        self.assertNotEqual(s0.device, s3.device)

        self.assertEqual(hash(s0), hash(s1))
        self.assertEqual(hash(s2), hash(s3))
        self.assertNotEqual(hash(s0), hash(s3))

    @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
    def test_streams_priority(self):
        low, high = torch.cuda.Stream.priority_range()
        s0 = torch.cuda.Stream(device=0, priority=low)

        self.assertEqual(low, s0.priority)
        self.assertEqual(torch.device('cuda:0'), s0.device)

        s1 = torch.cuda.Stream(device=1, priority=high)

        self.assertEqual(high, s1.priority)
        self.assertEqual(torch.device('cuda:1'), s1.device)

    @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
    def test_tensor_device(self):
        self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 0)
        self.assertEqual(torch.cuda.FloatTensor(1, device=1).get_device(), 1)
        with torch.cuda.device(1):
            self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 1)
            self.assertEqual(torch.cuda.FloatTensor(1, device=0).get_device(), 0)
            self.assertEqual(torch.cuda.FloatTensor(1, device=None).get_device(), 1)

    def test_events(self):
        stream = torch.cuda.current_stream()
        event = torch.cuda.Event(enable_timing=True)
        self.assertTrue(event.query())
        start_event = torch.cuda.Event(enable_timing=True)
        stream.record_event(start_event)
        torch.cuda._sleep(int(50 * get_cycles_per_ms()))
        stream.record_event(event)
        self.assertFalse(event.query())
        event.synchronize()
        self.assertTrue(event.query())
        self.assertGreater(start_event.elapsed_time(event), 0)

    @staticmethod
    def _stream_synchronize(self, spin_time_cycles):
        s = torch.cuda.current_stream()
        e_tik = torch.cuda.Event(enable_timing=True)
        e_tok = torch.cuda.Event(enable_timing=True)

        e_tik.record(s)
        torch.cuda._sleep(spin_time_cycles)
        e_tok.record(s)
        s.synchronize()

        self.assertTrue(s.query())

        # not necessary to check e_tik and e_tok, as elapsed_time would throw
        # exception if otherwise.
        return e_tik.elapsed_time(e_tok)

    @staticmethod
    def _event_synchronize(self, spin_time_cycles):
        s = torch.cuda.current_stream()
        e_tik = torch.cuda.Event(enable_timing=True)
        e_tok = torch.cuda.Event(enable_timing=True)

        e_tik.record(s)
        torch.cuda._sleep(spin_time_cycles)
        s.record_event(e_tok)
        e_tok.synchronize()

        self.assertTrue(s.query())

        # not necessary to check e_tik and e_tok, as elapsed_time would throw
        # exception if otherwise.
        return e_tik.elapsed_time(e_tok)

    @staticmethod
    def _event_wait(self, spin_time_cycles):
        s0 = torch.cuda.current_stream()
        s1 = torch.cuda.Stream()
        e_tik = torch.cuda.Event(blocking=True, enable_timing=True)
        e_tok = torch.cuda.Event(blocking=True, enable_timing=True)

        e_tik.record(s0)
        torch.cuda._sleep(spin_time_cycles - 10)
        e_sync = torch.cuda.Event(blocking=True)
        e_sync.record()
        e_sync.wait(s1)
        with torch.cuda.stream(s1):
            torch.cuda._sleep(10)
        s1.synchronize()
        e_tok.record()
        e_tok.synchronize()

        self.assertTrue(s0.query())
        self.assertTrue(s1.query())
        self.assertTrue(e_sync.query())

        # not necessary to check e_tik and e_tok, as elapsed_time would throw
        # exception if otherwise.
        return e_tik.elapsed_time(e_tok)

    @staticmethod
    def _test_stream_event_nogil(self, sync_func, p2c, c2p):
        with torch.cuda.device('cuda:1'):
            c2p.put(0)
            p2c.get()
            c2p.put(sync_func(self, TestCuda.FIFTY_MIL_CYCLES))

    # Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190
    @skipIfRocm
    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_stream_event_nogil(self):
        for sync_func in [TestCuda._stream_synchronize,
                          TestCuda._event_synchronize,
                          TestCuda._event_wait]:
            p2c = queue.Queue()
            c2p = queue.Queue()
            e_tik = torch.cuda.Event(enable_timing=True)
            e_tok = torch.cuda.Event(enable_timing=True)

            t = threading.Thread(
                target=TestCuda._test_stream_event_nogil,
                args=(self, sync_func, p2c, c2p))
            t.daemon = True
            t.start()

            c2p.get()
            with torch.cuda.device('cuda:0'):
                e_tik.record()
                p2c.put(0)
                parent_time = sync_func(self, TestCuda.FIFTY_MIL_CYCLES)
                child_time = c2p.get()
                e_tok.record()
                e_tok.synchronize()
                total_time = e_tik.elapsed_time(e_tok)

            # Without GIL, synchronizations in parent and child threads can
            # overlap. The total execution time should be a little bit longer
            # than spinning fifty million cycles and much shorter than twice of
            # that. However, testing absolute execution time is not reliable as
            # it may vary on different hardware in different environments.
            # Therefore, this test uses relative comparisons, checking if the
            # sum of parent and child threads execution time is greater than the
            # real execution time by least 40%.
            self.assertGreater(parent_time + child_time, total_time * 1.4)

    # This test is flaky for ROCm, see issue #62602
    @skipIfRocm
    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_events_wait(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')
        torch.cuda.synchronize(d0)
        torch.cuda.synchronize(d1)

        with torch.cuda.device(d0):
            s0 = torch.cuda.current_stream()
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
            e0 = torch.cuda.Event()
            s0.record_event(e0)

        with torch.cuda.device(d1):
            s1 = torch.cuda.current_stream()

        self.assertFalse(s0.query())
        self.assertTrue(s1.query())

        s1.wait_event(e0)
        s1.synchronize()

        self.assertTrue(e0.query())
        self.assertTrue(s0.query())
        self.assertTrue(s1.query())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_events_multi_gpu_query(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')

        with torch.cuda.device(d0):
            s0 = torch.cuda.current_stream()
            e0 = s0.record_event()
            s0.synchronize()

        with torch.cuda.device(d1):
            s1 = torch.cuda.current_stream()
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
            e1 = s1.record_event()

        self.assertTrue(e0.query())
        self.assertFalse(e1.query())

        with torch.cuda.device(d0):
            self.assertTrue(e0.query())
            self.assertFalse(e1.query())

        with torch.cuda.device(d1):
            self.assertTrue(e0.query())
            self.assertFalse(e1.query())

        # deliberately using a different device
        with torch.cuda.device(d0):
            e1.synchronize()

        self.assertTrue(e0.query())
        self.assertTrue(e1.query())

        with torch.cuda.device(d0):
            self.assertTrue(e0.query())
            self.assertTrue(e1.query())

        with torch.cuda.device(d1):
            self.assertTrue(e0.query())
            self.assertTrue(e1.query())

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    @skipIfRocm
    def test_events_multi_gpu_elapsed_time(self):
        d0 = torch.device('cuda:0')
        d1 = torch.device('cuda:1')

        with torch.cuda.device(d0):
            s0 = torch.cuda.current_stream()
            e0 = torch.cuda.Event(enable_timing=True)
            torch.cuda._sleep(10)
            s0.record_event(e0)

        with torch.cuda.device(d1):
            s1 = torch.cuda.current_stream()
            e1 = torch.cuda.Event(enable_timing=True)
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
            s1.record_event(e1)

        e0.synchronize()
        e1.synchronize()
        with torch.cuda.device(d0):
            with self.assertRaises(RuntimeError):
                self.assertGreater(e0.elapsed_time(e1), 0)

        with torch.cuda.device(d1):
            with self.assertRaises(RuntimeError):
                self.assertGreater(e0.elapsed_time(e1), 0)

        with torch.cuda.device(d0):
            s0 = torch.cuda.current_stream()
            e2 = torch.cuda.Event(enable_timing=True)
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
            s0.record_event(e2)
            s0.synchronize()

        self.assertGreater(e0.elapsed_time(e2), 0)

        # deliberately calling from a different device
        with torch.cuda.device(d1):
            self.assertGreater(e0.elapsed_time(e2), 0)

    def test_record_stream(self):
        cycles_per_ms = get_cycles_per_ms()

        t = torch.FloatTensor([1, 2, 3, 4]).pin_memory()
        result = torch.cuda.FloatTensor(t.size())
        stream = torch.cuda.Stream()
        ptr = [None]

        # Performs the CPU->GPU copy in a background stream
        def perform_copy():
            with torch.cuda.stream(stream):
                tmp = t.cuda(non_blocking=True)
                ptr[0] = tmp.data_ptr()
            torch.cuda.current_stream().wait_stream(stream)
            tmp.record_stream(torch.cuda.current_stream())
            torch.cuda._sleep(int(50 * cycles_per_ms))  # delay the copy
            result.copy_(tmp)

        perform_copy()
        with torch.cuda.stream(stream):
            tmp2 = torch.cuda.FloatTensor(t.size())
            tmp2.zero_()
            self.assertNotEqual(tmp2.data_ptr(), ptr[0], msg='allocation re-used to soon')

        self.assertEqual(result.tolist(), [1, 2, 3, 4])

        # Check that the block will be re-used after the main stream finishes
        torch.cuda.current_stream().synchronize()
        with torch.cuda.stream(stream):
            tmp3 = torch.cuda.FloatTensor(t.size())
            self.assertEqual(tmp3.data_ptr(), ptr[0], msg='allocation not re-used')

    def test_record_stream_on_shifted_view(self):
        # See issue #27366

        # This test detects unexpected block reallocation. For reliable test,
        # the stream to allocate tensors is isolated. The allocator will not
        # reuse free blocks which were allocated from another stream.
        stream_alloc = torch.cuda.Stream()
        with torch.cuda.stream(stream_alloc):
            base = torch.cuda.FloatTensor([10, 10])

        # Record another stream on a shifted view tensor.
        view = base[5:]
        assert view.storage_offset() > 0

        stream_record = torch.cuda.Stream()
        with torch.cuda.stream(stream_record):
            torch.cuda._sleep(int(50 * get_cycles_per_ms()))

        view.record_stream(stream_record)

        # Delete those tensors to make the block free soon.
        data_ptr = base.data_ptr()
        del base, view

        # A new tensor should not be allocated to the block above.
        stream_alloc.synchronize()

        with torch.cuda.stream(stream_alloc):
            try_realloc = torch.cuda.FloatTensor([10, 10])

        self.assertNotEqual(try_realloc.data_ptr(), data_ptr)

    @contextlib.contextmanager
    def _get_external_stream(self, device):
        cudart = torch.cuda.cudart()
        stream = ctypes.c_ulonglong(0)
        stream_p = ctypes.POINTER(ctypes.c_void_p)(stream)
        stream_p_int = ctypes.cast(stream_p, ctypes.c_void_p).value
        with device:
            try:
                out = cudart.cudaStreamCreate(stream_p_int)
                self.assertEqual(out, 0)
                self.assertNotEqual(stream.value, 0)
                yield stream.value
            finally:
                out = cudart.cudaStreamDestroy(stream.value)
                self.assertEqual(out, 0)

    def test_external_streams(self):
        device = torch.cuda.device(0)
        with self._get_external_stream(device) as stream_v:
            ext_stream = torch.cuda.ExternalStream(stream_v)
            self.assertEqual(stream_v, ext_stream.cuda_stream)
            self.assertEqual(ext_stream.device.index, device.idx)

    @unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
    def test_external_streams_multi_device(self):
        device = torch.cuda.device(1)
        with self._get_external_stream(device) as stream_v:
            ext_stream = torch.cuda.ExternalStream(
                stream_v, device=device)
            self.assertEqual(stream_v, ext_stream.cuda_stream)
            self.assertEqual(ext_stream.device.index, device.idx)

    def test_noncontiguous_pinned_memory(self):
        # See issue #3266
        x = torch.arange(0, 10).view((2, 5))
        self.assertEqual(x.t(), x.t().pin_memory())

    def test_caching_pinned_memory(self):
        cycles_per_ms = get_cycles_per_ms()

        # check that allocations are re-used after deletion
        t = torch.FloatTensor([1]).pin_memory()
        ptr = t.data_ptr()
        del t
        t = torch.FloatTensor([1]).pin_memory()
        self.assertEqual(t.data_ptr(), ptr, msg='allocation not reused')

        # check that the allocation is not re-used if it's in-use by a copy
        gpu_tensor = torch.cuda.FloatTensor([0])
        torch.cuda._sleep(int(1000 * cycles_per_ms))  # delay the copy by 1s
        gpu_tensor.copy_(t, non_blocking=True)
        del t
        t = torch.FloatTensor([1]).pin_memory()
        self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon')
        self.assertEqual(list(gpu_tensor), [1])

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_caching_pinned_memory_multi_gpu(self):
        # checks that the events preventing pinned memory from being re-used
        # too early are recorded on the correct GPU
        cycles_per_ms = get_cycles_per_ms()

        t = torch.FloatTensor([1]).pin_memory()
        ptr = t.data_ptr()
        gpu_tensor0 = torch.cuda.FloatTensor([0], device=0)
        gpu_tensor1 = torch.cuda.FloatTensor([0], device=1)

        with torch.cuda.device(1):
            torch.cuda._sleep(int(1000 * cycles_per_ms))  # delay the copy by 1s
            gpu_tensor1.copy_(t, non_blocking=True)

        del t
        t = torch.FloatTensor([2]).pin_memory()
        self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon')

        with torch.cuda.device(0):
            gpu_tensor0.copy_(t, non_blocking=True)

        self.assertEqual(gpu_tensor1[0], 1)
        self.assertEqual(gpu_tensor0[0], 2)

    def test_caching_allocator_record_stream_oom(self):
        """allocations delayed by a record_stream call should still be freed on
        an out-of-memory in cuda_malloc_retry. see issue #19219"""
        stream = torch.cuda.Stream()

        with torch.cuda.stream(stream):
            y = torch.zeros(40 * 1024 * 1024, device='cuda')

        for _ in range(100):
            x = torch.empty(40 * 1024 * 1024, device='cuda')
            with torch.cuda.stream(stream):
                y += x
            # delays re-use of `x` until after all operations in `stream`
            x.record_stream(stream)
            del x

        # we've made a mess by allocating up to the device capacity. free any
        # cached blocks in case it affects future tests.
        torch.cuda.empty_cache()

    # Tests for historic illegal memory access, see #17040.
    def test_reduction_gpu_memory_accessing(self):
        x = torch.ones(512, 8, dtype=torch.float32, device='cuda')
        torch.sum(x, 0)

    def test_sum_fp16(self):
        x = torch.zeros(10, device='cuda', dtype=torch.float16)
        self.assertEqual(x.sum(), 0)

        x = torch.ones(65504, device='cuda', dtype=torch.float16)
        self.assertEqual(x.sum(), 65504)
        self.assertEqual(x.sum(dtype=torch.float32), 65504)

        x = torch.ones(65536, device='cuda', dtype=torch.float16)
        self.assertEqual(x.sum(dtype=torch.float32), 65536)

        a = torch.zeros(1203611).bernoulli_(0.0005)
        x = a.to(device='cuda', dtype=torch.float16)
        self.assertEqual(x.sum().item(), a.sum().item())

        a = torch.zeros(100, 121, 80).bernoulli_(0.0005)
        x = a.to(device='cuda', dtype=torch.float16)
        self.assertEqual(x.sum((0, 2)).float().cpu(), a.sum((0, 2)))

    def test_mean_fp16(self):
        x = torch.ones(65536, device='cuda', dtype=torch.float16)
        self.assertEqual(x.mean(), 1)

        x = torch.ones(65536, device='cuda', dtype=torch.float16)
        self.assertEqual(x.mean(dtype=torch.float32), 1)

    def test_prod_large(self):
        # tests global reduction (should_global_reduce = true) in case of non-zero identity element
        x = torch.ones(240000, device='cuda', dtype=torch.float32)
        self.assertEqual(x.prod(), 1)

        # test for complex types. Note 240k is divisible by 4
        for dtype in [torch.cfloat, torch.cdouble]:
            x = torch.ones(240000, device='cuda', dtype=dtype) * (0 + 1j)
            self.assertEqual(x.prod(), 1)

    def test_multinomial_ext(self):
        # Test two corner cases from older PyTorch (Issue #4858)
        freqs = torch.cuda.FloatTensor([
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.03178183361887932, 0.027680952101945877, 0.033176131546497345,
            0.046052902936935425, 0.07742464542388916, 0.11543981730937958,
            0.14148041605949402, 0.15784293413162231, 0.13180233538150787,
            0.08271478116512299, 0.049702685326337814, 0.027557924389839172,
            0.018125897273421288, 0.011851548217236996, 0.010252203792333603,
            0.007422595750540495, 0.005372154992073774, 0.0045109698548913,
            0.0036087757907807827, 0.0035267581697553396, 0.0018864056328311563,
            0.0024605290964245796, 0.0022964938543736935, 0.0018453967059031129,
            0.0010662291897460818, 0.0009842115687206388, 0.00045109697384759784,
            0.0007791675161570311, 0.00020504408166743815, 0.00020504408166743815,
            0.00020504408166743815, 0.00012302644609007984, 0.0,
            0.00012302644609007984, 4.100881778867915e-05, 0.0, 0.0, 0.0, 0.0,
            0.0, 0.0])

        torch.cuda.manual_seed(11042)
        sample = torch.multinomial(freqs, 1000, True)
        self.assertNotEqual(freqs[sample].min(), 0)

        p = torch.zeros(3421, 2, device="cuda", dtype=torch.float)
        p[:, 1] = 1
        torch.cuda.manual_seed(5214)
        r = torch.multinomial(p, 1)
        self.assertNotEqual(r.min().item(), 0)

