1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
|
# Owner(s): ["module: cuda"]
from itertools import repeat, chain, product
from typing import NamedTuple
import collections
import contextlib
from copy import deepcopy
import ctypes
import gc
import io
import os
import pickle
import queue
import sys
import tempfile
import threading
import unittest
from random import randint
import torch
import torch.cuda
import torch.cuda.comm as comm
from torch.nn.parallel import scatter_gather
from torch.utils.checkpoint import checkpoint_sequential
from torch._six import inf, nan
from torch.testing._internal.common_utils import TestCase, freeze_rng_state, run_tests, \
NO_MULTIPROCESSING_SPAWN, skipIfRocm, load_tests, IS_REMOTE_GPU, IS_SANDCASTLE, IS_WINDOWS, \
slowTest, skipCUDANonDefaultStreamIf, skipCUDAMemoryLeakCheckIf, TEST_WITH_ROCM, TEST_NUMPY, \
get_cycles_per_ms, parametrize, instantiate_parametrized_tests, subtest
from torch.testing._internal.autocast_test_lists import AutocastTestLists
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
# We cannot import TEST_CUDA and TEST_MULTIGPU from torch.testing._internal.common_cuda here,
# because if we do that, the TEST_CUDNN line from torch.testing._internal.common_cuda will be executed
# multiple times as well during the execution of this test suite, and it will
# cause CUDA OOM error on Windows.
TEST_CUDA = torch.cuda.is_available()
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
if not TEST_CUDA:
print('CUDA not available, skipping tests', file=sys.stderr)
TestCase = object # noqa: F811
TEST_LARGE_TENSOR = TEST_CUDA
TEST_MEDIUM_TENSOR = TEST_CUDA
TEST_CUDNN = TEST_CUDA
TEST_BF16 = False
if TEST_CUDA:
torch.ones(1).cuda() # initialize cuda context
TEST_CUDNN = TEST_CUDA and (TEST_WITH_ROCM or
torch.backends.cudnn.is_acceptable(torch.tensor(1., device=torch.device('cuda:0'))))
TEST_LARGE_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 12e9
TEST_MEDIUM_TENSOR = torch.cuda.get_device_properties(0).total_memory >= 6e9
TEST_BF16 = torch.cuda.is_bf16_supported()
def make_sparse_tensor(t, n, *sizes):
assert t.is_sparse
tensor = t()
i = tensor._indices()
i = i.new(len(sizes), n).copy_(
torch.cat([torch.LongTensor(1, n).random_(s) for s in sizes], 0))
v = tensor._values()
v = v.new(n).copy_(torch.randn(n))
return t(i, v, torch.Size(sizes)).coalesce()
_cycles_per_ms = None
class TestCuda(TestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
FIFTY_MIL_CYCLES = 50000000
def setUp(self):
super(TestCuda, self).setUp()
self.autocast_lists = AutocastTestLists(torch.device('cuda:0'))
def tearDown(self):
del self.autocast_lists
super(TestCuda, self).tearDown()
def _check_memory_stat_consistency(self):
snapshot = torch.cuda.memory_snapshot()
expected_each_device = collections.defaultdict(lambda: collections.defaultdict(int))
for segment in snapshot:
expected = expected_each_device[segment["device"]]
pool_str = segment["segment_type"] + "_pool"
expected["segment.all.current"] += 1
expected["segment." + pool_str + ".current"] += 1
expected["allocated_bytes.all.current"] += segment["allocated_size"]
expected["allocated_bytes." + pool_str + ".current"] += segment["allocated_size"]
expected["reserved_bytes.all.current"] += segment["total_size"]
expected["reserved_bytes." + pool_str + ".current"] += segment["total_size"]
expected["active_bytes.all.current"] += segment["active_size"]
expected["active_bytes." + pool_str + ".current"] += segment["active_size"]
is_split = len(segment["blocks"]) > 1
for block in segment["blocks"]:
if block["state"] == "active_allocated":
expected["allocation.all.current"] += 1
expected["allocation." + pool_str + ".current"] += 1
if block["state"].startswith("active_"):
expected["active.all.current"] += 1
expected["active." + pool_str + ".current"] += 1
if block["state"] == "inactive" and is_split:
expected["inactive_split.all.current"] += 1
expected["inactive_split." + pool_str + ".current"] += 1
expected["inactive_split_bytes.all.current"] += block["size"]
expected["inactive_split_bytes." + pool_str + ".current"] += block["size"]
for device, expected in expected_each_device.items():
stats = torch.cuda.memory_stats(device)
for k, v in expected.items():
self.assertEqual(v, stats[k])
@staticmethod
def _test_memory_stats_generator(self, device=None, N=35):
if device is None:
device = torch.cuda.current_device()
m0 = torch.cuda.memory_allocated(device)
last_m_arr = [torch.cuda.memory_allocated(device)]
max_m_arr = [torch.cuda.max_memory_allocated(device)]
last_r_arr = [torch.cuda.memory_reserved(device)]
max_r_arr = [torch.cuda.max_memory_reserved(device)]
def alloc(*size):
with torch.cuda.device(device):
# NOTE: do **not** use methods that can have additional
# memory overhead, e.g., inplace random sampling methods.
# they can leave some memory occupied even after being
# deallocated, e.g., initialized RNG state, causing some
# memory checks below to fail.
return torch.cuda.FloatTensor(*size)
def assert_change(comp=1, empty_cache=False, reset_peak=False):
# comp > 0: increased
# comp = 0: equal
# comp < 0: decreased
new_m = torch.cuda.memory_allocated(device)
new_max_m = torch.cuda.max_memory_allocated(device)
if comp > 0:
self.assertGreater(new_m, last_m_arr[0])
elif comp < 0:
self.assertLess(new_m, last_m_arr[0])
else:
self.assertEqual(new_m, last_m_arr[0])
self.assertLessEqual(new_m, new_max_m)
self.assertGreaterEqual(new_max_m, max_m_arr[0])
last_m_arr[0] = new_m
max_m_arr[0] = new_max_m
new_r = torch.cuda.memory_reserved(device)
new_max_r = torch.cuda.max_memory_reserved(device)
# emptying cache may happen (due to allocation or empty_cache), so
# we can't assert new_c >= last_c
self.assertLessEqual(new_r, new_max_r)
self.assertGreaterEqual(new_max_r, max_r_arr[0])
last_r_arr[0] = new_r
max_r_arr[0] = new_max_r
if empty_cache:
torch.cuda.empty_cache()
new_r = torch.cuda.memory_reserved(device)
new_max_r = torch.cuda.max_memory_reserved(device)
self.assertLessEqual(new_r, last_r_arr[0])
self.assertLessEqual(new_r, new_max_r)
self.assertEqual(new_max_r, max_r_arr[0])
last_r_arr[0] = new_r
if reset_peak:
torch.cuda.reset_peak_memory_stats(device)
self.assertEqual(torch.cuda.memory_allocated(device), last_m_arr[0])
self.assertEqual(torch.cuda.max_memory_allocated(device), last_m_arr[0])
max_m_arr[0] = last_m_arr[0]
self.assertEqual(torch.cuda.memory_reserved(device), last_r_arr[0])
self.assertEqual(torch.cuda.max_memory_reserved(device), last_r_arr[0])
max_r_arr[0] = last_r_arr[0]
assert_change(0)
assert_change(0, reset_peak=True)
assert_change(0, empty_cache=True)
assert_change(0, reset_peak=True)
assert_change(0)
yield
tensors1 = [alloc(1), alloc(10, 20), alloc(200, 300, 2000)]
m1 = torch.cuda.memory_allocated(device)
assert_change(1)
yield
tensors2 = []
for i in range(1, int(N / 2) + 1):
# small ones
tensors2.append(alloc(i, i * 4))
assert_change(1)
yield
for i in range(5, int(N / 2) + 5):
# large ones
tensors2.append(alloc(i, i * 7, i * 9, i * 11))
assert_change(1, reset_peak=(i % 2 == 0))
yield
tensors2.append(alloc(0, 0, 0))
assert_change(0)
yield
permute = []
for i in torch.randperm(len(tensors2)):
permute.append(tensors2[i])
assert_change(0)
yield
del tensors2
assert_change(0)
yield
tensors2 = permute
assert_change(0)
yield
del permute
assert_change(0, reset_peak=True)
yield
for i in range(int(N / 2)):
x = tensors2[i].numel()
del tensors2[i]
assert_change(-x) # in case that tensors2[i] is empty
yield
for i in range(2, int(2 * N / 3) + 2):
tensors2.append(alloc(i, i * 3, i * 8))
assert_change(1)
yield
del tensors2
assert_change(-1, reset_peak=True)
assert_change(0)
self.assertEqual(torch.cuda.memory_allocated(device), m1)
yield True
del tensors1
assert_change(-1, reset_peak=True)
self.assertEqual(torch.cuda.memory_allocated(device), m0)
# test empty_cache and reset_peak
assert_change(0, empty_cache=True)
assert_change(0, reset_peak=True)
def test_cudart_register(self):
t = torch.ones(20)
self.assertFalse(t.is_pinned())
cudart = torch.cuda.cudart()
r = cudart.cudaHostRegister(t.data_ptr(), t.numel() * t.element_size(), 0)
self.assertEqual(r, 0)
self.assertTrue(t.is_pinned())
r = cudart.cudaHostUnregister(t.data_ptr())
self.assertEqual(r, 0)
self.assertFalse(t.is_pinned())
def test_memory_stats(self):
gc.collect()
torch.cuda.empty_cache()
for _ in self._test_memory_stats_generator(self):
self._check_memory_stat_consistency()
def test_memory_allocation(self):
gc.collect()
torch.cuda.empty_cache()
mem = None
size = 1
prev = 0
try:
prev = torch.cuda.memory_allocated()
mem = torch.cuda.caching_allocator_alloc(size)
self.assertGreater(torch.cuda.memory_allocated(), prev)
finally:
if mem is not None:
torch.cuda.caching_allocator_delete(mem)
self.assertEqual(torch.cuda.memory_allocated(), prev)
def test_check_error(self):