        # test corner case from Issue #13867
        torch.cuda.manual_seed(33)
        probs = torch.randn(1000000, device='cuda').clamp(min=0) * 3e-5
        samples = probs.multinomial(1000000, replacement=True)
        self.assertGreater(probs[samples].min().item(), 0)

    def _spawn_test_multinomial_invalid_probs_cuda(self, probs):
        import subprocess
        try:
            p = subprocess.Popen([sys.executable, '-c', f"""\
import sys
import torch
from torch._six import inf, nan
try:
    with torch.random.fork_rng(devices=[0]):
        torch.multinomial(torch.tensor({probs}).to('cuda'), 2, replacement=True)
        torch.cuda.synchronize()
    sys.exit(-1) # Should not be reached
except RuntimeError as e:
    sys.exit(-2)
"""], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
            out, err = p.communicate(timeout=10)
            p.wait(timeout=10)
        except subprocess.TimeoutExpired as e:
            p.kill()
            out, err = p.communicate()
        expected_messages = [
            'device-side assert triggered',  # CUDA
            'Assertion',  # CUDA
            'HSA_STATUS_ERROR_EXCEPTION',  # ROCm
            'Device-side assertion'  # ROCm
        ]
        self.assertTrue(any([msg in out or msg in err for msg in expected_messages]))

    @slowTest
    @unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support device side asserts")
    @unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
                     don't support multiprocessing with spawn start method")
    def test_multinomial_invalid_probs_cuda(self):
        self._spawn_test_multinomial_invalid_probs_cuda([1., -1., 1.])
        self._spawn_test_multinomial_invalid_probs_cuda([1., inf, 1.])
        self._spawn_test_multinomial_invalid_probs_cuda([1., -inf, 1.])
        self._spawn_test_multinomial_invalid_probs_cuda([1., 1., nan])

    @slowTest
    @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
    def test_huge_index(self):
        src = torch.empty(15000000, 45, device='cuda', dtype=torch.long).random_(0, 2**22)
        idx = torch.randperm(src.shape[0], device='cuda')
        res = src[idx]
        res_cpu = src.cpu()[idx.cpu()]
        self.assertEqual(res.cpu(), res_cpu)

    def test_min_max_inits(self):
        # Testing if THC_reduceAll received the correct index initialization.
        # This affects the result of THC_reduceAll operations at extreme values
        x = torch.cuda.ByteTensor([0])
        y = torch.cuda.ByteTensor([255])
        expected = torch.cuda.LongTensor([0])[0]

        _, v = x.max(dim=0)
        self.assertEqual(v, expected)

        _, v = y.min(dim=0)
        self.assertEqual(v, expected)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_get_set_rng_state_all(self):
        states = torch.cuda.get_rng_state_all()
        before0 = torch.cuda.FloatTensor(100, device=0).normal_()
        before1 = torch.cuda.FloatTensor(100, device=1).normal_()
        torch.cuda.set_rng_state_all(states)
        after0 = torch.cuda.FloatTensor(100, device=0).normal_()
        after1 = torch.cuda.FloatTensor(100, device=1).normal_()
        self.assertEqual(before0, after0, atol=0, rtol=0)
        self.assertEqual(before1, after1, atol=0, rtol=0)

    def test_nvtx(self):
        # Just making sure we can see the symbols
        torch.cuda.nvtx.range_push("foo")
        torch.cuda.nvtx.mark("bar")
        torch.cuda.nvtx.range_pop()
        range_handle = torch.cuda.nvtx.range_start("range_start")
        torch.cuda.nvtx.range_end(range_handle)

    def test_bincount_ext(self):
        # ensure CUDA code coverage
        input_size = (5000,)
        w = torch.randn(input_size, dtype=torch.double, device='cuda')
        w_cpu = w.cpu()
        # test shared memory impl
        t = torch.randint(50, input_size, dtype=torch.int8, device='cuda')
        self.assertEqual(t.cpu().bincount(), t.bincount())
        self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
        # test multi block memory impl
        # see `THRESH_NUMBER_BINS_FOR_MULTI_BLOCK_MEM` in SummaryOps.cu
        t = torch.randint(500, input_size, dtype=torch.int64, device='cuda')
        self.assertEqual(t.cpu().bincount(), t.bincount())
        self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
        # test global memory impl
        # see `THRESH_NUMBER_BINS_FOR_GLOBAL_MEM` in SummaryOps.cu
        t = torch.randint(2000, input_size, dtype=torch.int64, device='cuda')
        self.assertEqual(t.cpu().bincount(), t.bincount())
        self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))

        t = torch.zeros([10], dtype=torch.int32, device='cuda')
        # 35488 * 65536 as int32 would cause overflow to negative value
        # giving negative bin offset
        t[0] = 35488
        counted = t.bincount(minlength=65536)
        self.assertEqual(torch.sum(counted), 10)

    def test_tiny_half_norm_(self):
        a = torch.arange(25).cuda().float()
        a /= 100000000
        b = a.half()
        self.assertGreater(b.norm().item(), 0)

    def test_norm_type_conversion(self):
        a = torch.ones(65536).cuda().half()
        self.assertEqual(a.norm(p=0, dtype=torch.float32), 65536)

    # Verifies that mem_get_info works, including when called for a different device
    def test_mem_get_info(self):
        def _test(idx):
            before_free_bytes, before_available_bytes = torch.cuda.mem_get_info(idx)
            # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms
            t = torch.randn(1024 * 1024 * 8, device='cuda:' + str(idx))
            after_free_bytes, after_available_bytes = torch.cuda.mem_get_info(idx)

            self.assertTrue(after_free_bytes < before_free_bytes)
            self.assertEqual(before_available_bytes, after_available_bytes)

        _test(0)
        if TEST_MULTIGPU:
            _test(1)

    # Test that wrap_with_cuda_memory_check successfully detects leak
    def test_cuda_memory_leak_detection(self):
        l = []

        @self.wrap_with_cuda_memory_check
        def no_leak():
            pass

        @self.wrap_with_cuda_memory_check
        def leak_gpu0():
            # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms
            l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:0")))

        no_leak()

        with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 0.+"):
            leak_gpu0()

        if TEST_MULTIGPU:
            @self.wrap_with_cuda_memory_check
            def leak_gpu1():
                # increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms
                l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:1")))

            with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 1.+"):
                leak_gpu1()

    def test_cuda_memory_leak_detection_propagates_errors(self):
        with self.assertRaisesRegex(RuntimeError, r"The size of tensor a \(3\) must match"):
            with self.assertLeaksNoCudaTensors():
                x = torch.randn(3, 1, device='cuda')
                y = torch.randn(2, 1, device='cuda')
                z = x + y

    @unittest.skipIf(not TEST_MEDIUM_TENSOR, "not enough memory")
    def test_cuda_kernel_loop_overflow(self):
        # Issue #24309: In extreme cases, the loop variable could overflow and continue
        # the kernel loop with a negative index, causing a RuntimeError (invalid write):
        x = torch.randn(1, 1, 1, 2**30 + 1, dtype=torch.float16, device="cuda")
        expected = x[0, 0, 0, 2**30]
        y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
        torch.cuda.synchronize()
        self.assertEqual(y[0, 0, 0, 2**30], expected)

    @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
    def test_cuda_kernel_loop_overflow_large(self):
        # Make sure input.numel() > INT_MAX is handled:
        x = torch.randn(1, 1, 1, 2**31, dtype=torch.float16, device="cuda")
        with self.assertRaisesRegex(RuntimeError, "integer out of range"):
            y = torch.nn.functional.avg_pool2d(x, kernel_size=1)

        # Issue #24309: In extreme cases, the loop variable could overflow and continue
        # the kernel loop with a negative index, causing a RuntimeError (invalid write):
        x = torch.randn(1, 1, 1, 2**31 - 1, dtype=torch.float16, device="cuda")
        expected = x[0, 0, 0, 2**31 - 2]
        y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
        torch.cuda.synchronize()
        self.assertEqual(y[0, 0, 0, 2**31 - 2], expected)

    # this might create a reference cycle on self...
    def _make_multiply_in_stream(self):
        class MultiplyInStream(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x, val):
                ctx.val = val
                ctx.stream = torch.cuda.current_stream()
                return x * val

            @staticmethod
            def backward(ctx, grad):
                self.assertEqual(torch.cuda.current_stream(), ctx.stream)
                # delays the operation in the the background stream
                torch.cuda._sleep(1000 * 5000)
                return grad * ctx.val, None

        return MultiplyInStream

    @skipCUDANonDefaultStreamIf(True)
    def test_streaming_backwards_sync(self):
        default_stream = torch.cuda.current_stream()
        stream = torch.cuda.Stream()

        MultiplyInStream = self._make_multiply_in_stream()

        # Tests using grads outside the backward() stream context
        # See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html
        x = torch.randn(5, 5, device='cuda', requires_grad=True)
        with torch.cuda.stream(stream):
            stream.wait_stream(default_stream)
            output = MultiplyInStream.apply(x, 2)
            output.sum().backward()
        # sync needed
        default_stream.wait_stream(stream)
        self.assertEqual(x.grad, torch.ones_like(x) * 2)
        self.assertEqual(torch.cuda.current_stream(), default_stream)

        # Tests that using grads in the same stream context as backward()
        # is safe regardless what streams bwd ops ran on
        bwd_ambient_stream = torch.cuda.Stream()
        x = torch.randn(5, 5, device='cuda', requires_grad=True)
        with torch.cuda.stream(stream):
            stream.wait_stream(default_stream)
            output = MultiplyInStream.apply(x, 3)
        with torch.cuda.stream(bwd_ambient_stream):
            bwd_ambient_stream.wait_stream(stream)
            output.sum().backward()
            # x was first used on "stream" so its AccumulateGrad leaf should run on "stream".
            # The end of backward() should have synced "bwd_ambient_stream" with "stream"
            # so it should be safe to use x.grad here without any syncs.
            self.assertEqual(x.grad, torch.ones_like(x) * 3)
            self.assertEqual(torch.cuda.current_stream(), bwd_ambient_stream)

    # Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190
    @skipIfRocm
    def test_streaming_backwards_multiple_streams(self):
        MultiplyInStream = self._make_multiply_in_stream()

        class StreamModel(torch.nn.Module):
            def __init__(self):
                super(StreamModel, self).__init__()
                self.event = torch.cuda.Event()
                self.stream0 = torch.cuda.Stream()
                self.stream1 = torch.cuda.Stream()

            def forward(self, x, x_first_use_on_ambient):
                if x_first_use_on_ambient:
                    x0 = x.clone()
                self.stream0.wait_stream(torch.cuda.current_stream())
                self.stream1.wait_stream(torch.cuda.current_stream())
                with torch.cuda.stream(self.stream0):
                    if not x_first_use_on_ambient:
                        x0 = x.clone()
                    y0 = MultiplyInStream.apply(x0, 2)
                    self.event.record(stream=torch.cuda.current_stream())

                with torch.cuda.stream(self.stream1):
                    y1 = MultiplyInStream.apply(x, 3)
                    self.stream1.wait_event(self.event)
                    return y0 + y1

        stream = torch.cuda.Stream()

        for x_first_use_on_ambient in (True, False):
            # the out_of_place=False, iters=1 case stresses if proper syncs are inserted
            # when grads are initially None and stolen by backward ops.
            for out_of_place, iters in ((True, 1),
                                        (False, 1),
                                        (False, 5)):
                with torch.cuda.stream(stream):
                    x = torch.randn(5, 5, device='cuda', requires_grad=True)
                    model = StreamModel().cuda()
                    x.register_hook(lambda grad: self.assertEqual(torch.cuda.current_stream(),
                                                                  stream if x_first_use_on_ambient else model.stream0))
                    for p in model.parameters():
                        self.assertTrue(p.grad is None)
                    for i in range(iters):
                        loss = model(x, x_first_use_on_ambient).sum()
                        if out_of_place:
                            x_grad = torch.autograd.grad((loss,), (x,))[0]
                        else:
                            loss.backward()
                # See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html
                torch.cuda.current_stream().wait_stream(stream)

                if out_of_place:
                    self.assertEqual(x_grad, torch.ones_like(x) * 5 * iters)
                else:
                    self.assertEqual(x.grad, torch.ones_like(x) * 5 * iters)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_streaming_backwards_device_transfer(self):
        # This function must run with non-default current streams on all devices, otherwise it's meaningless.
        # The intention is to test that to()'s backward (CopyBackward) interacts properly with the
        # synchronization logic in torch/csrc/autograd/input_buffer.cpp.
        dev0 = torch.device("cuda:0")
        dev1 = torch.device("cuda:1")

        # Unfortunately I need to make the tensors largeish.
        # Bigger tensors = longer D2D transfers = more likely to expose races.
        size = 2**26

        a = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True)
        b = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True)

        # Here to_backward_recipient = a*b is used only once, so MulBackward's InputBuffer slot only expects 1 input.
        # This tests the situation where we don't call InputBuffer::accumulate for MulBackward's InputBuffer.
        to_backward_recipient = a * b
        s = to_backward_recipient.to(device="cuda:0").sum()
        torch.cuda.synchronize(device=dev0)
        torch.cuda.synchronize(device=dev1)
        s.backward()
        self.assertTrue(a.grad.sum().item() == size)
        self.assertTrue(b.grad.sum().item() == size)

        # Here to_backward_recipient = a*b is used twice, so MulBackward's InputBuffer slot expects 2 inputs.
        # This tests the situation where we do call InputBuffer::accumulate for MulBackward's InputBuffer.
        a.grad = None
        b.grad = None
        to_backward_recipient = a * b
        # Multiply by 2 here so to's backward creates gradient values that are different from the case above,
        # to mitigate weirdness if the caching allocator happens to reuse memory regions that were populated
        # with 1s by the case above
        s0 = to_backward_recipient.to(device="cuda:0").sum() * 2.
        s1 = to_backward_recipient.to(device="cuda:0").sum() * 2.
        torch.cuda.synchronize(device=dev0)
        torch.cuda.synchronize(device=dev1)
        s0.backward(retain_graph=True)
        s1.backward()
        self.assertTrue(a.grad.sum().item() == 4 * size)
        self.assertTrue(b.grad.sum().item() == 4 * size)

    def test_streaming_backwards_sync_graph_root(self):
        # This function tests if bwd ops running on a side stream properly sync with the GraphRoot.
        # The potential bug it targets is a race condition. The test uses multiple trials and
        # torch.cuda._sleep such that if the race condition exists, the test will almost certainly fail,
        # but there's a chance it may spuriously pass. Passing does not guarantee the backend is bug-free,
        # but failure does guarantee there is a bug.
        fwd_bwd_op_stream = torch.cuda.Stream()
        bwd_ambient_stream = torch.cuda.Stream()
        # We need these streams to be different otherwise the test is meaningless.
        self.assertTrue(fwd_bwd_op_stream != bwd_ambient_stream)

        size = int(1e3)

        a = torch.full((size,), 2.0, device="cuda", requires_grad=True)
        b = torch.full((size,), 3.0, device="cuda", requires_grad=True)

        # I don't think we need any manual record_streams below.
        # a and b remain in scope for the entire test.
        # c and grad remain in scope for each iteration, and there's a full sync between iterations.
        for trial in range(5):
            torch.cuda.synchronize()
            a.grad = b.grad = None
            with torch.cuda.stream(fwd_bwd_op_stream):
                c = a * b

            with torch.cuda.stream(bwd_ambient_stream):
                torch.cuda.synchronize()
                # Long-running dummy kernel on bwd_ambient_stream delays filling of grad
                torch.cuda._sleep(int(50 * get_cycles_per_ms()))
                # Fills grad on bwd_ambient_stream
                grad = torch.full((size,), float(trial + 1), device="cuda")

                # Bwd ops still run on fwd_bwd_ops_stream, so the following will likely fail if
                # bwd ops don't sync with bwd_ambient_stream before consuming grad.
                torch.autograd.backward(tensors=c, grad_tensors=grad)

                # See https://github.com/pytorch/pytorch/issues/47028
                # assertEquals below run on bwd_ambient_stream, so this test may also fail
                # if backward() fails to sync with bwd_ambient_stream at the end.
                # Synchronizing here works around the issue until a proper fix can be made.
                torch.cuda.synchronize()
                with torch.no_grad():
                    self.assertEqual(a.grad, grad * b)
                    self.assertEqual(b.grad, grad * a)

    def test_streaming_backwards_callback(self):
        # Tests if autograd callbacks sync properly with respect to leaf streams and
        # the user-facing stream surrounding backward(). If it fails, first suspect is
        # sync logic where  "final_callbacks_" are called in torch/csrc/autograd/engine.cpp
        MultiplyInStream = self._make_multiply_in_stream()

        size = int(1e3)
        a = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True)
        b = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True)

        s0 = torch.cuda.Stream()
        s1 = torch.cuda.Stream()
        s2 = torch.cuda.Stream()

        stash = []

        # sets up a nontrivial structure of leaf streams
        s0.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(s0):
            c = MultiplyInStream.apply(a, 2)

        s1.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(s1):
            d = MultiplyInStream.apply(b, 3)
            s1.wait_stream(s0)
            e = c * d

            def clone_leaf_grads():
                stash.append(a.grad.clone())
                stash.append(b.grad.clone())

            # Use a hook on e to install the callback
            e.register_hook(lambda grad: torch.autograd.Variable._execution_engine.queue_callback(clone_leaf_grads))

        s2.wait_stream(s1)
        with torch.cuda.stream(s2):
            e.sum().backward()
            # The autograd engine should sync s2 with all leaf streams then run the callback clone_leaf_grads on s2.
            # If those things happened properly, checking the values of the cloned grads on s2 should be safe:
            self.assertEqual(stash[0], torch.full_like(a, 6))
            self.assertEqual(stash[1], torch.full_like(a, 6))

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    @unittest.skipIf(IS_SANDCASTLE or IS_REMOTE_GPU, "Does not work on Sandcastle")
    def test_cuda_init_race(self):
        # See https://github.com/pytorch/pytorch/issues/16559
        import subprocess
        subprocess.check_call([sys.executable, '-c', """\
import torch
import threading

def worker(rank):
    torch.tensor([1.]).cuda(rank)

t1 = threading.Thread(target=worker, args=(0,))
t2 = threading.Thread(target=worker, args=(1,))
t1.start()
t2.start()
"""])

    @unittest.skipIf(TEST_WITH_ROCM, "In ROCm, kernel asserts are disabled due to performance overhead")
    def test_fixed_cuda_assert_async(self):
        with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"):
            torch._assert_async(torch.tensor([], device="cuda"))
        with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with more than one value is ambiguous"):
            torch._assert_async(torch.tensor([0, 0], device="cuda"))

        torch._assert_async(torch.tensor(1, device="cuda"))
        torch._assert_async(torch.tensor(0.1, device="cuda"))
        torch._assert_async(torch.tensor(-0.1, device="cuda"))
        torch._assert_async(torch.tensor(True, device="cuda"))
        torch._assert_async(torch.tensor(0 + 0.1j, device="cuda"))

        fail_stmts = [
            "torch._assert_async(torch.tensor(0, device='cuda'))",
            "torch._assert_async(torch.tensor(0.0, device='cuda'))",
            "torch._assert_async(torch.tensor(False, device='cuda'))",
            "torch._assert_async(torch.tensor(0 + 0j, device='cuda'))",
        ]

        import subprocess
        for stmt in fail_stmts:
            with self.subTest(stmt=stmt):
                r = subprocess.call([sys.executable, '-c', f"""\
import torch

{stmt}
torch.cuda.synchronize()
"""])
                self.assertTrue(r != 0)


    def test_grad_scaling_unscale(self, dtype=torch.float):
        inv_scale = torch.full((1,), 0.25, dtype=torch.float, device="cuda:0")
        found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0")

        size = 10
        g = torch.full((size, size), 4.0, dtype=dtype, device="cuda:0")
        ginf = g.clone()
        ginf[2, 2] = float('inf')
        gnan = g.clone()
        gnan[2, 2] = float('nan')

        # Tries selected combinations of
        #  - contiguous grads
        #  - g.clone().t() which is not contiguous but still non overlapping and dense
        #  - variants of g.clone()[:, :5] which are not non overlapping and dense
        # Non overlapping and dense grads route into a multi tensor apply kernel,
        # others use a fallback per-tensor kernel, so we should try both.
        cases = (
            ([g.clone(), g.clone()], False),
            ([g.clone(), g.clone().t()], False),
            ([g.clone(), g.clone()[:, :5]], False),
            ([g.clone()[:, :5], g.clone()[:, :5]], False),
            ([g.clone(), ginf.clone()], True),
            ([g.clone(), gnan.clone()], True),
            ([g.clone(), ginf.clone()[:, :5]], True),
            ([g.clone(), gnan.clone()[:, :5]], True),
            ([ginf.clone(), g.clone()[:, :5]], True),
            ([ginf.clone()[:, :5], g.clone()[:, :5]], True),
        )

        for grads, has_inf in cases:
            found_inf.zero_()
            torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale)
            if has_inf:
                self.assertEqual(found_inf, 1.0)
            else:
                self.assertEqual(found_inf, 0.0)
                for grad in grads:
                    self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7)

        # When passing lists with mismatched dtypes to a raw
        # _amp_foreach_non_finite_check_and_unscale_ call,
        # it's expected to fall back to single-tensor TensorIterator kernel.
        grads = [g.clone(), g.to(dtype=torch.float16)]
        torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale)
        for grad in grads:
            self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7)

        # Passing lists with mismatched devices to a raw
        # _amp_foreach_non_finite_check_and_unscale_ call should raise errors.
        if TEST_MULTIGPU:
            with self.assertRaisesRegex(RuntimeError, r"Expected all tensors to be on the same device"):
                torch._amp_foreach_non_finite_check_and_unscale_([g.clone(), g.to(device="cuda:1")],
                                                                 found_inf,
                                                                 inv_scale)

        # Creates a list of grads with mismatched dtypes and devices, to ensure
        # scaler._unscale_grads_ organizes grads by dtype and device before calling
        # _amp_foreach_non_finite_check_and_unscale_ on each set.
        # If inject_inf >= 0, writes an inf into one grad for _unscale_grads_ to find.
        def perfect_storm_grads(inject_inf):
            grads = [g.clone(), g.clone()[:, :5], g.to(dtype=torch.float16), g.to(dtype=torch.float16)]
            if TEST_MULTIGPU:
                grads += [g.to(device="cuda:1"),
                          g.to(device="cuda:1")[:, :5],
                          g.to(device="cuda:1", dtype=torch.float16),
                          g.to(device="cuda:1", dtype=torch.float16)]
            if inject_inf >= 0:
                grads[inject_inf][2, 2] = float('inf')
            return grads

        scaler = torch.cuda.amp.GradScaler()
        dummy_params = [torch.empty_like(g) for g in perfect_storm_grads(-1)]
        dummy_opt = torch.optim.SGD(dummy_params, lr=1.)

        # Ensures the inf/nan checking can find an inf injected onto any grad in the perfect storm.
        for inject_inf in range(-1, len(dummy_params)):
            found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0")
            grads = perfect_storm_grads(inject_inf)
            for i, p in enumerate(dummy_params):
                p.grad = grads[i]
            found_inf_per_device = scaler._unscale_grads_(dummy_opt, inv_scale, found_inf, True)
            if inject_inf < 0:
                # No inf was injected, ensures unscaling worked normally.
                self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 0)
                for grad in grads:
                    self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7)
            else:
                # inf was injected, ensures inf was found.
                self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 1)

    def test_grad_scaling_update_scale(self, device="cuda", dtype=torch.float):
        growth = 2.0
        backoff = 0.25
        growth_interval = 2
        scale = torch.full((1,), 4.0, dtype=dtype, device=device)
        growth_tracker = torch.full((1,), 0.0, dtype=torch.int32, device=device)
        found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0")

        # Simulates 2 consecutive unskipped iterations
        torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval)
        self.assertEqual(growth_tracker, 1)
        self.assertEqual(scale, 4.0)
        torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval)
        self.assertEqual(growth_tracker, 0)
        self.assertEqual(scale, 8.0)

        # Simulates a skipped iteration
        found_inf.fill_(1.0)
        torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval)
        self.assertEqual(growth_tracker, 0)
        self.assertEqual(scale, 2.0)

    def test_grad_scaling_unscale_sparse(self, device="cuda", dtype=torch.float):
        scaler = torch.cuda.amp.GradScaler()

        inv_scale = torch.full((1,), 0.25, dtype=dtype, device=device)
        found_inf = torch.empty((1,), dtype=dtype, device=device)
        cur = found_inf.device

        # As of d0c925f (4/16/20), docs are unclear about best API for sparse cuda tensor construction.
        # https://pytorch.org/docs/master/tensors.html shows torch.sparse_coo_tensor(...), but it has no docstring.
        # The same page shows several tensors with layout=torch.sparse_coo, but no constructors using that layout.
        # Meanwhile, https://pytorch.org/docs/master/sparse.html shows torch.sparse.FloatTensor(...), which looks
        # legacy and does not accept a device="cuda" kwarg.  Going with torch.sparse_coo_tensor.
        i = torch.tensor([[0, 1, 1],
                          [2, 0, 2]], device="cuda", dtype=torch.int64)
        v = torch.tensor([16., 32., 64.], device="cuda", dtype=torch.float)
        s = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype)

        p = s.clone()
        assert p.is_sparse
        opt = torch.optim.SGD([p], lr=1.)

        p.grad = s.clone()
        found_inf.zero_()
        found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur]
        self.assertEqual(found_inf, 0.0)
        self.assertEqual(p.grad.to_dense(), (s / 4).to_dense())

        v = torch.FloatTensor([16., 32., float('inf')])
        p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype)
        found_inf.zero_()
        found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur]
        self.assertEqual(found_inf, 1.0)

        v = torch.FloatTensor([16., 32., float('nan')])
        p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype)
        found_inf.zero_()
        found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur]
        self.assertEqual(found_inf, 1.0)

        p = s.clone().half()
        assert p.is_sparse
        opt = torch.optim.SGD([p], lr=1.)

        p.grad = s.clone().half()
        found_inf.zero_()
        found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur]
        self.assertEqual(found_inf, 0.0)
        self.assertEqual(p.grad.to_dense(), (s.half() / 4).to_dense())

        # Creates fp16 sparse tensor with duplicated indices (uncoalesced).  The uncoalesced representation
        # does not overflow in fp16, but the coalesced representation would, because 64000 + 64000 > fp16 max.
        # _amp_non_finite_check_and_unscale_ should report an overflow here.
        i = torch.LongTensor([[0, 1, 0],
                              [2, 0, 2]])
        v = torch.FloatTensor([64000., 32., 64000.])
        p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=torch.float16)
        found_inf.zero_()
        found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur]
        self.assertEqual(found_inf, 1.0)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_grad_scaling_device_as_key(self):
        # Ensure that different instances of "device" objects that point to the same device
        # are treated as identical keys by dicts.  GradScaler relies on this behavior, and may
        # error otherwise in a way that's difficult to detect (a silent performance hit).
        d = {}
        t = torch.empty((1,), device="cuda:0")
        dev0a = torch.device("cuda:0")
        dev0b = torch.device("cuda:0")
        dev1a = torch.device("cuda:1")
        dev1b = torch.device("cuda:1")

        self.assertTrue(hash(dev0a) == hash(dev0b))
        self.assertTrue(hash(dev1a) == hash(dev1b))

        d[dev0a] = "0a"
        d[dev0b] = "0b"
        self.assertTrue(len(d) == 1)
        self.assertTrue(d[dev0a] == "0b")
        d[t.device] = "t"
        self.assertTrue(len(d) == 1)
        self.assertTrue(d[dev0a] == "t")

        d[dev1a] = "1a"
        d[dev1b] = "1b"
        self.assertTrue(len(d) == 2)
        self.assertTrue(d[dev1a] == "1b")

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_grad_scaling_scale(self):
        scaler = torch.cuda.amp.GradScaler(init_scale=2.)
        t0 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0")
        t1 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:1")
        # Create some nested iterables of tensors on different devices.
        outputs = (t1.clone(), (t0.clone(), t1.clone()), [t0.clone(), (t1.clone(), t0.clone())])
        outputs = scaler.scale(outputs)
        self.assertTrue(outputs[0] == 8.0 and outputs[1][0] == 8.0 and outputs[1][1] == 8.0 and
                        outputs[2][0] == 8.0 and outputs[2][1][0] == 8.0 and outputs[2][1][1] == 8.0)
        self.assertTrue(scaler._scale.device == t1.device)

    def test_grad_scaling_state_dict(self):
        for lazy_init_scale in True, False:
            s0 = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2)
            s1 = torch.cuda.amp.GradScaler(init_scale=6., growth_factor=7., backoff_factor=.8, growth_interval=1)

            # sets a random value for load_state_dict to overwrite
            s1._init_growth_tracker = 7

            if lazy_init_scale:
                # Dummy scale() call to ensure the scale tensor is lazily initialized.
                s1.scale(torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0"))
                self.assertTrue(isinstance(s1._scale, torch.cuda.FloatTensor))

            s1.load_state_dict(s0.state_dict())

            self.assertEqual(s1.get_scale(), 3.)
            self.assertEqual(s1.get_growth_factor(), 4.)
            self.assertEqual(s1.get_backoff_factor(), .5)
            self.assertEqual(s1.get_growth_interval(), 2)
            self.assertEqual(s1._init_growth_tracker, 0)

    def _create_scaling_models_optimizers(self, device="cuda", optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
        # Create a module+optimizer that will use scaling, and a control module+optimizer
        # that will not use scaling, against which the scaling-enabled module+optimizer can be compared.
        mod_control = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
        mod_scaling = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
        with torch.no_grad():
            for c, s in zip(mod_control.parameters(), mod_scaling.parameters()):
                s.copy_(c)

        kwargs = {"lr": 1.0}
        if optimizer_kwargs is not None:
            kwargs.update(optimizer_kwargs)
        opt_control = optimizer_ctor(mod_control.parameters(), **kwargs)
        opt_scaling = optimizer_ctor(mod_scaling.parameters(), **kwargs)

        return mod_control, mod_scaling, opt_control, opt_scaling

    def _create_scaling_case(self, device="cuda", dtype=torch.float, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
        data = [(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
                (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
                (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
                (torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device))]

        loss_fn = torch.nn.MSELoss().cuda()

        skip_iter = 2

        return self._create_scaling_models_optimizers(
            device=device, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
        ) + (data, loss_fn, skip_iter)

    # _run_scaling_case generalizes some single-optimizer test logic to avoid too much copy-pasting below.
    def _run_scaling_case(self, run, unskipped, skipped, atol=1e-7, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
        # Ensure scaling can be disabled without changing user control flow.
        for enabled in True, False:
            (
                mod_control, mod_scaling, opt_control, opt_scaling, data, loss_fn, skip_iter,
            ) = self._create_scaling_case(optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs)

            # For functionality, test with a modest initial scale, and an unrealistically-large growth factor
            # so any potential errors with the growth factor handling will be magnified.
            scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1)

            _ = run(data, mod_control, opt_control, scaler, loss_fn, skip_iter, False)
            ret = run(data, mod_scaling, opt_scaling, scaler, loss_fn, skip_iter, True)

            # Allows run() to optionally return a different scaler instance.
            scaler = ret if ret else scaler

            # If scaling was enabled, the scale factor should have been multiplied by the growth factor
            # len(data) - skipped times and the backoff factor "skipped" times.
            if enabled:
                net_growth = scaler.get_growth_factor()**unskipped if unskipped > 0 else 1.0
                net_backoff = scaler.get_backoff_factor()**skipped if skipped > 0 else 1.0
                self.assertTrue(scaler.get_scale() == (128. * net_growth * net_backoff))
            else:
                self.assertTrue(scaler.get_scale() == 1.0)

            for c, s in zip(mod_control.parameters(), mod_scaling.parameters()):
                self.assertEqual(c.grad, s.grad, atol=atol, rtol=1e-05)

                c_state, s_state = opt_control.state[c], opt_scaling.state[s]
                for k in c_state:
                    self.assertEqual(c_state[k], s_state[k], atol=atol, rtol=1e-05, msg=k)

                self.assertEqual(c, s, atol=atol, rtol=1e-05)

    # Compares no scaling + no autocasting against scaling + autocasting.
    def _grad_scaling_autocast_test(self, *, atol=1e-3, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
        try_pickle = False

        def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
            for i, (input, target) in enumerate(data):
                optimizer.zero_grad()
                with torch.autocast('cuda', enabled=try_scaling_api):
                    output = model(input)
                    loss = loss_fn(output, target)
                if try_scaling_api:
                    scaler.scale(loss).backward()
                    if i == skip_iter and scaler.is_enabled():
                        with torch.no_grad():
                            model[1].weight.grad.fill_(float('inf'))
                    scaler.step(optimizer)
                    scaler.update()
                    if try_pickle:
                        scaler = pickle.loads(pickle.dumps(scaler))
                else:
                    loss.backward()
                    if (not scaler.is_enabled()) or (i != skip_iter):
                        optimizer.step()
            return scaler