# Assert this call doesn't raise.
torch.cuda.check_error(0)
with self.assertRaisesRegex(torch.cuda.CudaError,
"out of memory|hipErrorOutOfMemory"):
torch.cuda.check_error(2)
def test_cuda_get_device_name(self):
# Testing the behaviour with None as an argument
current_device = torch.cuda.current_device()
current_device_name = torch.cuda.get_device_name(current_device)
device_name_None = torch.cuda.get_device_name(None)
self.assertEqual(current_device_name, device_name_None)
# Testing the behaviour for No argument
device_name_no_argument = torch.cuda.get_device_name()
self.assertEqual(current_device_name, device_name_no_argument)
def test_cuda_get_device_capability(self):
# Testing the behaviour with None as an argument
current_device = torch.cuda.current_device()
current_device_capability = torch.cuda.get_device_capability(current_device)
device_capability_None = torch.cuda.get_device_capability(None)
self.assertEqual(current_device_capability, device_capability_None)
# Testing the behaviour for No argument
device_capability_no_argument = torch.cuda.get_device_capability()
self.assertEqual(current_device_capability, device_capability_no_argument)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_memory_stats_multigpu(self):
# advance a generator with a end flag
def advance(gen, end):
if not end:
try:
next(gen)
except StopIteration:
end = True
return end
# interlace
torch.cuda.empty_cache()
gen0 = self._test_memory_stats_generator(self, device='cuda:0', N=35)
gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
end0 = end1 = False
while not (end0 and end1):
end0 = advance(gen0, end0)
end1 = advance(gen1, end1)
# semi-random order
torch.cuda.empty_cache()
gen0 = self._test_memory_stats_generator(self, device=0, N=35)
gen1 = self._test_memory_stats_generator(self, device=torch.device('cuda:1'), N=35)
end0 = end1 = False
while not (end0 and end1):
end0 = advance(gen0, end0)
if not end0:
gen1_max_times = torch.LongTensor(1).random_(0, 3)[0]
else:
gen1_max_times = inf
t = 0
while t < gen1_max_times and not end1:
end1 = advance(gen1, end1)
t += 1
def test_out_of_memory(self):
tensor = torch.zeros(1024, device='cuda')
with self.assertRaisesRegex(RuntimeError, "Tried to allocate 800000000.00 GiB"):
torch.empty(1024 * 1024 * 1024 * 800000000, dtype=torch.int8, device='cuda')
with self.assertRaisesRegex(RuntimeError, "Tried to allocate more than 1EB memory"):
torch.empty(1024 * 1024 * 1024 * 8000000000, dtype=torch.int8, device='cuda')
# ensure out of memory error doesn't disturb subsequent kernel
tensor.fill_(1)
self.assertTrue((tensor == 1).all())
def test_set_per_process_memory_fraction(self):
# test invalid fraction value.
with self.assertRaisesRegex(TypeError, "Invalid type"):
torch.cuda.set_per_process_memory_fraction(int(1))
with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
torch.cuda.set_per_process_memory_fraction(-0.1)
with self.assertRaisesRegex(ValueError, "Invalid fraction value"):
torch.cuda.set_per_process_memory_fraction(2.0)
tensor = torch.zeros(1024, device='cuda')
torch.cuda.empty_cache()
total_memory = torch.cuda.get_device_properties(0).total_memory
torch.cuda.set_per_process_memory_fraction(0.5, 0)
# test 0.499 allocation is ok.
application = int(total_memory * 0.499) - torch.cuda.max_memory_reserved()
tmp_tensor = torch.empty(application, dtype=torch.int8, device='cuda')
del tmp_tensor
torch.cuda.empty_cache()
application = int(total_memory * 0.5)
# it will get OOM when try to allocate more than half memory.
with self.assertRaisesRegex(RuntimeError, "out of memory"):
torch.empty(application, dtype=torch.int8, device='cuda')
# ensure out of memory error doesn't disturb subsequent kernel
tensor.fill_(1)
self.assertTrue((tensor == 1).all())
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_autogpu(self):
x = torch.randn(5, 5).cuda()
y = torch.randn(5, 5).cuda()
self.assertEqual(x.get_device(), 0)
self.assertEqual(x.get_device(), 0)
with torch.cuda.device(1):
z = torch.randn(5, 5).cuda()
self.assertEqual(z.get_device(), 1)
q = x.add(y)
self.assertEqual(q.get_device(), 0)
w = torch.randn(5, 5).cuda()
self.assertEqual(w.get_device(), 1)
self.assertEqual(y.cuda().get_device(), 1)
z = z.cuda()
self.assertEqual(z.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_new(self):
x = torch.randn(3, 3).cuda()
self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)
with torch.cuda.device(1):
self.assertEqual(x.new([0, 1, 2]).get_device(), 0)
self.assertEqual(x.new([0, 1, 2], device=1).get_device(), 1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_copy_device(self):
x = torch.randn(5, 5).cuda()
with torch.cuda.device(1):
y = x.cuda()
self.assertEqual(y.get_device(), 1)
self.assertIs(y.cuda(), y)
z = y.cuda(0)
self.assertEqual(z.get_device(), 0)
self.assertIs(z.cuda(0), z)
x = torch.randn(5, 5)
with torch.cuda.device(1):
y = x.cuda()
self.assertEqual(y.get_device(), 1)
self.assertIs(y.cuda(), y)
z = y.cuda(0)
self.assertEqual(z.get_device(), 0)
self.assertIs(z.cuda(0), z)
def _test_copy_sync_current_stream(self, x, y):
x_plus_one = x + 1
s0 = torch.cuda.Stream(device=x.device)
s1 = torch.cuda.Stream(device=y.device)
s2 = torch.cuda.Stream(device=x.device)
s3 = torch.cuda.Stream(device=y.device)
# same dst stream different src streams
with torch.cuda.stream(s0):
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
with torch.cuda.stream(s1):
y.copy_(x_plus_one)
with torch.cuda.stream(s2), torch.cuda.stream(s1):
y.copy_(x)
s1.synchronize()
# The copy() is synchronized on the current streams of both src and dst.
# In the above test, the _sleep() op on s0 will not block the copy() on
# s2, but both copies are synchronized on s1 in the dst device. Hence,
# x is copied to y after x_plus_one is copied to y. If x and y are on
# the same device, both copy() ops are synchronized on s1.
self.assertEqual(y, x)
# same src stream different dst streams
with torch.cuda.stream(s1):
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
with torch.cuda.stream(s0):
y.copy_(x_plus_one)
with torch.cuda.stream(s3), torch.cuda.stream(s0):
y.copy_(x)
s0.synchronize()
# Similarly, both copy() ops are synchronized on s0.
self.assertEqual(y, x)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_copy_streams(self):
d0 = torch.device('cuda:0')
x0 = torch.zeros(5, 5, device=d0)
d1 = torch.device('cuda:1')
x1 = torch.zeros(5, 5, device=d1)
self._test_copy_sync_current_stream(x0, x1)
x2 = torch.zeros(5, 5, device=d0)
self._test_copy_sync_current_stream(x0, x2)
def test_copy_non_blocking(self):
def _test_copy_non_blocking(a, b):
event = torch.cuda.Event()
a.copy_(b, non_blocking=True)
event.record()
event.synchronize()
self.assertEqual(a, b)
# 10MB copies
x = torch.ones(10000000, dtype=torch.uint8).cuda()
y = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
_test_copy_non_blocking(x, y)
x = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
y = torch.ones(10000000, dtype=torch.uint8).cuda()
_test_copy_non_blocking(x, y)