        # NOTE(mkozuki): With current way of testing, `torch.optim.Adam` is failing in spite of `foreach` and `fused`.
        #   Giving some flexibility to this test might help.
        context = contextlib.nullcontext
        if optimizer_ctor in (torch.optim.Adam,):
            from functools import partial
            context = partial(self.assertRaises, AssertionError)
        with context():
            # sets atol=1e-3 because we're comparing pure fp32 arithmetic vs a mixture of fp16 and fp32
            self._run_scaling_case(
                run, unskipped=3, skipped=1, atol=atol, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
            )
            # this will be picked up by try_pickle within run():
            try_pickle = True
            self._run_scaling_case(
                run, unskipped=3, skipped=1, atol=atol, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
            )

    def test_grad_scaling_autocast(self):
        for optimizer_ctor in (torch.optim.SGD, torch.optim.Adam):
            self._grad_scaling_autocast_test(optimizer_ctor=optimizer_ctor)

    def test_grad_scaling_autocast_foreach(self):
        for optimizer_ctor in (torch.optim.SGD, torch.optim.Adam):
            self._grad_scaling_autocast_test(optimizer_ctor=optimizer_ctor, optimizer_kwargs={"foreach": True})

    def test_grad_scaling_autocast_fused(self):
        self._grad_scaling_autocast_test(optimizer_ctor=torch.optim.Adam, optimizer_kwargs={"fused": True})

    def test_grad_scaling_autocast_fused_optimizers(self):
        for optimizer_ctor, optimizer_kwargs in (
            (torch.optim.Adam, {"fused": True, "amsgrad": False}),
            (torch.optim.Adam, {"fused": True, "amsgrad": True}),
        ):
            self._grad_scaling_autocast_fused_optimizers(
                optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs)

    def _grad_scaling_autocast_fused_optimizers(self, optimizer_ctor, optimizer_kwargs):
        (
            mod_control, mod_scaling, opt_control, opt_scaling, data, loss_fn, _,
        ) = self._create_scaling_case(optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs)
        kwargs = deepcopy(optimizer_kwargs)
        kwargs["fused"] = False
        opt_control = optimizer_ctor(mod_control.parameters(), lr=1.0, **kwargs)

        scaler = torch.cuda.amp.GradScaler(init_scale=128.0)

        for input, target in data:
            opt_control.zero_grad()
            with torch.autocast('cuda'):
                output_control = mod_control(input)
                loss_control = loss_fn(output_control, target)
            scaler.scale(loss_control).backward()
            scaler.step(opt_control)
            scaler.update()

            opt_scaling.zero_grad()
            with torch.autocast('cuda'):
                output_scaling = mod_scaling(input)
                loss_scaling = loss_fn(output_scaling, target)
            scaler.scale(loss_scaling).backward()
            scaler.step(opt_scaling)
            scaler.update()

            self.assertEqual(loss_control, loss_scaling)
            for param_control, param_scaling in zip(mod_control.parameters(), mod_scaling.parameters()):
                self.assertEqual(param_control.grad, param_scaling.grad)
                self.assertEqual(param_control, param_scaling)

                state_control, state_scaling = opt_control.state[param_control], opt_scaling.state[param_scaling]

                for k in state_control:
                    actual = state_scaling[k]
                    if k == "step":
                        actual = actual.squeeze()
                    self.assertEqual(state_control[k], actual, msg=k)

    def test_grad_scaling_clipping(self):
        def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
            max_norm = 0.2  # A reasonable value that actually has an effect, based on printouts of grads
            for i, (input, target) in enumerate(data):
                optimizer.zero_grad()
                output = model(input)
                loss = loss_fn(output, target)
                if try_scaling_api:
                    scaler.scale(loss).backward()
                    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm * scaler.get_scale())
                    if i == skip_iter and scaler.is_enabled():
                        model[1].weight.grad.data.fill_(float('inf'))
                    scaler.step(optimizer)
                    scaler.update()
                else:
                    loss.backward()
                    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
                    if (not scaler.is_enabled()) or (i != skip_iter):
                        optimizer.step()

        self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-5)

    def test_grad_scaling_clipping_separate_unscale(self):
        def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
            max_norm = 0.2  # A reasonable value that actually has an effect, based on printouts of grads
            for i, (input, target) in enumerate(data):
                optimizer.zero_grad()
                output = model(input)
                loss = loss_fn(output, target)
                if try_scaling_api:
                    scaler.scale(loss).backward()
                    if i == skip_iter and scaler.is_enabled():
                        model[1].weight.grad.data.fill_(float('inf'))
                    scaler.unscale_(optimizer)
                    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm, error_if_nonfinite=False)
                    scaler.step(optimizer)
                    scaler.update()
                else:
                    loss.backward()
                    torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
                    if (not scaler.is_enabled()) or (i != skip_iter):
                        optimizer.step()

        self._run_scaling_case(run, unskipped=3, skipped=1)

    @unittest.skipIf(IS_WINDOWS, 'FIXME: fix this test for Windows')
    def test_grad_scaling_penalty(self):
        def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
            for i, (input, target) in enumerate(data):
                optimizer.zero_grad()
                output = model(input)
                loss = loss_fn(output, target)

                if try_scaling_api:
                    grad_params = torch.autograd.grad(scaler.scale(loss),
                                                      model.parameters(), create_graph=True)
                    inv_scale = 1. / scaler.get_scale()
                    grad_params = [p * inv_scale for p in grad_params]
                else:
                    grad_params = torch.autograd.grad(loss, model.parameters(), create_graph=True)

                grad_norm = 0
                for grad in grad_params:
                    grad_norm += grad.pow(2).sum()
                grad_norm = grad_norm.sqrt()
                loss = loss + grad_norm

                if try_scaling_api:
                    scaler.scale(loss).backward()
                    if i == skip_iter and scaler.is_enabled():
                        model[1].weight.grad.data.fill_(float('inf'))
                    scaler.step(optimizer)
                    scaler.update()
                else:
                    loss.backward()
                    if (not scaler.is_enabled()) or (i != skip_iter):
                        optimizer.step()

        self._run_scaling_case(run, unskipped=3, skipped=1)

    def test_grad_scaling_accumulation(self):
        def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
            iters_to_accumulate = 2
            for i, (input, target) in enumerate(data):
                output = model(input)
                loss = loss_fn(output, target)
                loss = loss / iters_to_accumulate
                if try_scaling_api:
                    scaler.scale(loss).backward()
                else:
                    loss.backward()
                if (i + 1) % iters_to_accumulate == 0:
                    if try_scaling_api:
                        scaler.step(optimizer)
                        scaler.update()
                        optimizer.zero_grad()
                    else:
                        optimizer.step()
                        optimizer.zero_grad()

        self._run_scaling_case(run, unskipped=2, skipped=0)

    def test_grad_scaling_multiple(self):
        # Tests gradient scaling with 2 models and 2 optimizers that both receive gradients from 2 losses.
        # Some of the logic here cannot reuse the generic helper functions created for the 1-optimizer cases.
        for enabled in True, False:
            mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \
                self._create_scaling_case()
            mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \
                self._create_scaling_models_optimizers()

            scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1)

            def run(model0, model1, optimizer0, optimizer1, try_scaling_api):
                for i, (input, target) in enumerate(data):
                    optimizer0.zero_grad()
                    optimizer1.zero_grad()
                    output0 = model0(input)
                    output1 = model1(input)
                    loss0 = loss_fn(0.3 * output0 + 0.7 * output1, target)
                    loss1 = loss_fn(0.6 * output0 - 0.4 * output1, target)

                    if try_scaling_api:
                        scaler.scale(loss0).backward(retain_graph=True)
                        scaler.scale(loss1).backward()
                        if i == skip_iter and scaler.is_enabled():
                            model1[1].weight.grad.data.fill_(float('inf'))

                        # As an additional stress test, separately unscale for one of the optimizers.
                        scaler.unscale_(optimizer0)

                        scaler.step(optimizer0)
                        scaler.step(optimizer1)
                        scaler.update()
                    else:
                        loss0.backward(retain_graph=True)
                        loss1.backward()
                        optimizer0.step()
                        if (not scaler.is_enabled()) or (i != skip_iter):
                            optimizer1.step()

            run(mod_control0, mod_control1, opt_control0, opt_control1, False)
            run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True)

            # The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once.
            self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 *
                                                   scaler.get_backoff_factor()**1) if enabled else 1.0)

            for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()),
                            chain(mod_scaling0.parameters(), mod_scaling1.parameters())):
                self.assertEqual(c, s, rtol=1e-5, atol=1e-7)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_grad_scaling_multigpu(self):
        # Same as above, but runs some of the models on device 1.
        # GradScaler should transparently handle losses and gradients on multiple devices.
        # This test could be combined with the test above, but I think it makes sense to treat
        # multi-GPU operations separately.
        dev0 = torch.device("cuda:0")
        dev1 = torch.device("cuda:1")

        for enabled in True, False:
            mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \
                self._create_scaling_case()
            mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \
                self._create_scaling_models_optimizers(device=dev1)

            scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1)

            def run(model0, model1, optimizer0, optimizer1, try_scaling_api):
                for i, (input, target) in enumerate(data):
                    optimizer0.zero_grad()
                    optimizer1.zero_grad()
                    output0 = model0(input)
                    output1 = model1(input.to(dev1))
                    loss0 = loss_fn(0.3 * output0 + 0.7 * output1.to(dev0), target)
                    loss1 = loss_fn(0.6 * output0.to(dev1) - 0.4 * output1, target.to(dev1))

                    if try_scaling_api:
                        scaler.scale(loss0).backward(retain_graph=True)
                        scaler.scale(loss1).backward()
                        if i == skip_iter and scaler.is_enabled():
                            model1[1].weight.grad.data.fill_(float('inf'))

                        # As an additional stress test, separately unscale for one of the optimizers.
                        scaler.unscale_(optimizer0)

                        scaler.step(optimizer0)
                        scaler.step(optimizer1)

                        # Make sure the found_infs were collected properly across optimizers and devices.
                        if scaler.is_enabled():
                            self.assertTrue(len(scaler._found_inf_per_device(optimizer0)) == 1)
                            self.assertTrue(len(scaler._found_inf_per_device(optimizer1)) == 1)
                            self.assertTrue(scaler._found_inf_per_device(optimizer0)[dev0].item() == 0.)
                            self.assertTrue(scaler._found_inf_per_device(optimizer1)[dev1].item() ==
                                            float(i == skip_iter))

                        scaler.update()
                    else:
                        loss0.backward(retain_graph=True)
                        loss1.backward()
                        optimizer0.step()
                        if (not scaler.is_enabled()) or (i != skip_iter):
                            optimizer1.step()

            run(mod_control0, mod_control1, opt_control0, opt_control1, False)
            run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True)

            # The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once.
            self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 *
                                                   scaler.get_backoff_factor()**1) if enabled else 1.0)

            # Copy mod_control1 and mod_scaling1 back the device 0 for comparison
            mod_control1.to(dev0)
            mod_scaling1.to(dev0)

            for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()),
                            chain(mod_scaling0.parameters(), mod_scaling1.parameters())):
                self.assertEqual(c, s, rtol=1e-5, atol=1e-7)

    def test_cublas_multiple_threads_same_device(self):
        # Note, these parameters should be very carefully tuned
        # Too small number makes it hard for the racing condition
        # to happen, while too large number sometimes cause hang
        size = 1024
        num_threads = 2
        trials = 3
        test_iters = 100

        weight = torch.ones((size, size), device='cuda')
        results = {}
        barrier = threading.Barrier(num_threads)

        def _worker(t):
            my_stream = torch.cuda.Stream()
            # Hard sync so we don't need to worry about creating and using tensors
            # across streams or the fact that default streams are thread-local.
            # Those issues are not the target of this test.
            torch.cuda.synchronize()
            # Line up threads to increase likelihood of race conditions.
            barrier.wait()
            with torch.cuda.stream(my_stream):
                for i in range(test_iters):
                    # If all threads are sharing the same cublas handle,
                    # the following sequence may occur:
                    # thread 0 calls cublasSetStream()
                    # thread 1 calls cublasSetStream()
                    # thread 0 launches its raw gemm, which it thinks is in
                    #          its own stream, but is actually in thread 1's stream.
                    # thread 0 enqueues its div_, which IS is its own stream,
                    #          but actually now races with its gemm.
                    results[t] = torch.mm(results[t], weight)
                    results[t].div_(float(size))
            torch.cuda.synchronize()

        for _ in range(trials):
            for t in range(num_threads):
                results[t] = torch.ones((size, size), device='cuda')

            threads = [threading.Thread(target=_worker,
                                        args=(t,)) for t in range(num_threads)]

            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join()

            for t in range(num_threads):
                self.assertEqual(results[t].sum().item(), size * size)

    # Test is flaky on Windows (https://github.com/pytorch/pytorch/issues/57401)
    @unittest.skipIf(IS_WINDOWS, 'Test is flaky on Windows (see issue 57401)')
    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    @skipIfRocm
    def test_cudnn_multiple_threads_same_device(self):
        # This function is intended to test the lazy creation and reuse of per-thread
        # cudnn handles on each device in aten/src/ATen/cudnn/Handles.cpp.
        # Failure here likely indicates something wrong with that logic.
        weight = torch.ones((1, 1, 2, 2), device='cuda')

        results = {}

        num_threads = 2
        trials = 3
        test_iters = 1000
        barrier = threading.Barrier(num_threads)

        with torch.backends.cudnn.flags(enabled=True):
            def _worker(t):
                my_stream = torch.cuda.Stream()
                # Hard sync so we don't need to worry about creating and using tensors
                # across streams or the fact that default streams are thread-local.
                # Those issues are not the target of this test.
                torch.cuda.synchronize()
                # Line up threads to increase likelihood of race conditions.
                barrier.wait()
                with torch.cuda.stream(my_stream):
                    for _ in range(test_iters):
                        # If all threads are sharing the same cudnn handle,
                        # the following sequence may occur:
                        # thread 0 calls setCuDNNStreamToCurrent()
                        # thread 1 calls setCuDNNStreamToCurrent()
                        # thread 0 launches its raw convolution, which it thinks is in
                        #          its own stream, but is actually in thread 1's stream.
                        # thread 0 enqueues its div_, which IS is its own stream,
                        #          but now races with its convolution.
                        results[t] = torch.nn.functional.conv2d(results[t], weight, padding=0)
                        results[t].div_(4.0)
                torch.cuda.synchronize()

            for _ in range(trials):
                for t in range(num_threads):
                    results[t] = torch.ones((1, 1, 2048, 2048), device='cuda')

                threads = [threading.Thread(target=_worker,
                                            args=(t,)) for t in range(num_threads)]

                for thread in threads:
                    thread.start()
                for thread in threads:
                    thread.join()

                for t in range(num_threads):
                    self.assertEqual(results[t].sum().item(),
                                     (2048 - test_iters) * (2048 - test_iters))

    def test_cusparse_multiple_threads_same_device(self):
        size = 1024
        num_threads = 2
        trials = 3
        test_iters = 500

        def ones_sparse(size):
            a = torch.arange(size, device='cuda')
            indices = torch.cartesian_prod(a, a).t()
            values = torch.ones(size * size, device='cuda')
            return torch.sparse_coo_tensor(indices, values)

        weight = ones_sparse(size)
        results = {}
        barrier = threading.Barrier(num_threads)

        def _worker(t):
            my_stream = torch.cuda.Stream()
            # Hard sync so we don't need to worry about creating and using tensors
            # across streams or the fact that default streams are thread-local.
            # Those issues are not the target of this test.
            torch.cuda.synchronize()
            # Line up threads to increase likelihood of race conditions.
            barrier.wait()
            with torch.cuda.stream(my_stream):
                for i in range(test_iters):
                    # If all threads are sharing the same cublas handle,
                    # the following sequence may occur:
                    # thread 0 calls cublasSetStream()
                    # thread 1 calls cublasSetStream()
                    # thread 0 launches its raw gemm, which it thinks is in
                    #          its own stream, but is actually in thread 1's stream.
                    # thread 0 enqueues its div_, which IS is its own stream,
                    #          but actually now races with its gemm.
                    results[t] = weight.mm(results[t])
                    results[t].div_(float(size))
            torch.cuda.synchronize()

        for _ in range(trials):
            for t in range(num_threads):
                results[t] = torch.ones((size, size), device='cuda')

            threads = [threading.Thread(target=_worker,
                                        args=(t,)) for t in range(num_threads)]

            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join()

            for t in range(num_threads):
                self.assertEqual(results[t].sum().item(), size * size)

    def _run_autocast_outofplace(self, op, args, run_as_type, out_type=None, module=torch, add_kwargs=None):
        # helper to cast args
        def cast(val, to_type):
            if isinstance(val, torch.Tensor):
                return val.to(to_type) if val.is_floating_point() else val
            elif isinstance(val, collections.abc.Iterable):
                return type(val)(cast(v, to_type) for v in val)
            else:
                return val

        if add_kwargs is None:
            add_kwargs = {}
        fast_dtype = torch.bfloat16 if run_as_type == torch.bfloat16 else torch.float16
        self.assertFalse(torch.is_autocast_enabled())
        with torch.autocast('cuda', dtype=fast_dtype):
            self.assertTrue(torch.is_autocast_enabled())

            out_type = out_type if out_type is not None else run_as_type
            output = output_method = None

            # Try module.* variant, if requested:
            if module is not None and hasattr(module, op):
                output = getattr(module, op)(*args, **add_kwargs)
                if isinstance(output, torch.Tensor):
                    self.assertTrue(out_type == output.dtype,
                                    "autocast for torch.{} produced {}, should produce {}"
                                    .format(op, output.dtype, out_type))

            # Try Tensor.* variant:
            if hasattr(torch.Tensor, op):
                output_method = getattr(args[0], op)(*args[1:], **add_kwargs)
                if isinstance(output_method, torch.Tensor):
                    self.assertTrue(out_type == output_method.dtype,
                                    "autocast for torch.{} produced {}, should produce torch.{}"
                                    .format(op, output_method.dtype, out_type))

            self.assertTrue((output is not None) or (output_method is not None),
                            "{} not found as an attribute on either Tensor or the requested module {}".format(
                            op, module))

            # Accounts for ops that return Tensors, iterables, and other non-Tensors.
            # For example, lstm_cell returns a tuple and equal returns bool.
            def compare(first, second):
                if isinstance(first, torch.Tensor):
                    return torch.equal(first, second)
                elif isinstance(first, collections.abc.Iterable):
                    return all(compare(f, s) for f, s in zip(first, second))
                else:
                    return first == second

            # If both torch.* and Tensor.* variants were found, check outputs are identical
            if (output is not None) and (output_method is not None):
                self.assertTrue(type(output) == type(output_method))
                comparison = compare(output, output_method)
                self.assertTrue(comparison, "torch.{0} result did not match Tensor.{0} result".format(op))

            # Compare numerics to Python-side "autocasting" that (we expect) does the same thing
            # as the C++-side autocasting, and should be bitwise accurate.
            output_to_compare = output if output is not None else output_method
            with torch.autocast('cuda', enabled=False):
                self.assertFalse(torch.is_autocast_enabled())

                if module is not None and hasattr(module, op):
                    control = getattr(module, op)(*cast(args, run_as_type), **add_kwargs)
                else:
                    control = getattr(args[0].to(run_as_type), op)(*cast(args[1:], run_as_type), **add_kwargs)
                self.assertTrue(type(output_to_compare) == type(control))
                comparison = compare(output_to_compare, control)
                self.assertTrue(comparison, "torch.{} result did not match control".format(op))
            self.assertTrue(torch.is_autocast_enabled())
        self.assertFalse(torch.is_autocast_enabled())

    def args_maybe_kwargs(self, op_with_args):
        if len(op_with_args) == 2:
            return op_with_args[0], op_with_args[1], {}
        else:
            return op_with_args[0], op_with_args[1], op_with_args[2]

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_torch_fp16(self):
        with torch.backends.cudnn.flags(enabled=True, deterministic=True):
            for op_with_args in self.autocast_lists.torch_fp16:
                skip_test = False
                op, args = op_with_args[0], op_with_args[1]
                if len(op_with_args) == 3:
                    skip_test = op_with_args[2]  # TEST_WITH_ROCM
                if not skip_test:
                    self._run_autocast_outofplace(op, args, torch.float16)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_torch_bf16(self):
        with torch.backends.cudnn.flags(enabled=True, deterministic=True):
            for op_with_args in self.autocast_lists.torch_fp16:
                skip_test = False
                op, args = op_with_args[0], op_with_args[1]
                if len(op_with_args) == 3:
                    skip_test = op_with_args[2]  # TEST_WITH_ROCM
                should_error_from_cudnn = 'cudnn' in op and not\
                    ('TORCH_CUDNN_V8_API_ENABLED' in os.environ and
                     int(os.environ['TORCH_CUDNN_V8_API_ENABLED']) and
                     torch.cuda.get_device_capability() >= (8, 0))
                should_error_from_not_implemented = should_error_from_cudnn or 'prelu' in op or 'thnn' in op \
                    or 'fused' in op or 'gru' in op or op == '_thnn_fused_lstm_cell' or op == 'lstm_cell'
                if not skip_test:
                    if should_error_from_not_implemented:
                        with self.assertRaises(RuntimeError, msg=str(op) + ' should not be supported for bfloat16!'):
                            self._run_autocast_outofplace(op, args, torch.bfloat16)
                    else:
                        if torch.cuda.is_bf16_supported():
                            self._run_autocast_outofplace(op, args, torch.bfloat16)
                        else:
                            with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'):
                                self._run_autocast_outofplace(op, args, torch.bfloat16)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_torch_fp32(self):
        for op_with_args in self.autocast_lists.torch_fp32:
            op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
            self._run_autocast_outofplace(op, args, torch.float32, add_kwargs=maybe_kwargs)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_torch_need_autocast_promote(self):
        for op, args in self.autocast_lists.torch_need_autocast_promote:
            self._run_autocast_outofplace(op, args, torch.float32)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_torch_expect_builtin_promote(self):
        for op, args, out_type in self.autocast_lists.torch_expect_builtin_promote:
            self._run_autocast_outofplace(op, args, torch.float32, out_type=out_type)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_nn_fp16(self):
        with torch.backends.cudnn.flags(enabled=True, deterministic=True):
            for op, args in self.autocast_lists.nn_fp16:
                self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._nn)



    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_nn_bf16(self):
        with torch.backends.cudnn.flags(enabled=True, deterministic=True):
            for op, args in self.autocast_lists.nn_fp16:
                if torch.cuda.is_bf16_supported():
                    self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn)
                else:
                    with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'):
                        self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_nn_fp32(self):
        for op, args in self.autocast_lists.nn_fp32:
            self._run_autocast_outofplace(op, args, torch.float32, module=torch._C._nn)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_linalg_fp16(self):
        with torch.backends.cudnn.flags(enabled=True, deterministic=True):
            for op, args in self.autocast_lists.linalg_fp16:
                self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._linalg)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_methods_fp16(self):
        with torch.backends.cudnn.flags(enabled=True, deterministic=True):
            for op, args in self.autocast_lists.methods_fp16:
                self._run_autocast_outofplace(op, args, torch.float16, module=None)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_methods_fp32(self):
        for op, args in self.autocast_lists.methods_fp32:
            self._run_autocast_outofplace(op, args, torch.float32, module=None)

    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_methods_expect_builtin_promote(self):
        for op, args, out_type in self.autocast_lists.methods_expect_builtin_promote:
            self._run_autocast_outofplace(op, args, torch.float32, module=None, out_type=out_type)

    def test_autocast_banned(self):
        with torch.autocast('cuda'):
            for op, args, module in self.autocast_lists.banned:
                with self.assertRaises(RuntimeError):
                    getattr(module, op)(*args)

    def test_autocast_ignored_types(self):
        with torch.autocast('cuda'):
            for ignore_type in (torch.double, torch.int32):
                a_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0")
                b_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0")
                c_16 = torch.ones((8, 8), dtype=torch.float16, device="cuda:0")

                # Tests if CastPolicy::fp16 ops ignore double and int
                # Currently, no ops belonging to this policy support integer inputs.
                if ignore_type is torch.double:
                    with self.assertRaises(RuntimeError):
                        torch.mm(a_ignore, c_16)
                    with torch.autocast('cuda', enabled=False):
                        type_no_autocast = torch.mm(a_ignore, b_ignore).dtype
                    self.assertTrue(torch.mm(a_ignore, b_ignore).dtype is type_no_autocast)

                # Tests if CastPolicy::fp32 ops ignore double and int
                with torch.autocast('cuda', enabled=False):
                    type_no_autocast = torch.pow(a_ignore, 2.0).dtype
                self.assertTrue(torch.pow(a_ignore, 2.0).dtype is type_no_autocast)

                # Tests if CastPolicy::fp32_set_opt_dtype ops ignore double and int
                with torch.autocast('cuda', enabled=False):
                    type_no_autocast = torch.sum(a_ignore).dtype
                self.assertTrue(torch.sum(a_ignore).dtype is type_no_autocast)

                # Tests if CastPolicy::fp32_append_dtype ops ignore double and int
                # Currently, no ops belonging to this policy support integer inputs.
                if ignore_type is torch.double:
                    with torch.autocast('cuda', enabled=False):
                        type_no_autocast = torch.norm(a_ignore).dtype
                    self.assertTrue(torch.norm(a_ignore).dtype is type_no_autocast)

    def test_autocast_custom_enabled(self):
        class MyMM(torch.autograd.Function):
            @staticmethod
            @torch.cuda.amp.custom_fwd
            def forward(ctx, a, b):
                self.assertTrue(a.dtype is torch.float32)
                self.assertTrue(b.dtype is torch.float32)
                self.assertTrue(torch.is_autocast_enabled())
                ctx.save_for_backward(a, b)
                return a.mm(b)

            @staticmethod
            @torch.cuda.amp.custom_bwd
            def backward(ctx, grad):
                self.assertTrue(torch.is_autocast_enabled())
                a, b = ctx.saved_tensors
                return grad.mm(b.t()), a.t().mm(grad)

        mymm = MyMM.apply

        x = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True)
        y = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True)

        with torch.cuda.amp.autocast():
            output = mymm(x, y)
            self.assertTrue(output.dtype is torch.float16)
            loss = output.sum()
        loss.backward()

    def test_autocast_custom_cast_inputs(self):
        class MyMM(torch.autograd.Function):
            @staticmethod
            @torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
            def forward(ctx, a, container, expect_type):
                b = container[1][0]
                self.assertTrue(a.dtype is expect_type)
                self.assertTrue(b.dtype is expect_type)
                self.assertFalse(torch.is_autocast_enabled())
                ctx.save_for_backward(a, b)
                return a.mm(b)

            @staticmethod
            @torch.cuda.amp.custom_bwd
            def backward(ctx, grad):
                self.assertFalse(torch.is_autocast_enabled())
                a, b = ctx.saved_tensors
                return grad.mm(b.t()), None, None

        mymm = MyMM.apply

        x = torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=True)
        # Puts one input tensor in a nested container.  y's contained Tensor won't receive a gradient,
        # because torch.autograd.Function can't hand gradients back to non-Tensor forward arguments.
        # Sets requires_grad=False explicitly so we don't lie about expecting a gradient.
        y = (0, {0: torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=False)})

        with torch.autocast('cuda', ):
            output = mymm(x, y, torch.float32)
            self.assertTrue(output.dtype is torch.float32)
            loss = output.sum()
        loss.backward()

        # Tests if custom_fwd becomes a no-op when mymm runs outside an autocast-enabled region.
        output = mymm(x, y, torch.float16)
        self.assertTrue(output.dtype is torch.float16)
        loss = output.sum()
        loss.backward()

    def test_autocast_cat_jit(self):
        # Reported at https://github.com/pytorch/pytorch/issues/38958

        class Model(torch.nn.Module):
            def forward(self):
                a = torch.randn(1)
                b = torch.randn(1)
                c = torch.cat((a, b), 0)
                d = torch.stack([c, c], 0)
                return d

        # The JIT here doesn't really matter, we just need to call
        # cat via the boxed API
        model = Model()
        model_jit_script = torch.jit.script(model)

        with torch.autocast('cuda', enabled=True):
            model()
            model_jit_script()

    # cudnn RNNs require special backend handling (weights are cast to FP16 and reflattened)
    # so they get a dedicated test.
    # Despite the large number of RNN cases it tries, the test takes < 15 seconds on a Titan V (similar to V100).
    @skipIfRocm
    @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
    def test_autocast_rnn(self):
        with torch.backends.cudnn.flags(enabled=True, deterministic=True):
            # seq, batch, features, hidden size
            clses = ("RNN", "GRU", "LSTM")
            T, B, F, H = 3, 4, 5, 6
            dtypes = (torch.float16, torch.float32)
            input_layouts = ("seq_first", "batch_first", "packed")

            for (cls, num_layers, bias, input_layout, bidirectional, try_nonpreflattened_weights,
                 input_dtype, hidden_dtype, weight_dtype) in \
                    product(clses, (1, 2), (True, False), input_layouts, (True, False), (True, False),
                            dtypes, dtypes, dtypes):
                if input_layout == "seq_first":
                    batch_first = False
                    x = torch.randn((T, B, F), device="cuda", dtype=input_dtype)
                elif input_layout == "batch_first":
                    batch_first = True
                    x = torch.randn((B, T, F), device="cuda", dtype=input_dtype)
                elif input_layout == "packed":
                    batch_first = False
                    x = torch.nn.utils.rnn.pack_padded_sequence(torch.randn((T, B, F),
                                                                            device="cuda", dtype=input_dtype),
                                                                lengths=(3, 2, 1, 3),
                                                                enforce_sorted=False)

                rnn = getattr(torch.nn, cls)(F, H, num_layers=num_layers, bidirectional=bidirectional,
                                             bias=bias, batch_first=batch_first).cuda().to(dtype=weight_dtype)

                if try_nonpreflattened_weights:
                    for p in rnn.parameters():
                        with torch.no_grad():
                            p.set_(p.clone())

                h = torch.randn((num_layers * (2 if bidirectional else 1), B, H),
                                device="cuda", dtype=hidden_dtype)
                if cls == "LSTM":
                    c = torch.randn((num_layers * (2 if bidirectional else 1), B, H),
                                    device="cuda", dtype=hidden_dtype)
                    h = (h, c)

                with torch.autocast('cuda', ):
                    out, h_out = rnn(x, h)
                out = out.data if input_layout == "packed" else out
                self.assertEqual(out.dtype, torch.float16)
                # Autocast wrapper requires at::_cudnn_rnn is autograd-exposed.  This check can't guarantee
                # at::_cudnn_rnn is autograd-exposed, but if it fires, it indicates some funny business has
                # occurred and we should double check that at::_cudnn_rnn remains autograd-exposed.
                self.assertEqual(out.grad_fn.name(), "CudnnRnnBackward0")
                out.sum().backward()
                grads = [p.grad.clone() for p in rnn.parameters()]

                rnn.zero_grad()

                if cls == "LSTM":
                    out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), (h[0].half(), h[1].half()))
                else:
                    out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), h.half())
                out_control = out_control.data if input_layout == "packed" else out_control
                out_control.sum().backward()
                grads_control = [p.grad.clone() for p in rnn.parameters()]

                # Compares with default tolerances, even for FP16 execution.  Barring nondeterminism,
                # autocast and control results should be bitwise identical.
                self.assertEqual(out, out_control)

                if cls == "LSTM":
                    self.assertTrue(h_out[0].dtype is torch.float16 and h_out[1].dtype is torch.float16)
                    self.assertEqual(h_out[0], h_out_control[0])
                    self.assertEqual(h_out[1], h_out_control[1])
                else:
                    self.assertEqual(h_out.dtype, torch.float16)
                    self.assertEqual(h_out, h_out_control)
                for grad, grad_control in zip(grads, grads_control):
                    self.assertEqual(grad.half(), grad_control)

    def test_autocast_cache_leak(self):
        # Reported at https://github.com/pytorch/pytorch/issues/48049
        # Test is used to check, if autocast recaches the same parameters
        # when executed in a `torch.no_grad()` block.

        linear = torch.nn.Linear(10, 10).to('cuda')
        data = torch.randn(1, 10, device='cuda')

        with torch.autocast('cuda', ):
            with torch.no_grad():
                out = linear(data)
                first_iter_mem = torch.cuda.memory_allocated()
                for _ in range(3):
                    out = linear(data)
                self.assertTrue(first_iter_mem == torch.cuda.memory_allocated())

    def test_autocast_checkpointing(self):
        model = torch.nn.Sequential(torch.nn.Linear(8, 8),
                                    torch.nn.Linear(8, 8),
                                    torch.nn.Linear(8, 8)).cuda()
        input = torch.rand((8, 8), device="cuda", dtype=torch.float16, requires_grad=True)
        with torch.autocast('cuda', ):
            output = checkpoint_sequential(model, 2, input)
        self.assertTrue(output.requires_grad)
        self.assertTrue(output.dtype is torch.float16)
        output.sum().backward()

    @slowTest
    @unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
    def test_max_large_axis(self):
        x = torch.zeros(2**32, device='cuda', dtype=torch.int8)
        x[-1] = 1
        val, idx = x.max(0)
        self.assertEqual(val, 1)
        self.assertEqual(idx, x.shape[0] - 1)

    @unittest.skipIf(not TEST_NUMPY, "Numpy not found")
    def test_to_numpy(self):
        self.assertRaises(TypeError, lambda: torch.empty(1, device="cuda").numpy())

    def test_graph_is_current_stream_capturing(self):
        self.assertFalse(torch.cuda.is_current_stream_capturing())

        if (TEST_CUDA and (not TEST_WITH_ROCM) and int(torch.version.cuda.split(".")[0]) >= 11):
            s = torch.cuda.Stream()
            with torch.cuda.stream(s):
                g = torch.cuda.CUDAGraph()
                self.assertFalse(torch.cuda.is_current_stream_capturing())
                g.capture_begin()
                self.assertTrue(torch.cuda.is_current_stream_capturing())
                g.capture_end()

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_capture_simple(self):
        s = torch.cuda.Stream()

        with torch.cuda.stream(s):
            a = torch.full((1000,), 1, device="cuda")
            g = torch.cuda.CUDAGraph()
            torch.cuda.empty_cache()
            g.capture_begin()
            b = a
            for _ in range(10):
                b = b + 1
            g.capture_end()
        torch.cuda.current_stream().wait_stream(s)

        g.replay()

        self.assertTrue(b.sum().item() == 11000.)