# Test the case where the pinned data_ptr is not equal to the storage data_ptr.
x_base = torch.zeros(10000000, dtype=torch.uint8).pin_memory()
x = x_base[1:]
self.assertTrue(x.is_pinned())
self.assertTrue(x_base.is_pinned())
self.assertNotEqual(x_base.data_ptr(), x.data_ptr())
self.assertEqual(x_base.storage().data_ptr(), x.storage().data_ptr())
y = torch.ones(10000000 - 1, dtype=torch.uint8).cuda()
_test_copy_non_blocking(x, y)
def test_to_non_blocking(self):
stream = torch.cuda.current_stream()
def _test_to_non_blocking(a, non_blocking, dst):
torch.cuda.synchronize()
# Pushes an 0.1 second spin to stream so if the copy is non blocking,
# stream will almost surely be active when we query().
torch.cuda._sleep(int(100 * get_cycles_per_ms()))
b = a.to(device=dst, non_blocking=non_blocking)
self.assertEqual(stream.query(), not non_blocking)
stream.synchronize()
self.assertEqual(a, b)
self.assertTrue(b.is_pinned() == (non_blocking and dst == "cpu"))
for dst, try_non_blocking in product(("cuda", "cpu"), (True, False)):
# Creates source on the opposite device from destination.
src = torch.randn(1000000,
device="cuda" if dst == "cpu" else "cpu",
pin_memory=True if dst == "cuda" else False)
_test_to_non_blocking(src, try_non_blocking, dst)
def test_to_cpu_blocking_by_default(self):
src = torch.randn(1000000, device="cuda")
torch.cuda.synchronize()
torch.cuda._sleep(int(100 * get_cycles_per_ms()))
dst = src.to(device="cpu")
self.assertEqual(torch.cuda.current_stream().query(), True)
self.assertEqual(src, dst)
self.assertFalse(dst.is_pinned())
def test_serialization_array_with_storage(self):
x = torch.randn(5, 5).cuda()
y = torch.IntTensor(2, 5).fill_(0).cuda()
q = [x, y, x, y.storage()]
with tempfile.NamedTemporaryFile() as f:
torch.save(q, f)
f.seek(0)
q_copy = torch.load(f)
self.assertEqual(q_copy, q, atol=0, rtol=0)
q_copy[0].fill_(5)
self.assertEqual(q_copy[0], q_copy[2], atol=0, rtol=0)
self.assertTrue(isinstance(q_copy[0], torch.cuda.FloatTensor))
self.assertTrue(isinstance(q_copy[1], torch.cuda.IntTensor))
self.assertTrue(isinstance(q_copy[2], torch.cuda.FloatTensor))
self.assertTrue(isinstance(q_copy[3], torch.storage.TypedStorage))
self.assertTrue(isinstance(q_copy[3]._storage, torch.UntypedStorage))
q_copy[1].fill_(10)
self.assertEqual(q_copy[3], torch.cuda.IntStorage(10).fill_(10))
def test_cublas_allow_tf32_get_set(self):
skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\
int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE'])
if skip_tf32_cublas:
self.assertTrue(torch.backends.cuda.matmul.allow_tf32)
return
orig = torch.backends.cuda.matmul.allow_tf32
self.assertEqual(torch._C._get_cublas_allow_tf32(), orig)
torch.backends.cuda.matmul.allow_tf32 = not orig
self.assertEqual(torch._C._get_cublas_allow_tf32(), not orig)
torch.backends.cuda.matmul.allow_tf32 = orig
def test_float32_matmul_precision_get_set(self):
self.assertEqual(torch.get_float32_matmul_precision(), 'highest')
skip_tf32_cublas = 'TORCH_ALLOW_TF32_CUBLAS_OVERRIDE' in os.environ and\
int(os.environ['TORCH_ALLOW_TF32_CUBLAS_OVERRIDE'])
if not skip_tf32_cublas:
self.assertFalse(torch.backends.cuda.matmul.allow_tf32)
for p in ('medium', 'high'):
torch.set_float32_matmul_precision(p)
self.assertEqual(torch.get_float32_matmul_precision(), p)
if not skip_tf32_cublas:
self.assertTrue(torch.backends.cuda.matmul.allow_tf32)
torch.set_float32_matmul_precision('highest')
self.assertEqual(torch.get_float32_matmul_precision(), 'highest')
if not skip_tf32_cublas:
self.assertFalse(torch.backends.cuda.matmul.allow_tf32)
def test_cublas_allow_fp16_reduced_precision_reduction_get_set(self):
orig = torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction
self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), orig)
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = not orig
self.assertEqual(torch._C._get_cublas_allow_fp16_reduced_precision_reduction(), not orig)
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = orig
def test_cudnn_allow_tf32_get_set(self):
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=False):
self.assertFalse(torch.backends.cudnn.allow_tf32)
with torch.backends.cudnn.flags(enabled=None, benchmark=None, deterministic=None, allow_tf32=True):
self.assertTrue(torch.backends.cudnn.allow_tf32)
def test_type_conversions(self):
x = torch.randn(5, 5)
self.assertIsInstance(x.float(), torch.FloatTensor)
self.assertIsInstance(x.cuda().double(), torch.cuda.DoubleTensor)
self.assertIsInstance(x.cuda().float(), torch.cuda.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu(), torch.FloatTensor)
self.assertIsInstance(x.cuda().float().cpu().int(), torch.IntTensor)
y = x.storage()
self.assertIsInstance(y.float(), torch.FloatStorage)
self.assertIsInstance(y.cuda().double(), torch.cuda.DoubleStorage)
self.assertIsInstance(y.cuda().float(), torch.cuda.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu(), torch.FloatStorage)
self.assertIsInstance(y.cuda().float().cpu().int(), torch.IntStorage)
@unittest.skip("was disabled due to not enough memory, but actually it always fail")
def test_arithmetic_large_tensor(self):
x = torch.empty(2**30, device='cuda')
x.fill_(1)
self.assertEqual(x.sum(), 2**30)
x += 1
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x -= 0.5
self.assertEqual(x.sum(), 2**29)
x.fill_(1)
x *= 2
self.assertEqual(x.sum(), 2**31)
x.fill_(1)
x /= 2
self.assertEqual(x.sum(), 2**29)
def test_gather_bool(self):
t = torch.tensor([[False, True], [True, True]], device='cuda')
self.assertEqual(torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]], device='cuda')),
torch.tensor([[False, False], [True, True]], device='cuda'))
def test_torch_manual_seed_seeds_cuda_devices(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
torch.manual_seed(2)
y = x.clone().uniform_()
self.assertEqual(x, y)
self.assertEqual(torch.cuda.initial_seed(), 2)
def test_manual_seed(self):
with freeze_rng_state():
x = torch.zeros(4, 4).float().cuda()
torch.cuda.manual_seed(2)
self.assertEqual(torch.cuda.initial_seed(), 2)
x.uniform_()
a = torch.bernoulli(torch.full_like(x, 0.5))
torch.cuda.manual_seed(2)
y = x.clone().uniform_()
b = torch.bernoulli(torch.full_like(x, 0.5))
self.assertEqual(x, y)
self.assertEqual(a, b)
self.assertEqual(torch.cuda.initial_seed(), 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_cat_autogpu(self):
x = torch.randn(4, 4).cuda(1)
y = torch.randn(4, 4).cuda(1)
z = torch.cat([x, y], 0)
self.assertEqual(z.get_device(), x.get_device())
@unittest.skipIf(torch.cuda.device_count() >= 10, "Loading a cuda:9 tensor")
def test_load_nonexistent_device(self):
# Setup: create a serialized file object with a 'cuda:9' restore location
tensor = torch.randn(2, device='cuda')
buf = io.BytesIO()
torch.save(tensor, buf)
# NB: this might not work in the future if serialization changes
buf = io.BytesIO(buf.getvalue().replace(b'cuda:0', b'cuda:9'))
msg = r'Attempting to deserialize object on CUDA device 9'
with self.assertRaisesRegex(RuntimeError, msg):
_ = torch.load(buf)
def test_specify_improper_device_name(self):
import os
fname = "tempfile.pt"
try:
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
torch.save([torch.nn.Parameter(torch.randn(10, 10))], fname,
_use_new_zipfile_serialization=True)
torch.load(fname, 'cuda0')
finally:
if os.path.exists(fname):
os.remove(fname)
def test_get_device_index(self):
from torch.cuda._utils import _get_device_index
with self.assertRaisesRegex(RuntimeError, "Invalid device string"):
_get_device_index('cuda0', optional=True)
with self.assertRaisesRegex(ValueError, "Expected a cuda device"):
cpu_device = torch.device('cpu')
_get_device_index(cpu_device, optional=True)
def test_serialization_array_with_empty(self):
x = [torch.randn(4, 4).cuda(), torch.cuda.FloatTensor()]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), original.get_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_serialization_remap(self):
x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
def gpu_remap(storage, location):
if location == 'cuda:1':
return storage.cuda(0)
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f, map_location=gpu_remap)
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_serialization_remap_dict(self):
x = [torch.randn(4, 4).cuda(0), torch.randn(4, 4).cuda(1)]
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f)
f.seek(0)
x_copy = torch.load(f, map_location={'cuda:1': 'cuda:0'})
for original, copy in zip(x, x_copy):
self.assertEqual(copy, original)
self.assertIs(type(copy), type(original))
self.assertEqual(copy.get_device(), 0)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_multigpu_storage_clone(self):
x = torch.randn(4, 4, device='cuda:1').storage()
y = x.clone()
self.assertEqual(x.get_device(), y.get_device())