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_capture_oom(self):
        with self.assertRaisesRegex(RuntimeError, "out of memory"):
            with torch.cuda.graph(torch.cuda.CUDAGraph()):
                torch.zeros(2 ** 40, device="cuda")

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_rng_functional(self):
        ops_with_kwargs = ((torch.nn.functional.dropout, {"p": 0.1}),
                           (torch.nn.functional.rrelu, {"training": True}),)
        size = 10000

        def run(op, kwargs):
            a = torch.randn((size,), device="cuda", dtype=torch.float)

            # Control
            torch.cuda.manual_seed(5)
            eager_out = a
            for _ in range(6):
                eager_out = op(eager_out, **kwargs)

            graph_in = a.clone()
            stream = torch.cuda.Stream()
            stream.wait_stream(torch.cuda.current_stream())
            with torch.cuda.stream(stream):
                torch.cuda.manual_seed(5)

                g = torch.cuda.CUDAGraph()
                torch.cuda.empty_cache()
                g.capture_begin()
                graph_out = graph_in
                for _ in range(2):
                    graph_out = op(graph_out, **kwargs)
                g.capture_end()
            torch.cuda.current_stream().wait_stream(stream)

            # Runs a graphed->eager->graphed sequence of RNG ops.
            # replay() plays 2 invocations of the op, so the sequence has 6
            # invocations total, matching Control.
            # replay() reads from graph_in and writes to graph_out.
            g.replay()
            out = op(graph_out, **kwargs)
            out = op(out, **kwargs)
            graph_in.copy_(out)
            g.replay()

            # If replay() updated RNG state correctly, graph_out
            # should now hold data equal to eager_out.
            try:
                self.assertEqual(eager_out, graph_out)
            except Exception as e:
                raise RuntimeError("Failed on ", op) from e

            # Do the same operations varying seeds
            seeds = [6, 128, 9999]

            for seed in seeds:
                torch.cuda.manual_seed(seed)
                graph_in.copy_(a)
                for _ in range(3):
                    g.replay()

                # If the random seed was not updated then the graph would
                # generate the same output as in previous check.
                try:
                    self.assertNotEqual(eager_out, graph_out)
                except Exception as e:
                    raise RuntimeError("Failed on ", op) from e

                # Now repeat the same operations in non-graphed mode.
                torch.cuda.manual_seed(seed)
                for _ in range(3):
                    eager_out.copy_(a)
                    eager_out = op(eager_out, **kwargs)
                    eager_out = op(eager_out, **kwargs)

                # In the end, graph_out and eager_out must be equal
                # as they went under the same set of operations.
                try:
                    self.assertEqual(eager_out, graph_out)
                except Exception as e:
                    raise RuntimeError("Failed on ", op) from e

            # We hold references to all tensors used across streams up til this sync,
            # so no need to call record_stream on those tensors.
            torch.cuda.synchronize()

        for op, kwargs in ops_with_kwargs:
            run(op, kwargs)

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_rng_distributions(self):
        size = 10000
        input = torch.rand((size,), device="cuda", dtype=torch.float)
        alloc = torch.empty((size,), device="cuda", dtype=torch.float)

        # Torch ops to test with sample args (tuple) and kwargs (dict)
        torch_with_args = (("bernoulli", (input.clone(),), {}),
                           # multinomial uses some uncapturable CUDA calls.
                           # TODO: reenable multinomial tests if/when the implementation is capturable.
                           # ("multinomial", (input.clone(), size, True), {}),
                           # ("multinomial", (input.clone(), size // 2, False), {}),
                           # TODO: reenable normal test, where std is a device
                           # tensor, when graph test failures are fixed
                           # ("normal", (input.clone() + 1, input.clone()), {}),
                           ("normal", (input.clone() + 1, 1.0), {}),
                           ("poisson", (input.clone(),), {}),
                           ("rand", (size,), {"device": "cuda", "dtype": torch.float}),
                           ("randint", (0, 3, (size,)), {"device": "cuda", "dtype": torch.float}),
                           ("randn", (size,), {"device": "cuda", "dtype": torch.float}),)

        # Tensor methods to test with sample args (tuple)
        tensor_with_args = (("bernoulli_", (input.clone(),)),
                            ("cauchy_", ()),
                            ("exponential_", ()),
                            ("geometric_", (0.3,)),
                            ("log_normal_", ()),
                            ("normal_", ()),
                            ("random_", ()),
                            ("uniform_", ()),)

        def run(module, op, args, kwargs):
            torch.cuda.manual_seed(5)

            # Each path runs a dummy op to increment the state a bit before creating controls.
            if (module == "torch"):
                dummy = getattr(torch, op)(*args, **kwargs)
                control1 = getattr(torch, op)(*args, **kwargs)
                control2 = getattr(torch, op)(*args, **kwargs)
            else:
                dummy = alloc.clone()
                control1 = alloc.clone()
                control2 = alloc.clone()
                getattr(dummy, op)(*args)
                getattr(control1, op)(*args)
                getattr(control2, op)(*args)

            stream = torch.cuda.Stream()
            stream.wait_stream(torch.cuda.current_stream())
            with torch.cuda.stream(stream):
                torch.cuda.manual_seed(5)

                g = torch.cuda.CUDAGraph()
                torch.cuda.empty_cache()
                if (module == "torch"):
                    g.capture_begin()
                    t1 = getattr(torch, op)(*args, **kwargs)
                    t2 = getattr(torch, op)(*args, **kwargs)
                    g.capture_end()
                else:
                    t1 = alloc.clone()
                    t2 = alloc.clone()
                    g.capture_begin()
                    getattr(t1, op)(*args)
                    getattr(t2, op)(*args)
                    g.capture_end()
            torch.cuda.current_stream().wait_stream(stream)

            try:
                self.assertNotEqual(control1, t1)
                self.assertNotEqual(control2, t2)
            except Exception as e:
                raise RuntimeError("Failed on " + module + "." + op) from e

            # Set a new seed to check if graph would use it
            for seed in [6, 314, 271]:
                torch.cuda.manual_seed(seed)
                # Runs a dummy op prelude, as for controls, to make sure replay()
                # picks up the dummy op's state increment.
                if (module == "torch"):
                    dummy = getattr(torch, op)(*args, **kwargs)
                    control1 = getattr(torch, op)(*args, **kwargs)
                    control2 = getattr(torch, op)(*args, **kwargs)
                else:
                    getattr(dummy, op)(*args)
                    getattr(control1, op)(*args)
                    getattr(control2, op)(*args)

                torch.cuda.manual_seed(seed)
                if (module == "torch"):
                    dummy = getattr(torch, op)(*args, **kwargs)
                else:
                    getattr(dummy, op)(*args)

                t1.copy_(alloc)
                t2.copy_(alloc)
                # Runs RNG ops that fill t1 and t2.
                g.replay()

                try:
                    self.assertEqual(control1, t1)
                    self.assertEqual(control2, t2)
                except Exception as e:
                    raise RuntimeError("Failed on " + module + "." + op) from e

            # We hold references to all tensors used across streams up til this sync,
            # so no need to call record_stream on those tensors.
            torch.cuda.synchronize()

        for op_with_args in torch_with_args:
            run("torch", *op_with_args)

        for meth_with_args in tensor_with_args:
            # Adds an empty dict for kwargs, which none of the Tensor methods use
            run("Tensor", *(meth_with_args + ({},)))

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_two_successive(self):
        torch.cuda.empty_cache()

        size = 1000
        kSmallBuffer = 2097152

        def func_with_temps(t, val):
            x = t.clone() + val
            y = t.clone() + val
            return x + y

        s = torch.cuda.Stream()

        for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"):
            g0 = torch.cuda.CUDAGraph()
            g1 = torch.cuda.CUDAGraph()

            a = torch.ones((size,), device="cuda")

            s.wait_stream(torch.cuda.current_stream())
            with torch.cuda.stream(s):
                g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else ()
                g0.capture_begin(*g0_args)
                b = a.clone()
                for _ in range(5):
                    b = func_with_temps(b, 1)
                g0.capture_end()

                g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args
                g1.capture_begin(*g1_args)
                for _ in range(5):
                    b = func_with_temps(b, 1)
                g1.capture_end()
            torch.cuda.current_stream().wait_stream(s)

            # mixes unrelated eager ops with replays
            c = a.clone()
            for _ in range(2):
                c = func_with_temps(c, 3)
            g0.replay()
            for _ in range(2):
                c = func_with_temps(c, 3)
            g1.replay()
            for _ in range(2):
                c = func_with_temps(c, 3)

            self.assertEqual(b.sum().item(), size * 3070)
            self.assertEqual(c.sum().item(), size * 442)

            if share_mem != "Don't share":
                self.assertEqual(reserved_no_sharing - torch.cuda.memory_stats()["reserved_bytes.all.current"],
                                 kSmallBuffer)
            else:
                reserved_no_sharing = torch.cuda.memory_stats()["reserved_bytes.all.current"]

            del a, b, c, g0, g1
            # Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them.
            torch.cuda.synchronize()
            torch.cuda.empty_cache()

    @unittest.skip("Temporarily disabled due to a graphs bug in libcuda.so, " +
                   "see https://github.com/pytorch/pytorch/pull/57556")
    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_concurrent_replay(self):
        torch.cuda.empty_cache()

        size = 1000000  # largeish to help expose race conditions

        def func_with_temps(t, val):
            x = t.clone() + val
            y = t.clone() + val
            return x + y

        s = torch.cuda.Stream()

        for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"):
            g0 = torch.cuda.CUDAGraph()
            g1 = torch.cuda.CUDAGraph()

            s0 = torch.cuda.Stream()
            s1 = torch.cuda.Stream()

            a = torch.ones((size,), device="cuda")

            s.wait_stream(torch.cuda.current_stream())
            with torch.cuda.stream(s):
                g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else ()
                g0.capture_begin(*g0_args)
                b = a.clone()
                for _ in range(5):
                    b = func_with_temps(b, 1)
                g0.capture_end()

                g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args
                g1.capture_begin(*g1_args)
                c = a.clone()
                for _ in range(5):
                    c = func_with_temps(c, 2)
                g1.capture_end()

            # To reproduce data corruption, I need g0 and g1's kernels to run concurrently.
            # But replay() (especially cudaGraphLaunch) can incur significant CPU overhead.
            # The following pattern helps align device-side execution of g0 and g1's kernels.
            torch.cuda.synchronize()
            with torch.cuda.stream(s0):
                torch.cuda._sleep(1000000)
                s1.wait_stream(s0)
                g0.replay()
            with torch.cuda.stream(s1):
                g1.replay()
            torch.cuda.current_stream().wait_stream(s0)
            torch.cuda.current_stream().wait_stream(s1)

            if share_mem != "Don't share":
                # Confirms concurrent replays using the same mempool corrupted each other.
                self.assertNotEqual(b.sum().item(), size * 94)
                self.assertNotEqual(c.sum().item(), size * 156)
            else:
                # Confirms concurrent replays using different mempools did not corrupt each other.
                self.assertEqual(b.sum().item(), size * 94)
                self.assertEqual(c.sum().item(), size * 156)

            del a, b, c, g0, g1
            # Tensors used across streams (a, b, c) were held until just now, so no need to call record_stream on them.
            torch.cuda.synchronize()
            torch.cuda.empty_cache()

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_three_successive(self):
        torch.cuda.empty_cache()

        size = 1000

        s = torch.cuda.Stream()

        for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"):
            a = torch.ones((size,), device="cuda")

            g0 = torch.cuda.CUDAGraph()
            g1 = torch.cuda.CUDAGraph()
            g2 = torch.cuda.CUDAGraph()

            s.wait_stream(torch.cuda.current_stream())
            with torch.cuda.stream(s):
                g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else ()
                g0.capture_begin(*g0_args)
                b = a.clone()
                c = b + 1
                d = b + 2
                g0.capture_end()

                args = (g0.pool(),) if share_mem == "via pool()" else g0_args

                g1.capture_begin(*args)
                e = c + 3
                del c
                g1.capture_end()

                g2.capture_begin(*args)
                f = d + 4
                g2.capture_end()
            torch.cuda.current_stream().wait_stream(s)

            # Tests that replaying in capture order is valid
            g0.replay()
            g1.replay()
            g2.replay()

            self.assertEqual(e.sum().item(), size * 5)
            self.assertEqual(f.sum().item(), size * 7)

            # Tests that replaying as g0, g2, g1 is only valid if they don't share a pool
            g0.replay()
            g2.replay()
            g1.replay()

            # If share_mem is True, g2's capture should have reused c's memory for f. We replayed g2 then g1,
            # so we expect g1's captured "e = c + 3" mistakenly filled e with "f's vals + 3".
            self.assertEqual(e.sum().item(), size * (7 + 3) if share_mem != "Don't share" else size * 5)
            self.assertEqual(f.sum().item(), size * 7)

            del a, b, d, e, f, g0, g1, g2
            # Tensors used across streams (a, e, f) were held until just now, so no need to call record_stream on them.
            torch.cuda.synchronize()
            torch.cuda.empty_cache()

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_memory_stats_and_use_result_after_destroy_graph(self):
        kSmallSize = 1048576
        kSmallBuffer = 2097152
        kLargeBuffer = 20971520
        kMinLargeAlloc = 10485760
        kRoundLarge = 2097152

        elem = 4

        # this was annoying to write but stresses the expectations pretty rigorously
        cases = ((512 // elem, 1, kSmallBuffer, kSmallBuffer, "small_pool"),
                 (kSmallSize // elem, 2, 2 * kSmallBuffer, kSmallBuffer, "small_pool"),
                 ((kSmallSize + 512) // elem, 1, kLargeBuffer, kLargeBuffer, "large_pool"),
                 ((kMinLargeAlloc - 512) // elem, 2, 2 * kLargeBuffer, kLargeBuffer, "large_pool"),
                 ((kMinLargeAlloc + 512) // elem, 3,
                  3 * (kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge)),
                  kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge),
                  "large_pool"),)

        stats_to_check = ("segment.",
                          "reserved_bytes.",
                          "active.",
                          "active_bytes.")

        gc.collect()
        torch.cuda.empty_cache()

        s = torch.cuda.Stream()

        for (numel,
             delta_cudaMallocs,
             delta_cudaMalloc_bytes,
             delta_cudaMalloc_bytes_post_del_g,
             pool_string) in cases:
            if pool_string == "small_pool":
                delta_active_blocks = 3  # one from "b" plus a sneaky two from CUDAGraph's one-element rng seed and offset holders
                delta_active_bytes = numel * elem + 1024  # + 1024 for CUDAGraph's rng seed and offset holders each
            else:
                delta_active_blocks = 1  # We only check the large pool, which isn't affected by rng offset holder
                delta_active_bytes = numel * elem

            g = torch.cuda.CUDAGraph()
            s.wait_stream(torch.cuda.current_stream())
            with torch.cuda.stream(s):
                # Allocation stat estimates assume input is created on the same stream as capture_begin()
                # (in other words, the same stream silo as the rng offset holder, which is not allocated from the
                # capture's private pool).
                a = torch.ones((numel,), device="cuda")

                precapture_stats = torch.cuda.memory_stats()

                g.capture_begin()
                b = a.clone()
                for _ in range(5):
                    b = b.clone() + 1
                g.capture_end()
            torch.cuda.current_stream().wait_stream(s)

            gc.collect()

            postcapture_stats = torch.cuda.memory_stats()

            expecteds = (delta_cudaMallocs,
                         delta_cudaMalloc_bytes,
                         delta_active_blocks,
                         delta_active_bytes)
            # Double checks replay and stats before and after a call to empty_cache
            for i in range(2):
                for stat, expected in zip(stats_to_check, expecteds):
                    stat = stat + pool_string + ".current"
                    current = postcapture_stats[stat] - precapture_stats[stat]
                    self.assertEqual(current, expected, "Pre to post capture delta of " +
                                     stat + " = {}, expected = {}, numel = {}".format(current, expected, numel))

                g.replay()
                self.assertEqual(b.sum().item(), 6 * numel)
                if i == 0:
                    torch.cuda.empty_cache()

            del g
            gc.collect()
            torch.cuda.empty_cache()
            postdel_stats = torch.cuda.memory_stats()

            # Uses graph result b after graph has been deleted
            self.assertEqual(b.sum().item(), 6 * numel)

            # b should be the only live reference remaining from the graph's private pool
            expecteds = (1, delta_cudaMalloc_bytes_post_del_g, 1, numel * elem)
            for stat, expected in zip(stats_to_check, expecteds):
                stat = stat + pool_string + ".current"
                current = postdel_stats[stat] - precapture_stats[stat]
                self.assertEqual(current, expected, "Pre capture to post graph delete delta of " +
                                 stat + " = {}, expected = {}, numel = {}".format(current, expected, numel))

            # del a, b before the next case is essential, otherwise overwriting a and b in the next case
            # can throw off its allocation/deallocation counts.
            del a, b
            # Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them.
            torch.cuda.synchronize()
            torch.cuda.empty_cache()

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_record_stream(self):
        # Makes sure graph capture defers attempting to reclaim allocations used across streams. See
        # "Q. Why skip process_events if a capture might be underway?" in c10/cuda/CUDACachingAllocator.cpp
        torch.cuda.empty_cache()

        potential_problem = torch.zeros((3,), device="cuda")
        a = torch.zeros((3,), device="cuda")
        s0 = torch.cuda.Stream()
        s1 = torch.cuda.Stream()
        s2 = torch.cuda.Stream()
        g = torch.cuda.CUDAGraph()

        torch.cuda.synchronize()
        with torch.cuda.stream(s0):
            potential_problem.record_stream(s0)
            torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
            potential_problem.fill_(1.)
        del potential_problem

        with torch.cuda.stream(s1):
            g.capture_begin()
            # potential_problem's allocation should still be outstanding. if DeviceCachingAllocator::malloc
            # mistakenly calls process_events, it will trigger cudaEventQueries on potential_problem's end-of-life
            # event, which will cause the capture to error.
            b = a.clone()

            # Let's also see what happens if we record_stream on a tensor during capture.
            s2.wait_stream(s1)
            with torch.cuda.stream(s2):
                b.fill_(1.)
                b.record_stream(s2)  # dummy record_stream
                del b
            s1.wait_stream(s2)
            g.capture_end()
        torch.cuda.synchronize()

        # dummy allocation triggers process_events, Hopefully successfully processes b's end-of-life event.
        c = torch.zeros((3,), device="cuda")

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    # If this test is the first in the process to try cudnn rnns with dropout, it'll initialize
    # DropoutState's long-lived internal buffer. Calling code perceives this (correct) behavior
    # as a memory leak unless we skip the leak check.
    @skipCUDAMemoryLeakCheckIf(True)
    def test_graph_cudnn_dropout(self):
        # Tests the interaction of cuda graph capture with DropoutState's syncs in ATen/native/cudnn/RNN.cpp.
        # In particular, if user runs a sequence of captured and noncaptured cudnn rnns, DropoutState should
        # avoid syncing noncapturing streams with captured events or vice versa.
        torch.cuda.empty_cache()

        model = torch.nn.LSTM(512, 512, 2, dropout=0.5).cuda()
        x = torch.ones(100, 192, 512, device="cuda")

        y = model(x)

        g = torch.cuda.CUDAGraph()
        s = torch.cuda.Stream()
        s.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(s):
            g.capture_begin()
            y = model(x)
            g.capture_end()
        torch.cuda.current_stream().wait_stream(s)

        y = model(x)

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_grad_scaling(self):
        torch.cuda.empty_cache()

        scaler = torch.cuda.amp.GradScaler(init_scale=4.)
        g = torch.cuda.CUDAGraph()
        s = torch.cuda.Stream()

        weight = torch.ones((100,), device="cuda", requires_grad=True)
        opt = torch.optim.SGD([weight], lr=0.1)
        static_input = torch.ones_like(weight)
        static_grad = torch.ones_like(weight)