for t in ['byte', 'char', 'short', 'int', 'long', 'half', 'double']:
self.assertEqual(getattr(x, t)().get_device(), x.get_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_cuda_set_device(self):
x = torch.randn(5, 5)
with torch.cuda.device(1):
self.assertEqual(x.cuda().get_device(), 1)
torch.cuda.set_device(0)
self.assertEqual(x.cuda().get_device(), 0)
with torch.cuda.device(1):
self.assertEqual(x.cuda().get_device(), 1)
self.assertEqual(x.cuda().get_device(), 0)
torch.cuda.set_device(1)
self.assertEqual(x.cuda().get_device(), 0)
def test_cuda_synchronize(self):
torch.cuda.synchronize()
torch.cuda.synchronize('cuda')
torch.cuda.synchronize('cuda:0')
torch.cuda.synchronize(0)
torch.cuda.synchronize(torch.device('cuda:0'))
if TEST_MULTIGPU:
torch.cuda.synchronize('cuda:1')
torch.cuda.synchronize(1)
torch.cuda.synchronize(torch.device('cuda:1'))
with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"):
torch.cuda.synchronize(torch.device("cpu"))
with self.assertRaisesRegex(ValueError, "Expected a cuda device, but"):
torch.cuda.synchronize("cpu")
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_current_stream(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
s0 = torch.cuda.current_stream()
s1 = torch.cuda.current_stream(device=1)
s2 = torch.cuda.current_stream(device=0)
self.assertEqual(d0, s0.device)
self.assertEqual(d1, s1.device)
self.assertEqual(d0, s2.device)
self.assertEqual(s0, s2)
with torch.cuda.device(d1):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.current_stream(1)
s2 = torch.cuda.current_stream(d0)
self.assertEqual(d1, s0.device)
self.assertEqual(d1, s1.device)
self.assertEqual(d0, s2.device)
self.assertEqual(s0, s1)
with self.assertRaisesRegex(ValueError,
"Expected a cuda device, but got: cpu"):
torch.cuda.current_stream(torch.device('cpu'))
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
@skipCUDANonDefaultStreamIf(True)
def test_default_stream(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.default_stream()
with torch.cuda.device(d1):
s1 = torch.cuda.default_stream()
s2 = torch.cuda.default_stream(device=0)
s3 = torch.cuda.default_stream(d1)
self.assertEqual(d0, s0.device)
self.assertEqual(d1, s1.device)
self.assertEqual(d0, s2.device)
self.assertEqual(d1, s3.device)
self.assertEqual(s0, s2)
self.assertEqual(s1, s3)
with torch.cuda.device(d0):
self.assertEqual(torch.cuda.current_stream(), s0)
with torch.cuda.device(d1):
self.assertEqual(torch.cuda.current_stream(), s1)
with self.assertRaisesRegex(ValueError,
"Expected a cuda device, but got: cpu"):
torch.cuda.default_stream(torch.device('cpu'))
@skipCUDANonDefaultStreamIf(True)
def test_streams(self):
default_stream = torch.cuda.current_stream()
user_stream = torch.cuda.Stream()
self.assertEqual(torch.cuda.current_stream(), default_stream)
self.assertNotEqual(default_stream, user_stream)
self.assertEqual(default_stream.cuda_stream, 0)
self.assertNotEqual(user_stream.cuda_stream, 0)
with torch.cuda.stream(user_stream):
self.assertEqual(torch.cuda.current_stream(), user_stream)
self.assertTrue(user_stream.query())
tensor1 = torch.ByteTensor(5).pin_memory()
tensor2 = tensor1.cuda(non_blocking=True) + 1
default_stream.synchronize()
self.assertTrue(default_stream.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_stream_event_device(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
e0 = torch.cuda.Event()
self.assertEqual(None, e0.device)
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
s0.record_event(e0)
with torch.cuda.device(d1):
s1 = torch.cuda.Stream()
e1 = s1.record_event()
self.assertEqual(s0.device, torch.device('cuda:0'))
self.assertEqual(e0.device, torch.device('cuda:0'))
self.assertEqual(s1.device, torch.device('cuda:1'))
self.assertEqual(e1.device, torch.device('cuda:1'))
def test_stream_event_repr(self):
s = torch.cuda.current_stream()
self.assertTrue("torch.cuda.Stream" in s.__repr__())
e = torch.cuda.Event()
self.assertTrue("torch.cuda.Event" in e.__repr__())
s.record_event(e)
self.assertTrue("torch.cuda.Event" in e.__repr__())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_stream_context(self):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.Stream(device=1)
s2 = torch.cuda.Stream(device=0)
with torch.cuda.device(s1.device):
prev_stream_on_cuda1 = torch.cuda.current_stream()
self.assertEqual(torch.cuda.current_stream(), s0)
self.assertEqual(0, torch.cuda.current_device())
with torch.cuda.stream(s1):
self.assertEqual(torch.cuda.current_stream(), s1)
self.assertEqual(1, torch.cuda.current_device())
with torch.cuda.stream(s2):
self.assertEqual(torch.cuda.current_stream(), s2)
self.assertEqual(0, torch.cuda.current_device())
with torch.cuda.stream(s0):
self.assertEqual(torch.cuda.current_stream(), s0)
self.assertEqual(0, torch.cuda.current_device())
self.assertEqual(torch.cuda.current_stream(), s2)
self.assertEqual(0, torch.cuda.current_device())
self.assertEqual(torch.cuda.current_stream(), s1)
self.assertEqual(1, torch.cuda.current_device())
with torch.cuda.device(s1.device):
self.assertEqual(prev_stream_on_cuda1, torch.cuda.current_stream())
self.assertEqual(torch.cuda.current_stream(), s0)
self.assertEqual(0, torch.cuda.current_device())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_streams_multi_gpu(self):
default_stream = torch.cuda.current_stream()
self.assertEqual(default_stream.device, torch.device('cuda:0'))
stream = torch.cuda.Stream(device=1)
self.assertEqual(stream.device, torch.device('cuda:1'))
with torch.cuda.device(1):
self.assertEqual(
torch.cuda.current_stream().device, torch.device('cuda:1'))
self.assertNotEqual(torch.cuda.current_stream(), default_stream)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_streams_multi_gpu_query(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
torch.cuda.synchronize(d0)
torch.cuda.synchronize(d1)
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
with torch.cuda.device(d1):
s1 = torch.cuda.current_stream()
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
self.assertTrue(s0.query())
self.assertFalse(s1.query())
with torch.cuda.device(d0):
self.assertTrue(s0.query())
self.assertFalse(s1.query())
with torch.cuda.device(d1):
self.assertTrue(s0.query())
self.assertFalse(s1.query())
# deliberately using a different device
with torch.cuda.device(d0):
s1.synchronize()
self.assertTrue(s0.query())
self.assertTrue(s1.query())
with torch.cuda.device(d0):
self.assertTrue(s0.query())
self.assertTrue(s1.query())
with torch.cuda.device(d1):
self.assertTrue(s0.query())
self.assertTrue(s1.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_streams_multi_gpu_eq(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.current_stream()
with torch.cuda.device(d1):
s2 = torch.cuda.current_stream()
s3 = torch.cuda.current_stream()
self.assertTrue(s0 == s0)
self.assertTrue(s0 == s1)
self.assertTrue(s2 == s2)
self.assertTrue(s2 == s3)
self.assertFalse(s0 == s2)
self.assertFalse(s1 == s3)
self.assertEqual(s0.device, s1.device)
self.assertEqual(s0.cuda_stream, s1.cuda_stream)
self.assertEqual(s2.device, s3.device)
self.assertEqual(s2.cuda_stream, s3.cuda_stream)
self.assertNotEqual(s0.device, s3.device)
self.assertEqual(hash(s0), hash(s1))
self.assertEqual(hash(s2), hash(s3))
self.assertNotEqual(hash(s0), hash(s3))
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_streams_priority(self):
low, high = torch.cuda.Stream.priority_range()
s0 = torch.cuda.Stream(device=0, priority=low)
self.assertEqual(low, s0.priority)
self.assertEqual(torch.device('cuda:0'), s0.device)
s1 = torch.cuda.Stream(device=1, priority=high)
self.assertEqual(high, s1.priority)
self.assertEqual(torch.device('cuda:1'), s1.device)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_tensor_device(self):
self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 0)
self.assertEqual(torch.cuda.FloatTensor(1, device=1).get_device(), 1)
with torch.cuda.device(1):
self.assertEqual(torch.cuda.FloatTensor(1).get_device(), 1)
self.assertEqual(torch.cuda.FloatTensor(1, device=0).get_device(), 0)
self.assertEqual(torch.cuda.FloatTensor(1, device=None).get_device(), 1)
def test_events(self):
stream = torch.cuda.current_stream()
event = torch.cuda.Event(enable_timing=True)
self.assertTrue(event.query())
start_event = torch.cuda.Event(enable_timing=True)
stream.record_event(start_event)
torch.cuda._sleep(int(50 * get_cycles_per_ms()))
stream.record_event(event)
self.assertFalse(event.query())
event.synchronize()
self.assertTrue(event.query())
self.assertGreater(start_event.elapsed_time(event), 0)
@staticmethod
def _stream_synchronize(self, spin_time_cycles):
s = torch.cuda.current_stream()
e_tik = torch.cuda.Event(enable_timing=True)
e_tok = torch.cuda.Event(enable_timing=True)
e_tik.record(s)
torch.cuda._sleep(spin_time_cycles)
e_tok.record(s)
s.synchronize()
self.assertTrue(s.query())
# not necessary to check e_tik and e_tok, as elapsed_time would throw
# exception if otherwise.
return e_tik.elapsed_time(e_tok)
@staticmethod
def _event_synchronize(self, spin_time_cycles):
s = torch.cuda.current_stream()
e_tik = torch.cuda.Event(enable_timing=True)
e_tok = torch.cuda.Event(enable_timing=True)
e_tik.record(s)
torch.cuda._sleep(spin_time_cycles)
s.record_event(e_tok)
e_tok.synchronize()
self.assertTrue(s.query())
# not necessary to check e_tik and e_tok, as elapsed_time would throw
# exception if otherwise.
return e_tik.elapsed_time(e_tok)
@staticmethod
def _event_wait(self, spin_time_cycles):
s0 = torch.cuda.current_stream()
s1 = torch.cuda.Stream()
e_tik = torch.cuda.Event(blocking=True, enable_timing=True)
e_tok = torch.cuda.Event(blocking=True, enable_timing=True)
e_tik.record(s0)
torch.cuda._sleep(spin_time_cycles - 10)
e_sync = torch.cuda.Event(blocking=True)
e_sync.record()
e_sync.wait(s1)
with torch.cuda.stream(s1):
torch.cuda._sleep(10)
s1.synchronize()
e_tok.record()
e_tok.synchronize()
self.assertTrue(s0.query())
self.assertTrue(s1.query())
self.assertTrue(e_sync.query())
# not necessary to check e_tik and e_tok, as elapsed_time would throw
# exception if otherwise.
return e_tik.elapsed_time(e_tok)
@staticmethod
def _test_stream_event_nogil(self, sync_func, p2c, c2p):
with torch.cuda.device('cuda:1'):
c2p.put(0)
p2c.get()
c2p.put(sync_func(self, TestCuda.FIFTY_MIL_CYCLES))
# Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190
@skipIfRocm
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_stream_event_nogil(self):
for sync_func in [TestCuda._stream_synchronize,
TestCuda._event_synchronize,
TestCuda._event_wait]:
p2c = queue.Queue()
c2p = queue.Queue()
e_tik = torch.cuda.Event(enable_timing=True)
e_tok = torch.cuda.Event(enable_timing=True)
t = threading.Thread(
target=TestCuda._test_stream_event_nogil,
args=(self, sync_func, p2c, c2p))
t.daemon = True
t.start()
c2p.get()
with torch.cuda.device('cuda:0'):
e_tik.record()
p2c.put(0)
parent_time = sync_func(self, TestCuda.FIFTY_MIL_CYCLES)
child_time = c2p.get()
e_tok.record()
e_tok.synchronize()
total_time = e_tik.elapsed_time(e_tok)
# Without GIL, synchronizations in parent and child threads can
# overlap. The total execution time should be a little bit longer
# than spinning fifty million cycles and much shorter than twice of
# that. However, testing absolute execution time is not reliable as
# it may vary on different hardware in different environments.
# Therefore, this test uses relative comparisons, checking if the
# sum of parent and child threads execution time is greater than the
# real execution time by least 40%.
self.assertGreater(parent_time + child_time, total_time * 1.4)
# This test is flaky for ROCm, see issue #62602
@skipIfRocm
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_events_wait(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
torch.cuda.synchronize(d0)
torch.cuda.synchronize(d1)
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
e0 = torch.cuda.Event()
s0.record_event(e0)
with torch.cuda.device(d1):
s1 = torch.cuda.current_stream()
self.assertFalse(s0.query())
self.assertTrue(s1.query())
s1.wait_event(e0)
s1.synchronize()
self.assertTrue(e0.query())
self.assertTrue(s0.query())
self.assertTrue(s1.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_events_multi_gpu_query(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
e0 = s0.record_event()
s0.synchronize()
with torch.cuda.device(d1):
s1 = torch.cuda.current_stream()
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
e1 = s1.record_event()
self.assertTrue(e0.query())
self.assertFalse(e1.query())
with torch.cuda.device(d0):
self.assertTrue(e0.query())
self.assertFalse(e1.query())
with torch.cuda.device(d1):
self.assertTrue(e0.query())
self.assertFalse(e1.query())
# deliberately using a different device
with torch.cuda.device(d0):
e1.synchronize()
self.assertTrue(e0.query())
self.assertTrue(e1.query())
with torch.cuda.device(d0):
self.assertTrue(e0.query())
self.assertTrue(e1.query())
with torch.cuda.device(d1):
self.assertTrue(e0.query())
self.assertTrue(e1.query())
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
@skipIfRocm
def test_events_multi_gpu_elapsed_time(self):
d0 = torch.device('cuda:0')
d1 = torch.device('cuda:1')
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
e0 = torch.cuda.Event(enable_timing=True)
torch.cuda._sleep(10)
s0.record_event(e0)
with torch.cuda.device(d1):
s1 = torch.cuda.current_stream()
e1 = torch.cuda.Event(enable_timing=True)
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
s1.record_event(e1)
e0.synchronize()
e1.synchronize()
with torch.cuda.device(d0):
with self.assertRaises(RuntimeError):
self.assertGreater(e0.elapsed_time(e1), 0)
with torch.cuda.device(d1):
with self.assertRaises(RuntimeError):
self.assertGreater(e0.elapsed_time(e1), 0)
with torch.cuda.device(d0):
s0 = torch.cuda.current_stream()
e2 = torch.cuda.Event(enable_timing=True)
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
s0.record_event(e2)
s0.synchronize()
self.assertGreater(e0.elapsed_time(e2), 0)
# deliberately calling from a different device
with torch.cuda.device(d1):
self.assertGreater(e0.elapsed_time(e2), 0)
def test_record_stream(self):
cycles_per_ms = get_cycles_per_ms()
t = torch.FloatTensor([1, 2, 3, 4]).pin_memory()
result = torch.cuda.FloatTensor(t.size())
stream = torch.cuda.Stream()
ptr = [None]
# Performs the CPU->GPU copy in a background stream
def perform_copy():
with torch.cuda.stream(stream):
tmp = t.cuda(non_blocking=True)
ptr[0] = tmp.data_ptr()
torch.cuda.current_stream().wait_stream(stream)
tmp.record_stream(torch.cuda.current_stream())
torch.cuda._sleep(int(50 * cycles_per_ms)) # delay the copy
result.copy_(tmp)
perform_copy()
with torch.cuda.stream(stream):
tmp2 = torch.cuda.FloatTensor(t.size())
tmp2.zero_()
self.assertNotEqual(tmp2.data_ptr(), ptr[0], msg='allocation re-used to soon')
self.assertEqual(result.tolist(), [1, 2, 3, 4])
# Check that the block will be re-used after the main stream finishes
torch.cuda.current_stream().synchronize()
with torch.cuda.stream(stream):
tmp3 = torch.cuda.FloatTensor(t.size())
self.assertEqual(tmp3.data_ptr(), ptr[0], msg='allocation not re-used')
def test_record_stream_on_shifted_view(self):
# See issue #27366
# This test detects unexpected block reallocation. For reliable test,
# the stream to allocate tensors is isolated. The allocator will not
# reuse free blocks which were allocated from another stream.
stream_alloc = torch.cuda.Stream()
with torch.cuda.stream(stream_alloc):
base = torch.cuda.FloatTensor([10, 10])
# Record another stream on a shifted view tensor.
view = base[5:]
assert view.storage_offset() > 0
stream_record = torch.cuda.Stream()
with torch.cuda.stream(stream_record):
torch.cuda._sleep(int(50 * get_cycles_per_ms()))
view.record_stream(stream_record)
# Delete those tensors to make the block free soon.
data_ptr = base.data_ptr()