        # warmup
        s = torch.cuda.Stream()
        s.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(s):
            loss = (weight.half() * static_input).sum()
            scaler.scale(loss).backward()
        torch.cuda.current_stream().wait_stream(s)

        opt.zero_grad(set_to_none=True)

        # capture
        with torch.cuda.graph(g):
            loss = (weight.half() * static_input).sum()
            scaler.scale(loss).backward()

        input_vals = [5, 20000, 5, 40000]
        # If the scale gets updated properly, these are the scale, growth tracker,
        # and grad values we expect.
        expected_scales = [4, 2, 2, 1]
        expected_growth_trackers = [1, 0, 1, 0]
        expected_grad_vals = [5 * 4, float("inf"), 5 * 2, float("inf")]

        for data, scale, growth_tracker, grad_val in zip(input_vals,
                                                         expected_scales,
                                                         expected_growth_trackers,
                                                         expected_grad_vals):
            static_input.fill_(data)
            g.replay()
            self.assertEqual(weight.grad, torch.full_like(weight.grad, grad_val))
            scaler.step(opt)
            scaler.update()
            self.assertEqual(scaler._scale, scale)
            self.assertEqual(scaler._growth_tracker, growth_tracker)

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    @parametrize('with_amp,cache_enabled', [(False, False), (True, False), subtest((True, True),
                 decorators=[unittest.expectedFailure])],
                 name_fn=lambda x, y: '{}{}'.format({True: "with_amp", False: "without_amp"}[x],
                                                    {True: "_cache_enabled", False: "_cache_disabled"}[y] if x else ''))
    def test_graph_make_graphed_callables(self, with_amp, cache_enabled):
        torch.manual_seed(5)
        torch.cuda.manual_seed(5)

        N, D_in, H, D_out = 640, 4096, 2048, 1024

        models = []
        for _ in range(2):
            model_section1 = torch.nn.Sequential(torch.nn.Linear(D_in, H),
                                                 torch.nn.Dropout(p=0.1)).cuda()
            model_section2 = torch.nn.Sequential(torch.nn.Linear(H, D_out),
                                                 torch.nn.Dropout(p=0.2)).cuda()
            models.append(torch.nn.Sequential(model_section1, model_section2))

        model_graphed = models[0]
        model_control = models[1]

        model_graphed.load_state_dict(model_control.state_dict())

        opt_graphed = torch.optim.SGD(model_graphed.parameters(), lr=0.1)
        opt_control = torch.optim.SGD(model_control.parameters(), lr=0.1)

        x = torch.randn(N, D_in, device='cuda')
        h = torch.randn(N, H, device='cuda', requires_grad=True)
        y_pred = torch.randn(N, D_out, device='cuda', requires_grad=True)
        y = torch.randn(N, D_out, device='cuda')

        loss_fn_control = torch.nn.functional.mse_loss
        relu_control = torch.nn.functional.relu

        # This is a good stress test. It graphs four callables: two Modules and two python functions.
        with torch.cuda.amp.autocast(with_amp, cache_enabled=cache_enabled):
            model_graphed[0], model_graphed[1], relu_graphed, loss_fn_graphed = \
                torch.cuda.make_graphed_callables((model_graphed[0], model_graphed[1], relu_control, loss_fn_control),
                                                  ((x,), (h,), (y_pred,), (y_pred, y)))

        real_inputs = [torch.rand_like(x) for _ in range(10)]
        real_targets = [torch.rand_like(y) for _ in range(10)]

        for m, opt, relu, loss_fn in zip((model_graphed, model_control),
                                         (opt_graphed, opt_control),
                                         (relu_graphed, relu_control),
                                         (loss_fn_graphed, loss_fn_control)):
            # Resets RNC states before iterations for graphed and ungraphed models,
            # so dropout math should be bitwise identical for both.
            torch.manual_seed(5)
            torch.cuda.manual_seed(5)
            for data, target in zip(real_inputs, real_targets):
                opt.zero_grad(set_to_none=True)
                with torch.cuda.amp.autocast(with_amp, cache_enabled=cache_enabled):
                    y_pred = m(data)
                    y_pred = relu(y_pred)
                    loss = loss_fn(y_pred, target)
                    loss.backward()
                opt.step()

        for p, pc in zip(model_graphed.parameters(), model_control.parameters()):
            self.assertEqual(p, pc)

        # We graphed the models in training mode. Eval should still run ungraphed.
        model_graphed.eval()
        model_control.eval()
        self.assertEqual(model_graphed(real_inputs[0]), model_control(real_inputs[0]))

    def _test_graphed_optimizer(self, steps_warmup, steps_train, optimizer_ctor, kwargs):
        for actually_do_graphs in (True, False):
            params = [torch.randn((i + 5, i + 5), device="cuda") for i in range(2)]
            params_control = [p.clone().requires_grad_() for p in params]
            params_graphed = [p.clone().requires_grad_() for p in params]

            grads = [[torch.randn_like(p) for p in params] for _ in range(steps_warmup + steps_train)]

            # Control (capturable=False)

            opt = optimizer_ctor(params_control, capturable=False, **kwargs)

            for i in range(steps_warmup + steps_train):
                for j, p in enumerate(params_control):
                    p.grad = grads[i][j]
                opt.step()

            # capturable=True

            opt = optimizer_ctor(params_graphed, capturable=True, **kwargs)

            for i in range(steps_warmup):
                for j, p in enumerate(params_graphed):
                    p.grad = grads[i][j]
                opt.step()

            if actually_do_graphs:
                g = torch.cuda.CUDAGraph()
                with torch.cuda.graph(g):
                    opt.step()

            for i in range(steps_train):
                if actually_do_graphs:
                    for j, p in enumerate(params_graphed):
                        p.grad.copy_(grads[i + steps_warmup][j])
                    g.replay()
                else:
                    # Passing capturable=True to the constructor and running without graphs should still be
                    # numerically correct, even if it's not ideal for performance.
                    for j, p in enumerate(params_graphed):
                        p.grad = grads[i + steps_warmup][j]
                    opt.step()

            for p_control, p_graphed in zip(params_control, params_graphed):
                self.assertEqual(p_control, p_graphed)

    @unittest.skipIf((not TEST_CUDA) or
                     TEST_WITH_ROCM or
                     int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
    def test_graph_adam_adamw(self):
        # Needs generalization if we want to extend this test to non-Adam-like optimizers.
        cases = [
            (optimizer_ctor, {"lr": 0.1, "betas": (0.8, 0.7), "foreach": foreach, "amsgrad": amsgrad})
            for optimizer_ctor, foreach, amsgrad in product(
                (torch.optim.Adam, torch.optim.AdamW), (False, True), (False, True),)
        ] + [
            (torch.optim.Adam, {"lr": 0.1, "betas": (0.8, 0.7), "fused": True, "amsgrad": amsgrad})
            for amsgrad in (False, True)
        ]

        for optimizer_ctor, kwargs in cases:
            with self.subTest(optimizer_ctor=optimizer_ctor, kwargs=kwargs):
                self._test_graphed_optimizer(3, 2, optimizer_ctor, kwargs)

    @unittest.skipIf(
        (not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11,
        "CUDA >= 11.0 required for graphs",
    )
    def test_graph_scaling_fusedadam(self):
        cases = [
            (torch.optim.Adam, {"lr": 0.1, "betas": (0.8, 0.7), "fused": True, "amsgrad": amsgrad})
            for amsgrad in (False, True)
        ]

        steps_warmup = 3
        steps_train = 2

        for OptClass, kwargs in cases:
            for actually_do_graphs in (True, False):
                params = [torch.randn((i + 5, i + 5), device="cuda") for i in range(2)]
                params_control = [p.clone().requires_grad_() for p in params]
                params_graphed = [p.clone().requires_grad_() for p in params]

                # `GradScaler` in-place updates gradients thus it's necessary to duplicate gradients.
                grads = [[torch.randn_like(p) for p in params] for _ in range(steps_warmup + steps_train)]
                with torch.no_grad():
                    grads_control = [[g.clone() for g in gs] for gs in grads]
                    grads_graphed = [[g.clone() for g in gs] for gs in grads]

                # Gradient Scaler
                scaler_for_control = torch.cuda.amp.GradScaler(init_scale=128.0)
                with torch.no_grad():
                    scaler_for_control._lazy_init_scale_growth_tracker(torch.device("cuda"))

                scaler_for_graphed = torch.cuda.amp.GradScaler()
                scaler_for_graphed.load_state_dict(scaler_for_control.state_dict())
                with torch.no_grad():
                    scaler_for_graphed._lazy_init_scale_growth_tracker(torch.device("cuda"))

                # Control (capturable=False)

                opt = OptClass(params_control, capturable=False, **kwargs)

                for i in range(steps_warmup + steps_train):
                    for j, p in enumerate(params_control):
                        p.grad = grads_control[i][j]
                    scaler_for_control.step(opt)
                    scaler_for_control.update()

                # capturable=True

                opt = OptClass(params_graphed, capturable=True, **kwargs)

                for i in range(steps_warmup):
                    for j, p in enumerate(params_graphed):
                        p.grad = grads_graphed[i][j]
                    scaler_for_graphed.step(opt)
                    scaler_for_graphed.update()

                if actually_do_graphs:
                    g = torch.cuda.CUDAGraph()
                    with torch.cuda.graph(g):
                        scaler_for_graphed.step(opt)
                        scaler_for_graphed.update()

                for i in range(steps_train):
                    if actually_do_graphs:
                        for j, p in enumerate(params_graphed):
                            p.grad.copy_(grads_graphed[i + steps_warmup][j])
                        g.replay()
                    else:
                        # Passing capturable=True to the constructor and running without graphs should still be
                        # numerically correct, even if it's not ideal for performance.
                        for j, p in enumerate(params_graphed):
                            p.grad = grads_graphed[i + steps_warmup][j]
                        scaler_for_graphed.step(opt)
                        scaler_for_graphed.update()

                for p_control, p_graphed in zip(params_control, params_graphed):
                    self.assertEqual(p_control, p_graphed)

    def test_batch_norm_gather_stats(self):
        input = torch.randn(1, 3, 3, 3, device='cuda')
        mean, invstd = torch.batch_norm_gather_stats(
            input, mean=torch.ones(2, 3, device='cuda'), invstd=torch.ones(2, 3, device='cuda'),
            running_mean=None, running_var=None  , momentum=.1, eps=1e-5, count=2
        )
        self.assertEqual(mean, torch.ones(3, device='cuda'))
        self.assertEqual(invstd, torch.ones(3, device='cuda'))

    @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs")
    def test_cuda_device_memory_allocated(self):
        from torch.cuda import memory_allocated
        device_count = torch.cuda.device_count()
        current_alloc = [memory_allocated(idx) for idx in range(device_count)]
        x = torch.ones(10, device="cuda:0")
        self.assertTrue(memory_allocated(0) > current_alloc[0])
        self.assertTrue(all(memory_allocated(torch.cuda.device(idx)) == current_alloc[idx] for idx in range(1, device_count)))

    def test_matmul_memory_use(self):
        def get_max_used():
            torch.cuda.synchronize()
            val = torch.cuda.max_memory_allocated()
            torch.cuda.reset_peak_memory_stats()
            return val

        a = torch.rand(1, 32, 32, device="cuda")
        b = torch.rand(24, 32, 1, device="cuda")

        get_max_used()

        torch.matmul(a, b)

        matmul_mem = get_max_used()

        a = a.expand(24, 32, 32)
        torch.matmul(a, b)

        matmul_expand_mem = get_max_used()

        torch.bmm(a, b)

        bmm_mem = get_max_used()

        self.assertEqual(matmul_expand_mem, matmul_mem)
        self.assertEqual(bmm_mem, matmul_mem)

    @unittest.skipIf(not TEST_WITH_ROCM, "ROCm-only test")
    def test_rocm_backward_pass_guard(self):
        # The test exercises a ROCm-specific feature.

        class MyFunction(torch.autograd.Function):
            @staticmethod
            def forward(ctx, tensor, constant):
                self.assertFalse(torch._C._rocm_is_backward_pass())
                ctx.constant = constant
                return tensor * constant

            @staticmethod
            def backward(ctx, grad_output):
                self.assertTrue(torch._C._rocm_is_backward_pass())
                return grad_output * ctx.constant, None

        class MyModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.a = torch.nn.Parameter(torch.randn(()))

            def forward(self, x):
                return MyFunction.apply(x, self.a)

        model = MyModule()
        criterion = torch.nn.MSELoss(reduction='sum')
        optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)

        x = torch.randn(5, 5)
        result = model(x)
        loss = criterion(result, x)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    @unittest.skipIf(TEST_MULTIGPU, "Testing on one GPU is sufficient")
    def test_lazy_init(self):
        """ Validate that no CUDA calls are made during `import torch` call"""
        from subprocess import check_output
        VISIBLE_DEVICES = "HIP_VISIBLE_DEVICES" if TEST_WITH_ROCM else "CUDA_VISIBLE_DEVICES"
        test_script = f"import os; import torch;os.environ['{VISIBLE_DEVICES}']='32';print(torch.cuda.device_count())"
        rc = check_output([sys.executable, '-c', test_script]).decode("ascii").strip()
        self.assertEqual(rc, "0")


class TestCudaComm(TestCase):
    def _test_broadcast(self, input):
        if not TEST_MULTIGPU:
            raise unittest.SkipTest("only one GPU detected")
        # test regular
        results = comm.broadcast(input, (0, 1))
        for i, t in enumerate(results):
            self.assertEqual(t.get_device(), i)
            self.assertEqual(t, input)
            if input.is_cuda and input.get_device() == i:  # test not copying on same device
                self.assertEqual(t.data_ptr(), input.data_ptr())
        # test out=
        for inplace in [True, False]:
            if inplace:
                outputs = [torch.empty_like(input, device=0), torch.empty_like(input, device=1)]
            else:
                outputs = [input.cuda(0), torch.empty_like(input, device=1)]
            results = comm.broadcast(input, out=outputs)
            for r, o in zip(results, outputs):
                self.assertIs(r, o)
            for i, t in enumerate(results):
                self.assertEqual(t.get_device(), i)
                self.assertEqual(t, input)
        # test error msg
        with self.assertRaisesRegex(RuntimeError, r"Exactly one of 'devices' and 'out'"):
            comm.broadcast(input, (0, 1), out=outputs)
        with self.assertRaisesRegex(RuntimeError,
                                    r"Expected all output tensors to be CUDA tensors, but output tensor at index 1"):
            comm.broadcast(input, out=[input.cuda(0), input.cpu()])
        with self.assertRaisesRegex(RuntimeError,
                                    r"Expected all output tensors to have same shape as the source .+ at index 1"):
            comm.broadcast(input, out=[input.cuda(0), input.cuda(1).unsqueeze(0)])

    def test_broadcast_cpu(self):
        self._test_broadcast(torch.randn(5, 5))

    def test_broadcast_gpu(self):
        self._test_broadcast(torch.randn(5, 5).cuda())

    def _test_broadcast_coalesced(self, tensors, buffer_size):
        b_tensors = [comm.broadcast(t, (0, 1)) for t in tensors]
        for (_, bt), t in zip(b_tensors, tensors):
            self.assertEqual(bt.get_device(), 1)
            self.assertEqual(bt, t)
            self.assertIsInstance(bt, type(t))

        bc_tensors = comm.broadcast_coalesced(tensors, (0, 1), buffer_size=buffer_size)
        bc_tensors_t = list(zip(*bc_tensors))
        self.assertEqual(b_tensors, bc_tensors_t)
        for (_, bt), (_, bct) in zip(b_tensors, bc_tensors_t):
            self.assertEqual(bt.get_device(), bct.get_device())
            self.assertIsInstance(bct, type(bt))

        # check that tensors on device[0] are returned as-is
        for out_tensors in (b_tensors, bc_tensors_t):
            for inp_t, (out_t, _) in zip(tensors, out_tensors):
                self.assertIs(inp_t, out_t)

        # check that the tensors not on device[0] have different version counters
        # NOTE [ Version Counter in comm.*_coalesced ]
        versions = [t._version for _, t in bc_tensors_t]
        for old_version, (_, t) in zip(versions, bc_tensors_t):
            self.assertEqual(t._version, old_version)
            t.zero_()
            self.assertEqual(t._version, old_version + 1)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    # Note: fails sometimes on the CI, passes on dual gfx906
    def test_broadcast_coalesced(self):
        numel = 5
        num_bytes = numel * 8
        tensors = [
            make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3),
            torch.randn(numel).long().cuda(),
            torch.randn(numel).cuda(),
            make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3),
            make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3),
            make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3),
            make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3),
            torch.randn(numel).long().cuda(),
            torch.randn(numel).long().cuda(),
            make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7),
            torch.randn(numel * 2).int().cuda(),  # int is 2x shorter
            torch.randn(numel).cuda(),
        ]
        self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_broadcast_coalesced_dense_only(self):
        numel = 5
        num_bytes = numel * 8
        tensors = [
            torch.randn(numel).long().cuda(),
            torch.randn(numel).cuda(),
            torch.randn(numel).long().cuda(),
            torch.randn(numel).long().cuda(),
            torch.randn(numel * 2).int().cuda(),  # int is 2x shorter
            torch.randn(numel).cuda(),
        ]
        self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_broadcast_coalesced_empty_tensors(self):
        tensors = [
            torch.tensor([]).byte().cuda(),
            torch.randn(5).cuda(),
            torch.randn(5).double().cuda()
        ]
        self._test_broadcast_coalesced(tensors, 256)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_reduce_add(self):
        x = torch.randn(5, 5)
        y = torch.randn(5, 5)
        x_cuda = x.cuda(0)
        y_cuda = y.cuda(1)
        result = comm.reduce_add((x_cuda, y_cuda))
        self.assertEqual(result.get_device(), 0)
        self.assertEqual(result.cpu(), x + y)

    def _test_reduce_add_coalesced(self, tensors, buffer_size):
        dup_tensors = [tensors, [t.cuda(1) for t in tensors]]

        r_tensors = [comm.reduce_add(t) for t in zip(*dup_tensors)]
        for r, t in zip(r_tensors, tensors):
            self.assertEqualTypeString(r, t)
            self.assertEqual(r.coalesce() if r.is_sparse else r, t * 2)

        rc_tensors = comm.reduce_add_coalesced(dup_tensors, buffer_size=buffer_size)
        self.assertEqual(r_tensors, rc_tensors)
        for r, rc in zip(r_tensors, rc_tensors):
            self.assertEqualTypeString(rc, r)