del base, view
# A new tensor should not be allocated to the block above.
stream_alloc.synchronize()
with torch.cuda.stream(stream_alloc):
try_realloc = torch.cuda.FloatTensor([10, 10])
self.assertNotEqual(try_realloc.data_ptr(), data_ptr)
@contextlib.contextmanager
def _get_external_stream(self, device):
cudart = torch.cuda.cudart()
stream = ctypes.c_ulonglong(0)
stream_p = ctypes.POINTER(ctypes.c_void_p)(stream)
stream_p_int = ctypes.cast(stream_p, ctypes.c_void_p).value
with device:
try:
out = cudart.cudaStreamCreate(stream_p_int)
self.assertEqual(out, 0)
self.assertNotEqual(stream.value, 0)
yield stream.value
finally:
out = cudart.cudaStreamDestroy(stream.value)
self.assertEqual(out, 0)
def test_external_streams(self):
device = torch.cuda.device(0)
with self._get_external_stream(device) as stream_v:
ext_stream = torch.cuda.ExternalStream(stream_v)
self.assertEqual(stream_v, ext_stream.cuda_stream)
self.assertEqual(ext_stream.device.index, device.idx)
@unittest.skipIf(not TEST_MULTIGPU, "detected only one GPU")
def test_external_streams_multi_device(self):
device = torch.cuda.device(1)
with self._get_external_stream(device) as stream_v:
ext_stream = torch.cuda.ExternalStream(
stream_v, device=device)
self.assertEqual(stream_v, ext_stream.cuda_stream)
self.assertEqual(ext_stream.device.index, device.idx)
def test_noncontiguous_pinned_memory(self):
# See issue #3266
x = torch.arange(0, 10).view((2, 5))
self.assertEqual(x.t(), x.t().pin_memory())
def test_caching_pinned_memory(self):
cycles_per_ms = get_cycles_per_ms()
# check that allocations are re-used after deletion
t = torch.FloatTensor([1]).pin_memory()
ptr = t.data_ptr()
del t
t = torch.FloatTensor([1]).pin_memory()
self.assertEqual(t.data_ptr(), ptr, msg='allocation not reused')
# check that the allocation is not re-used if it's in-use by a copy
gpu_tensor = torch.cuda.FloatTensor([0])
torch.cuda._sleep(int(1000 * cycles_per_ms)) # delay the copy by 1s
gpu_tensor.copy_(t, non_blocking=True)
del t
t = torch.FloatTensor([1]).pin_memory()
self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon')
self.assertEqual(list(gpu_tensor), [1])
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_caching_pinned_memory_multi_gpu(self):
# checks that the events preventing pinned memory from being re-used
# too early are recorded on the correct GPU
cycles_per_ms = get_cycles_per_ms()
t = torch.FloatTensor([1]).pin_memory()
ptr = t.data_ptr()
gpu_tensor0 = torch.cuda.FloatTensor([0], device=0)
gpu_tensor1 = torch.cuda.FloatTensor([0], device=1)
with torch.cuda.device(1):
torch.cuda._sleep(int(1000 * cycles_per_ms)) # delay the copy by 1s
gpu_tensor1.copy_(t, non_blocking=True)
del t
t = torch.FloatTensor([2]).pin_memory()
self.assertNotEqual(t.data_ptr(), ptr, msg='allocation re-used too soon')
with torch.cuda.device(0):
gpu_tensor0.copy_(t, non_blocking=True)
self.assertEqual(gpu_tensor1[0], 1)
self.assertEqual(gpu_tensor0[0], 2)
def test_caching_allocator_record_stream_oom(self):
"""allocations delayed by a record_stream call should still be freed on
an out-of-memory in cuda_malloc_retry. see issue #19219"""
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
y = torch.zeros(40 * 1024 * 1024, device='cuda')
for _ in range(100):
x = torch.empty(40 * 1024 * 1024, device='cuda')
with torch.cuda.stream(stream):
y += x
# delays re-use of `x` until after all operations in `stream`
x.record_stream(stream)
del x
# we've made a mess by allocating up to the device capacity. free any
# cached blocks in case it affects future tests.
torch.cuda.empty_cache()
# Tests for historic illegal memory access, see #17040.
def test_reduction_gpu_memory_accessing(self):
x = torch.ones(512, 8, dtype=torch.float32, device='cuda')
torch.sum(x, 0)
def test_sum_fp16(self):
x = torch.zeros(10, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(), 0)
x = torch.ones(65504, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(), 65504)
self.assertEqual(x.sum(dtype=torch.float32), 65504)
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.sum(dtype=torch.float32), 65536)
a = torch.zeros(1203611).bernoulli_(0.0005)
x = a.to(device='cuda', dtype=torch.float16)
self.assertEqual(x.sum().item(), a.sum().item())
a = torch.zeros(100, 121, 80).bernoulli_(0.0005)
x = a.to(device='cuda', dtype=torch.float16)
self.assertEqual(x.sum((0, 2)).float().cpu(), a.sum((0, 2)))
def test_mean_fp16(self):
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.mean(), 1)
x = torch.ones(65536, device='cuda', dtype=torch.float16)
self.assertEqual(x.mean(dtype=torch.float32), 1)
def test_prod_large(self):
# tests global reduction (should_global_reduce = true) in case of non-zero identity element
x = torch.ones(240000, device='cuda', dtype=torch.float32)
self.assertEqual(x.prod(), 1)
# test for complex types. Note 240k is divisible by 4
for dtype in [torch.cfloat, torch.cdouble]:
x = torch.ones(240000, device='cuda', dtype=dtype) * (0 + 1j)
self.assertEqual(x.prod(), 1)
def test_multinomial_ext(self):
# Test two corner cases from older PyTorch (Issue #4858)
freqs = torch.cuda.FloatTensor([
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.03178183361887932, 0.027680952101945877, 0.033176131546497345,
0.046052902936935425, 0.07742464542388916, 0.11543981730937958,
0.14148041605949402, 0.15784293413162231, 0.13180233538150787,
0.08271478116512299, 0.049702685326337814, 0.027557924389839172,
0.018125897273421288, 0.011851548217236996, 0.010252203792333603,
0.007422595750540495, 0.005372154992073774, 0.0045109698548913,
0.0036087757907807827, 0.0035267581697553396, 0.0018864056328311563,
0.0024605290964245796, 0.0022964938543736935, 0.0018453967059031129,
0.0010662291897460818, 0.0009842115687206388, 0.00045109697384759784,
0.0007791675161570311, 0.00020504408166743815, 0.00020504408166743815,
0.00020504408166743815, 0.00012302644609007984, 0.0,
0.00012302644609007984, 4.100881778867915e-05, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0])
torch.cuda.manual_seed(11042)
sample = torch.multinomial(freqs, 1000, True)
self.assertNotEqual(freqs[sample].min(), 0)
p = torch.zeros(3421, 2, device="cuda", dtype=torch.float)
p[:, 1] = 1
torch.cuda.manual_seed(5214)
r = torch.multinomial(p, 1)
self.assertNotEqual(r.min().item(), 0)
# test corner case from Issue #13867
torch.cuda.manual_seed(33)
probs = torch.randn(1000000, device='cuda').clamp(min=0) * 3e-5
samples = probs.multinomial(1000000, replacement=True)
self.assertGreater(probs[samples].min().item(), 0)
def _spawn_test_multinomial_invalid_probs_cuda(self, probs):
import subprocess
try:
p = subprocess.Popen([sys.executable, '-c', f"""\
import sys
import torch
from torch._six import inf, nan
try:
with torch.random.fork_rng(devices=[0]):
torch.multinomial(torch.tensor({probs}).to('cuda'), 2, replacement=True)
torch.cuda.synchronize()
sys.exit(-1) # Should not be reached
except RuntimeError as e:
sys.exit(-2)
"""], stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)
out, err = p.communicate(timeout=10)
p.wait(timeout=10)
except subprocess.TimeoutExpired as e:
p.kill()
out, err = p.communicate()
expected_messages = [
'device-side assert triggered', # CUDA
'Assertion', # CUDA
'HSA_STATUS_ERROR_EXCEPTION', # ROCm
'Device-side assertion' # ROCm
]
self.assertTrue(any([msg in out or msg in err for msg in expected_messages]))
@slowTest
@unittest.skipIf(TEST_WITH_ROCM, "ROCm doesn't support device side asserts")
@unittest.skipIf(NO_MULTIPROCESSING_SPAWN, "Disabled for environments that \
don't support multiprocessing with spawn start method")
def test_multinomial_invalid_probs_cuda(self):
self._spawn_test_multinomial_invalid_probs_cuda([1., -1., 1.])
self._spawn_test_multinomial_invalid_probs_cuda([1., inf, 1.])
self._spawn_test_multinomial_invalid_probs_cuda([1., -inf, 1.])