        # Since we have both cuda:0 and cuda:1 inputs, the outputs must be new.
        # We can check that they have different version counters.
        # NOTE [ Version Counter in comm.*_coalesced ]
        versions = [t._version for t in rc_tensors]
        for old_version, t in zip(versions, rc_tensors):
            self.assertEqual(t._version, old_version)
            t.zero_()
            self.assertEqual(t._version, old_version + 1)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_reduce_add_coalesced(self):
        numel = 5
        num_bytes = numel * 8
        tensors = [
            make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3),
            torch.randn(numel).long().cuda(),
            torch.randn(numel).cuda(),
            make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3),
            make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3),
            make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3),
            make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3),
            torch.randn(numel).long().cuda(),
            torch.randn(numel).long().cuda(),
            make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7),
            torch.randn(numel * 2).int().cuda(),  # int is 2x shorter
            torch.randn(numel).cuda(),
        ]
        self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_reduce_add_coalesced_dense_only(self):
        numel = 5
        num_bytes = numel * 8
        tensors = [
            torch.randn(numel).long().cuda(),
            torch.randn(numel).cuda(),
            torch.randn(numel).long().cuda(),
            torch.randn(numel).long().cuda(),
            torch.randn(numel * 2).int().cuda(),  # int is 2x shorter
            torch.randn(numel).cuda(),
        ]
        self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2)

    def _test_scatter(self, input, chunk_sizes=None, dim=0):
        if not TEST_MULTIGPU:
            raise unittest.SkipTest("only one GPU detected")
        if chunk_sizes is None:
            ref_chunk_sizes = tuple(repeat(input.size(dim) // 2, 2))
        else:
            ref_chunk_sizes = chunk_sizes

        # test regular
        result = comm.scatter(input, (0, 1), chunk_sizes, dim)
        self.assertEqual(len(result), 2)
        chunk_start = 0
        for i, r in enumerate(result):
            chunk_end = chunk_start + ref_chunk_sizes[i]
            index = [slice(None, None) for _ in range(input.dim())]
            index[dim] = slice(chunk_start, chunk_end)
            self.assertEqual(r, input[tuple(index)], atol=0, rtol=0)
            chunk_start = chunk_end
            if r.device == input.device:
                self.assertEqual(r.data_ptr(), input.data_ptr())  # for target @ same device, a view should be returned

        # test out
        out = [torch.empty_like(t) for t in result]
        result = comm.scatter(input, dim=dim, out=out)
        self.assertEqual(len(result), 2)
        chunk_start = 0
        for i, r in enumerate(result):
            self.assertIs(r, out[i])
            chunk_end = chunk_start + ref_chunk_sizes[i]
            index = [slice(None, None) for _ in range(input.dim())]
            index[dim] = slice(chunk_start, chunk_end)
            self.assertEqual(r, input[tuple(index)], atol=0, rtol=0)
            chunk_start = chunk_end

        # test error msg
        if chunk_sizes is not None:
            with self.assertRaisesRegex(RuntimeError, r"Expected devices and chunk_sizes to be of same length"):
                comm.scatter(input, [0 for _ in range(len(chunk_sizes) + 1)], dim=dim, chunk_sizes=chunk_sizes)
        with self.assertRaisesRegex(RuntimeError, r"'devices' must not be specified"):
            comm.scatter(input, (0, 1), dim=dim, out=out)
        with self.assertRaisesRegex(RuntimeError, r"Expected at least one device to scatter to"):
            comm.scatter(input, (), dim=dim)
        with self.assertRaisesRegex(RuntimeError, r"Expected at least one output tensor to scatter to"):
            comm.scatter(input, dim=dim, out=[])
        with self.assertRaisesRegex(RuntimeError,
                                    r"Expected all output tensors to be CUDA tensors, but output tensor at index 0"):
            comm.scatter(input, dim=dim, out=([out[0].cpu()] + out[1:]))
        with self.assertRaisesRegex(RuntimeError, r"Output tensor at index 0 has incorrect shape"):
            comm.scatter(input, dim=dim, out=([out[0].unsqueeze(0)] + out[1:]))
        with self.assertRaisesRegex(RuntimeError, r"Total size for output tensors along scatter dim \d+ does not match"):
            index = [slice(None, None) for _ in range(input.dim())]
            index[dim] = slice(1, None)
            comm.scatter(input, dim=dim, out=([out[0][tuple(index)]] + out[1:]))

    def test_scatter_cpu(self):
        self._test_scatter(torch.randn(4, 4), dim=0)

    def test_scatter_cpu_dim(self):
        self._test_scatter(torch.randn(4, 4), dim=1)

    def test_scatter_cpu_neg_dim(self):
        self._test_scatter(torch.randn(4, 4), dim=-2)

    def test_scatter_cpu_sizes(self):
        self._test_scatter(torch.randn(6, 4), chunk_sizes=(2, 4))

    def test_scatter_gpu(self):
        self._test_scatter(torch.randn(4, 4).cuda(), dim=0)

    def test_scatter_gpu_dim(self):
        self._test_scatter(torch.randn(4, 4).cuda(), dim=1)

    def test_scatter_gpu_neg_dim(self):
        self._test_scatter(torch.randn(4, 4).cuda(), dim=-2)

    def test_scatter_gpu_sizes(self):
        self._test_scatter(torch.randn(6, 4).cuda(), chunk_sizes=(2, 4))

    def _test_gather(self, dim):
        if not TEST_MULTIGPU:
            raise unittest.SkipTest("only one GPU detected")
        x = torch.randn(2, 5, device=0)
        y = torch.randn(2, 5, device=1)
        expected_size = list(x.size())
        expected_size[dim] += y.size(dim)
        expected_size = torch.Size(expected_size)

        destinations = [None, torch.device('cuda:0'), torch.device('cpu')]
        if torch.cuda.device_count() > 2:
            destinations.append(torch.device('cuda:2'))
        with torch.cuda.device(1):
            for destination in destinations:
                if destination is None:
                    expected_device = torch.device('cuda', torch.cuda.current_device())
                else:
                    expected_device = destination
                for use_out in [True, False]:
                    if use_out:
                        out = torch.empty(expected_size, device=expected_device)
                        result = comm.gather((x, y), dim, out=out)
                        self.assertIs(out, result)
                    else:
                        result = comm.gather((x, y), dim, destination=destination)

                    self.assertEqual(result.device, expected_device)
                    self.assertEqual(result.size(), expected_size)

                    index = [slice(None, None), slice(None, None)]
                    index[dim] = slice(0, x.size(dim))
                    self.assertEqual(result[tuple(index)], x)
                    index[dim] = slice(x.size(dim), x.size(dim) + y.size(dim))
                    self.assertEqual(result[tuple(index)], y)

        # test error msg
        with self.assertRaisesRegex(RuntimeError, r"'destination' must not be specified"):
            comm.gather((x, y), dim, destination='cpu', out=torch.empty(expected_size, device='cpu'))
        with self.assertRaisesRegex(RuntimeError, r"Expected at least one tensor to gather from"):
            comm.gather(())
        with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to be CUDA tensors, "):
            comm.gather((x.cpu(), y))
        with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to have the same number of dimensions"):
            comm.gather((x, y.unsqueeze(0)))
        with self.assertRaisesRegex(RuntimeError, r"Input tensor at index 1 has invalid shape"):
            if dim in [0, -2]:
                comm.gather((x, y[:, 1:]), dim=dim)
            elif dim in [1, -1]:
                comm.gather((x, y[1:, :]), dim=dim)

    def test_gather(self):
        self._test_gather(0)

    def test_gather_dim(self):
        self._test_gather(1)

    def test_gather_neg_dim(self):
        self._test_gather(-1)

    @unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
    def test_memory_format_scatter_gather(self):
        nhwc = torch.randn((10, 3, 32, 32), device='cpu').contiguous(memory_format=torch.channels_last)
        results = torch.cuda.comm.scatter(nhwc, (0, 1), None, 0)
        for result in results:
            self.assertFalse(result.is_contiguous())
            self.assertTrue(result.is_contiguous(memory_format=torch.channels_last))

        gathered = torch.cuda.comm.gather(results)
        self.assertTrue(gathered.is_contiguous(memory_format=torch.channels_last))


    def test_matmul_device_mismatch(self):
        cpu = torch.rand((10, 10))
        cuda = cpu.cuda()
        with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
            cpu @ cuda
        with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
            cuda @ cpu

        for s, m1, m2 in product((cpu, cuda), repeat=3):
            if s.device == m1.device == m2.device:
                torch.addmm(s, m1, m2)
            else:
                with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
                    torch.addmm(s, m1, m2)

    @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs")
    def test_scatter_namedtuple(self):
        # tests ability to scatter namedtuples and retrieve a list where each
        # element is of the expected namedtuple type.
        fields = ("a", "b")
        TestNamedTupleInput_0 = collections.namedtuple("NamedTuple", fields)
        num_gpus = torch.cuda.device_count()
        a = torch.rand(num_gpus * 2, device=0)
        b = torch.rand(num_gpus * 2, device=0)
        a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]
        b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]

        inp = TestNamedTupleInput_0(a, b)
        target_gpus = [torch.device(i) for i in range(num_gpus)]
        scatter_out = scatter_gather.scatter(inp, target_gpus)

        for i, x in enumerate(scatter_out):
            self.assertTrue(isinstance(x, type(inp)))
            self.assertEqual(x._fields, fields)
            expected_a = a_tensors_for_gpu[i]
            expected_b = b_tensors_for_gpu[i]
            self.assertEqual(expected_a, x.a)
            self.assertEqual(expected_b, x.b)

        class TestNamedTupleInput_1(NamedTuple):
            a: torch.tensor
            b: torch.tensor

        a = torch.rand(num_gpus * 2, device=0)
        b = torch.rand(num_gpus * 2, device=0)
        a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]
        b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]
        inp = TestNamedTupleInput_1(a, b)

        scatter_out = scatter_gather.scatter(inp, target_gpus)
        for i, x in enumerate(scatter_out):
            self.assertTrue(isinstance(x, type(inp)))
            self.assertEqual(x._fields, fields)
            expected_a = a_tensors_for_gpu[i]
            expected_b = b_tensors_for_gpu[i]
            self.assertEqual(expected_a, x.a)
            self.assertEqual(expected_b, x.b)

    @unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs")
    def test_gather_namedtuple(self):
        # tests ability to gather a list of namedtuples and return a namedtuple where each
        # element is of the expected tensor type.
        fields = ['a', 'b']
        TestNamedTupleInput_0 = collections.namedtuple('NamedTuple', fields)

        num_gpus = torch.cuda.device_count()
        a = torch.rand(num_gpus * 2, device=0)
        b = torch.rand(num_gpus * 2, device=1)
        out1 = TestNamedTupleInput_0(a, b)

        a = torch.rand(num_gpus * 2, device=1)
        b = torch.rand(num_gpus * 2, device=0)
        out2 = TestNamedTupleInput_0(a, b)

        outputs = [out1, out2]

        out = scatter_gather.gather(outputs, 'cpu')  # test on CPU
        for i, x in enumerate(out):
            self.assertTrue(isinstance(x, type(out2[-1])))  # x must be a tensor
            cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu')))
            self.assertTrue(torch.equal(x, cat))

        out = scatter_gather.gather(outputs, 0)  # test on GPU
        for i, x in enumerate(out):
            self.assertTrue(isinstance(x, type(out2[-1])))
            cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0)))
            self.assertTrue(torch.equal(x, cat))

        class TestNamedTupleInput_1(NamedTuple):
            a: torch.tensor
            b: torch.tensor

        a = torch.rand(num_gpus * 2, device=0)
        b = torch.rand(num_gpus * 2, device=1)
        out1 = TestNamedTupleInput_1(a, b)

        a = torch.rand(num_gpus * 2, device=1)
        b = torch.rand(num_gpus * 2, device=0)
        out2 = TestNamedTupleInput_1(a, b)

        outputs = [out1, out2]

        out = scatter_gather.gather(outputs, 0)  # test on GPU
        for i, x in enumerate(out):
            self.assertTrue(isinstance(x, type(out2[-1])))
            cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0)))
            self.assertTrue(torch.equal(x, cat))

        out = scatter_gather.gather(outputs, 'cpu')  # test on CPU
        for i, x in enumerate(out):
            self.assertTrue(isinstance(x, type(out2[-1])))
            cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu')))
            self.assertTrue(torch.equal(x, cat))

    def test_memory_snapshot(self):
        try:
            torch.cuda.memory.empty_cache()
            torch.cuda.memory._record_memory_history(True)
            x = torch.rand(311, 411, device='cuda')

            # create a bunch of tensors that all will tile into the
            # same segment to  exercise the history merging code
            # 512B is the minimum block size,
            # so we allocate all the tensors to this size to make sure
            # they tile evenly
            tensors = [torch.rand(128, device='cuda') for _ in range(1000)]
            while tensors:
                del tensors[randint(0, len(tensors) - 1)]

            # exercise the history trimming code
            torch.rand(128 * 5, device='cuda')

            ss = torch.cuda.memory._snapshot()
            found_it = False
            for seg in ss:
                for b in seg['blocks']:
                    if 'history' in b:
                        for h in b['history']:
                            if h['real_size'] == 311 * 411 * 4:
                                self.assertTrue('test_cuda' in h['frames'][0]['filename'])
                                found_it = True
            self.assertTrue(found_it)
            if not IS_WINDOWS:
                with tempfile.NamedTemporaryFile() as f:
                    torch.cuda.memory._save_segment_usage(f.name)
                    with open(f.name, 'r') as f2:
                        self.assertTrue('test_cuda.py' in f2.read())

        finally:
            torch.cuda.memory._record_memory_history(False)


    def test_allocator_settings(self):
        def power2_div(size, div_factor):
            pow2 = 1
            while pow2 < size:
                pow2 = pow2 * 2
            if pow2 == size:
                return pow2
            step = pow2 / 2 / div_factor
            ret = pow2 / 2
            while ret < size:
                ret = ret + step
            return ret

        torch.cuda.memory.empty_cache()
        key = 'active_bytes.all.allocated'

        nelems = 21 * 1024 * 1024
        nbytes = 4 * nelems  # floats are 4 bytes

        start_mem = torch.cuda.memory_stats()[key]
        torch.cuda.memory._set_allocator_settings("")
        x = torch.rand(nelems, device='cuda')

        reg_mem = torch.cuda.memory_stats()[key]
        torch.cuda.memory._set_allocator_settings("roundup_power2_divisions:4")
        y = torch.rand(nelems, device='cuda')

        pow2_div4_mem = torch.cuda.memory_stats()[key]

        self.assertTrue(reg_mem - start_mem == nbytes)
        self.assertTrue(pow2_div4_mem - reg_mem == power2_div(nbytes, 4))

        torch.cuda.memory._set_allocator_settings("garbage_collection_threshold:0.5")
        torch.cuda.memory._set_allocator_settings("garbage_collection_threshold:0.5,max_split_size_mb:40")

        # should have reset the power2 divisions now
        torch.cuda.memory.empty_cache()
        start_mem = torch.cuda.memory_stats()[key]
        z = torch.rand(nelems, device='cuda')
        reg_mem = torch.cuda.memory_stats()[key]
        self.assertTrue(reg_mem - start_mem == nbytes)


        with self.assertRaises(RuntimeError):
            torch.cuda.memory._set_allocator_settings("foo:1,bar:2")

        with self.assertRaises(RuntimeError):
            torch.cuda.memory._set_allocator_settings("garbage_collection_threshold:1.2")

        with self.assertRaises(RuntimeError):
            torch.cuda.memory._set_allocator_settings("max_split_size_mb:2")


    def test_raises_oom(self):
        with self.assertRaises(torch.cuda.OutOfMemoryError):
            torch.empty(1024 * 1024 * 1024 * 1024, device='cuda')

    @unittest.skipIf(IS_WINDOWS, 'Windows CI does not like the load_inline')
    def test_cpp_memory_snapshot_pickle(self):
        from torch.utils.cpp_extension import load_inline
        source = """
        #include <torch/csrc/cuda/memory_snapshot.h>
        py::object do_snapshot() {
            std::string data = torch::cuda::_memory_snapshot_pickled();
            return py::bytes(data);
        }
        void record(bool e) {
            torch::cuda::_record_memory_history(e);
        }
        """
        m = load_inline(name='snapshot', cpp_sources=[source], functions=['do_snapshot', 'record'])
        try:
            m.record(True)
            t = torch.rand(311, 411, device='cuda')
            mem = pickle.loads(m.do_snapshot())
            found = False
            for s in mem:
                for b in s['blocks']:
                    if b['state'] == 'active_allocated' and 'history' in b:
                        history = b['history']
                        if history and history[0]['real_size'] == 311 * 411 * 4:
                            found = True
            self.assertTrue(found)
        finally:
            m.record(False)

instantiate_parametrized_tests(TestCuda)

if __name__ == '__main__':
    run_tests()