self._spawn_test_multinomial_invalid_probs_cuda([1., 1., nan])
@slowTest
@unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
def test_huge_index(self):
src = torch.empty(15000000, 45, device='cuda', dtype=torch.long).random_(0, 2**22)
idx = torch.randperm(src.shape[0], device='cuda')
res = src[idx]
res_cpu = src.cpu()[idx.cpu()]
self.assertEqual(res.cpu(), res_cpu)
def test_min_max_inits(self):
# Testing if THC_reduceAll received the correct index initialization.
# This affects the result of THC_reduceAll operations at extreme values
x = torch.cuda.ByteTensor([0])
y = torch.cuda.ByteTensor([255])
expected = torch.cuda.LongTensor([0])[0]
_, v = x.max(dim=0)
self.assertEqual(v, expected)
_, v = y.min(dim=0)
self.assertEqual(v, expected)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_get_set_rng_state_all(self):
states = torch.cuda.get_rng_state_all()
before0 = torch.cuda.FloatTensor(100, device=0).normal_()
before1 = torch.cuda.FloatTensor(100, device=1).normal_()
torch.cuda.set_rng_state_all(states)
after0 = torch.cuda.FloatTensor(100, device=0).normal_()
after1 = torch.cuda.FloatTensor(100, device=1).normal_()
self.assertEqual(before0, after0, atol=0, rtol=0)
self.assertEqual(before1, after1, atol=0, rtol=0)
def test_nvtx(self):
# Just making sure we can see the symbols
torch.cuda.nvtx.range_push("foo")
torch.cuda.nvtx.mark("bar")
torch.cuda.nvtx.range_pop()
range_handle = torch.cuda.nvtx.range_start("range_start")
torch.cuda.nvtx.range_end(range_handle)
def test_bincount_ext(self):
# ensure CUDA code coverage
input_size = (5000,)
w = torch.randn(input_size, dtype=torch.double, device='cuda')
w_cpu = w.cpu()
# test shared memory impl
t = torch.randint(50, input_size, dtype=torch.int8, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
# test multi block memory impl
# see `THRESH_NUMBER_BINS_FOR_MULTI_BLOCK_MEM` in SummaryOps.cu
t = torch.randint(500, input_size, dtype=torch.int64, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
# test global memory impl
# see `THRESH_NUMBER_BINS_FOR_GLOBAL_MEM` in SummaryOps.cu
t = torch.randint(2000, input_size, dtype=torch.int64, device='cuda')
self.assertEqual(t.cpu().bincount(), t.bincount())
self.assertEqual(t.cpu().bincount(w_cpu), t.bincount(w))
t = torch.zeros([10], dtype=torch.int32, device='cuda')
# 35488 * 65536 as int32 would cause overflow to negative value
# giving negative bin offset
t[0] = 35488
counted = t.bincount(minlength=65536)
self.assertEqual(torch.sum(counted), 10)
def test_tiny_half_norm_(self):
a = torch.arange(25).cuda().float()
a /= 100000000
b = a.half()
self.assertGreater(b.norm().item(), 0)
def test_norm_type_conversion(self):
a = torch.ones(65536).cuda().half()
self.assertEqual(a.norm(p=0, dtype=torch.float32), 65536)
# Verifies that mem_get_info works, including when called for a different device
def test_mem_get_info(self):
def _test(idx):
before_free_bytes, before_available_bytes = torch.cuda.mem_get_info(idx)
# increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms
t = torch.randn(1024 * 1024 * 8, device='cuda:' + str(idx))
after_free_bytes, after_available_bytes = torch.cuda.mem_get_info(idx)
self.assertTrue(after_free_bytes < before_free_bytes)
self.assertEqual(before_available_bytes, after_available_bytes)
_test(0)
if TEST_MULTIGPU:
_test(1)
# Test that wrap_with_cuda_memory_check successfully detects leak
def test_cuda_memory_leak_detection(self):
l = []
@self.wrap_with_cuda_memory_check
def no_leak():
pass
@self.wrap_with_cuda_memory_check
def leak_gpu0():
# increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms
l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:0")))
no_leak()
with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 0.+"):
leak_gpu0()
if TEST_MULTIGPU:
@self.wrap_with_cuda_memory_check
def leak_gpu1():
# increasing to 8MB to force acquiring a new block and overcome blocksize differences across platforms
l.append(torch.randn(1024 * 1024 * 8, device=torch.device("cuda:1")))
with self.assertRaisesRegex(RuntimeError, r"CUDA driver API confirmed .+ on device 1.+"):
leak_gpu1()
def test_cuda_memory_leak_detection_propagates_errors(self):
with self.assertRaisesRegex(RuntimeError, r"The size of tensor a \(3\) must match"):
with self.assertLeaksNoCudaTensors():
x = torch.randn(3, 1, device='cuda')
y = torch.randn(2, 1, device='cuda')
z = x + y
@unittest.skipIf(not TEST_MEDIUM_TENSOR, "not enough memory")
def test_cuda_kernel_loop_overflow(self):
# Issue #24309: In extreme cases, the loop variable could overflow and continue
# the kernel loop with a negative index, causing a RuntimeError (invalid write):
x = torch.randn(1, 1, 1, 2**30 + 1, dtype=torch.float16, device="cuda")
expected = x[0, 0, 0, 2**30]
y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
torch.cuda.synchronize()
self.assertEqual(y[0, 0, 0, 2**30], expected)
@unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
def test_cuda_kernel_loop_overflow_large(self):
# Make sure input.numel() > INT_MAX is handled:
x = torch.randn(1, 1, 1, 2**31, dtype=torch.float16, device="cuda")
with self.assertRaisesRegex(RuntimeError, "integer out of range"):
y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
# Issue #24309: In extreme cases, the loop variable could overflow and continue
# the kernel loop with a negative index, causing a RuntimeError (invalid write):
x = torch.randn(1, 1, 1, 2**31 - 1, dtype=torch.float16, device="cuda")
expected = x[0, 0, 0, 2**31 - 2]
y = torch.nn.functional.avg_pool2d(x, kernel_size=1)
torch.cuda.synchronize()
self.assertEqual(y[0, 0, 0, 2**31 - 2], expected)
# this might create a reference cycle on self...
def _make_multiply_in_stream(self):
class MultiplyInStream(torch.autograd.Function):
@staticmethod
def forward(ctx, x, val):
ctx.val = val
ctx.stream = torch.cuda.current_stream()
return x * val
@staticmethod
def backward(ctx, grad):
self.assertEqual(torch.cuda.current_stream(), ctx.stream)
# delays the operation in the the background stream
torch.cuda._sleep(1000 * 5000)
return grad * ctx.val, None
return MultiplyInStream
@skipCUDANonDefaultStreamIf(True)
def test_streaming_backwards_sync(self):
default_stream = torch.cuda.current_stream()
stream = torch.cuda.Stream()
MultiplyInStream = self._make_multiply_in_stream()
# Tests using grads outside the backward() stream context
# See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html
x = torch.randn(5, 5, device='cuda', requires_grad=True)
with torch.cuda.stream(stream):
stream.wait_stream(default_stream)
output = MultiplyInStream.apply(x, 2)
output.sum().backward()
# sync needed
default_stream.wait_stream(stream)
self.assertEqual(x.grad, torch.ones_like(x) * 2)
self.assertEqual(torch.cuda.current_stream(), default_stream)
# Tests that using grads in the same stream context as backward()
# is safe regardless what streams bwd ops ran on
bwd_ambient_stream = torch.cuda.Stream()
x = torch.randn(5, 5, device='cuda', requires_grad=True)
with torch.cuda.stream(stream):
stream.wait_stream(default_stream)
output = MultiplyInStream.apply(x, 3)
with torch.cuda.stream(bwd_ambient_stream):
bwd_ambient_stream.wait_stream(stream)
output.sum().backward()
# x was first used on "stream" so its AccumulateGrad leaf should run on "stream".
# The end of backward() should have synced "bwd_ambient_stream" with "stream"
# so it should be safe to use x.grad here without any syncs.
self.assertEqual(x.grad, torch.ones_like(x) * 3)
self.assertEqual(torch.cuda.current_stream(), bwd_ambient_stream)
# Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190
@skipIfRocm
def test_streaming_backwards_multiple_streams(self):
MultiplyInStream = self._make_multiply_in_stream()
class StreamModel(torch.nn.Module):
def __init__(self):
super(StreamModel, self).__init__()
self.event = torch.cuda.Event()
self.stream0 = torch.cuda.Stream()
self.stream1 = torch.cuda.Stream()
def forward(self, x, x_first_use_on_ambient):
if x_first_use_on_ambient:
x0 = x.clone()
self.stream0.wait_stream(torch.cuda.current_stream())
self.stream1.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.stream0):
if not x_first_use_on_ambient:
x0 = x.clone()
y0 = MultiplyInStream.apply(x0, 2)
self.event.record(stream=torch.cuda.current_stream())
with torch.cuda.stream(self.stream1):
y1 = MultiplyInStream.apply(x, 3)
self.stream1.wait_event(self.event)
return y0 + y1
stream = torch.cuda.Stream()
for x_first_use_on_ambient in (True, False):
# the out_of_place=False, iters=1 case stresses if proper syncs are inserted
# when grads are initially None and stolen by backward ops.
for out_of_place, iters in ((True, 1),
(False, 1),
(False, 5)):
with torch.cuda.stream(stream):
x = torch.randn(5, 5, device='cuda', requires_grad=True)
model = StreamModel().cuda()
x.register_hook(lambda grad: self.assertEqual(torch.cuda.current_stream(),
stream if x_first_use_on_ambient else model.stream0))
for p in model.parameters():
self.assertTrue(p.grad is None)
for i in range(iters):
loss = model(x, x_first_use_on_ambient).sum()
if out_of_place:
x_grad = torch.autograd.grad((loss,), (x,))[0]
else:
loss.backward()
# See "Stream semantics of backward passes" on https://pytorch.org/docs/stable/notes/cuda.html
torch.cuda.current_stream().wait_stream(stream)
if out_of_place:
self.assertEqual(x_grad, torch.ones_like(x) * 5 * iters)
else:
self.assertEqual(x.grad, torch.ones_like(x) * 5 * iters)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_streaming_backwards_device_transfer(self):
# This function must run with non-default current streams on all devices, otherwise it's meaningless.
# The intention is to test that to()'s backward (CopyBackward) interacts properly with the
# synchronization logic in torch/csrc/autograd/input_buffer.cpp.
dev0 = torch.device("cuda:0")
dev1 = torch.device("cuda:1")
# Unfortunately I need to make the tensors largeish.
# Bigger tensors = longer D2D transfers = more likely to expose races.
size = 2**26
a = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True)
b = torch.full((size,), 1, device=dev1, dtype=torch.float64, requires_grad=True)
# Here to_backward_recipient = a*b is used only once, so MulBackward's InputBuffer slot only expects 1 input.
# This tests the situation where we don't call InputBuffer::accumulate for MulBackward's InputBuffer.
to_backward_recipient = a * b
s = to_backward_recipient.to(device="cuda:0").sum()
torch.cuda.synchronize(device=dev0)
torch.cuda.synchronize(device=dev1)
s.backward()
self.assertTrue(a.grad.sum().item() == size)
self.assertTrue(b.grad.sum().item() == size)
# Here to_backward_recipient = a*b is used twice, so MulBackward's InputBuffer slot expects 2 inputs.
# This tests the situation where we do call InputBuffer::accumulate for MulBackward's InputBuffer.
a.grad = None
b.grad = None
to_backward_recipient = a * b
# Multiply by 2 here so to's backward creates gradient values that are different from the case above,
# to mitigate weirdness if the caching allocator happens to reuse memory regions that were populated
# with 1s by the case above
s0 = to_backward_recipient.to(device="cuda:0").sum() * 2.
s1 = to_backward_recipient.to(device="cuda:0").sum() * 2.
torch.cuda.synchronize(device=dev0)
torch.cuda.synchronize(device=dev1)
s0.backward(retain_graph=True)
s1.backward()
self.assertTrue(a.grad.sum().item() == 4 * size)
self.assertTrue(b.grad.sum().item() == 4 * size)
def test_streaming_backwards_sync_graph_root(self):
# This function tests if bwd ops running on a side stream properly sync with the GraphRoot.
# The potential bug it targets is a race condition. The test uses multiple trials and
# torch.cuda._sleep such that if the race condition exists, the test will almost certainly fail,
# but there's a chance it may spuriously pass. Passing does not guarantee the backend is bug-free,
# but failure does guarantee there is a bug.
fwd_bwd_op_stream = torch.cuda.Stream()
bwd_ambient_stream = torch.cuda.Stream()
# We need these streams to be different otherwise the test is meaningless.
self.assertTrue(fwd_bwd_op_stream != bwd_ambient_stream)
size = int(1e3)
a = torch.full((size,), 2.0, device="cuda", requires_grad=True)
b = torch.full((size,), 3.0, device="cuda", requires_grad=True)
# I don't think we need any manual record_streams below.
# a and b remain in scope for the entire test.
# c and grad remain in scope for each iteration, and there's a full sync between iterations.
for trial in range(5):
torch.cuda.synchronize()
a.grad = b.grad = None
with torch.cuda.stream(fwd_bwd_op_stream):
c = a * b
with torch.cuda.stream(bwd_ambient_stream):
torch.cuda.synchronize()
# Long-running dummy kernel on bwd_ambient_stream delays filling of grad
torch.cuda._sleep(int(50 * get_cycles_per_ms()))
# Fills grad on bwd_ambient_stream
grad = torch.full((size,), float(trial + 1), device="cuda")
# Bwd ops still run on fwd_bwd_ops_stream, so the following will likely fail if
# bwd ops don't sync with bwd_ambient_stream before consuming grad.
torch.autograd.backward(tensors=c, grad_tensors=grad)
# See https://github.com/pytorch/pytorch/issues/47028
# assertEquals below run on bwd_ambient_stream, so this test may also fail
# if backward() fails to sync with bwd_ambient_stream at the end.
# Synchronizing here works around the issue until a proper fix can be made.
torch.cuda.synchronize()
with torch.no_grad():
self.assertEqual(a.grad, grad * b)
self.assertEqual(b.grad, grad * a)
def test_streaming_backwards_callback(self):
# Tests if autograd callbacks sync properly with respect to leaf streams and
# the user-facing stream surrounding backward(). If it fails, first suspect is
# sync logic where "final_callbacks_" are called in torch/csrc/autograd/engine.cpp
MultiplyInStream = self._make_multiply_in_stream()
size = int(1e3)
a = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True)
b = torch.full((size,), 1, device="cuda", dtype=torch.float, requires_grad=True)
s0 = torch.cuda.Stream()
s1 = torch.cuda.Stream()
s2 = torch.cuda.Stream()
stash = []
# sets up a nontrivial structure of leaf streams
s0.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s0):
c = MultiplyInStream.apply(a, 2)
s1.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s1):
d = MultiplyInStream.apply(b, 3)
s1.wait_stream(s0)
e = c * d
def clone_leaf_grads():
stash.append(a.grad.clone())
stash.append(b.grad.clone())
# Use a hook on e to install the callback
e.register_hook(lambda grad: torch.autograd.Variable._execution_engine.queue_callback(clone_leaf_grads))
s2.wait_stream(s1)
with torch.cuda.stream(s2):
e.sum().backward()
# The autograd engine should sync s2 with all leaf streams then run the callback clone_leaf_grads on s2.
# If those things happened properly, checking the values of the cloned grads on s2 should be safe:
self.assertEqual(stash[0], torch.full_like(a, 6))
self.assertEqual(stash[1], torch.full_like(a, 6))
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
@unittest.skipIf(IS_SANDCASTLE or IS_REMOTE_GPU, "Does not work on Sandcastle")
def test_cuda_init_race(self):
# See https://github.com/pytorch/pytorch/issues/16559
import subprocess
subprocess.check_call([sys.executable, '-c', """\
import torch
import threading
def worker(rank):
torch.tensor([1.]).cuda(rank)
t1 = threading.Thread(target=worker, args=(0,))
t2 = threading.Thread(target=worker, args=(1,))
t1.start()
t2.start()
"""])
@unittest.skipIf(TEST_WITH_ROCM, "In ROCm, kernel asserts are disabled due to performance overhead")
def test_fixed_cuda_assert_async(self):
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with no values is ambiguous"):
torch._assert_async(torch.tensor([], device="cuda"))
with self.assertRaisesRegex(RuntimeError, "Boolean value of Tensor with more than one value is ambiguous"):
torch._assert_async(torch.tensor([0, 0], device="cuda"))
torch._assert_async(torch.tensor(1, device="cuda"))
torch._assert_async(torch.tensor(0.1, device="cuda"))
torch._assert_async(torch.tensor(-0.1, device="cuda"))
torch._assert_async(torch.tensor(True, device="cuda"))
torch._assert_async(torch.tensor(0 + 0.1j, device="cuda"))
fail_stmts = [
"torch._assert_async(torch.tensor(0, device='cuda'))",
"torch._assert_async(torch.tensor(0.0, device='cuda'))",
"torch._assert_async(torch.tensor(False, device='cuda'))",
"torch._assert_async(torch.tensor(0 + 0j, device='cuda'))",
]
import subprocess
for stmt in fail_stmts:
with self.subTest(stmt=stmt):
r = subprocess.call([sys.executable, '-c', f"""\
import torch
{stmt}
torch.cuda.synchronize()
"""])
self.assertTrue(r != 0)
def test_grad_scaling_unscale(self, dtype=torch.float):
inv_scale = torch.full((1,), 0.25, dtype=torch.float, device="cuda:0")
found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0")
size = 10
g = torch.full((size, size), 4.0, dtype=dtype, device="cuda:0")
ginf = g.clone()
ginf[2, 2] = float('inf')
gnan = g.clone()
gnan[2, 2] = float('nan')
# Tries selected combinations of
# - contiguous grads
# - g.clone().t() which is not contiguous but still non overlapping and dense
# - variants of g.clone()[:, :5] which are not non overlapping and dense
# Non overlapping and dense grads route into a multi tensor apply kernel,
# others use a fallback per-tensor kernel, so we should try both.
cases = (
([g.clone(), g.clone()], False),
([g.clone(), g.clone().t()], False),
([g.clone(), g.clone()[:, :5]], False),
([g.clone()[:, :5], g.clone()[:, :5]], False),
([g.clone(), ginf.clone()], True),
([g.clone(), gnan.clone()], True),
([g.clone(), ginf.clone()[:, :5]], True),
([g.clone(), gnan.clone()[:, :5]], True),
([ginf.clone(), g.clone()[:, :5]], True),
([ginf.clone()[:, :5], g.clone()[:, :5]], True),
)
for grads, has_inf in cases:
found_inf.zero_()
torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale)
if has_inf:
self.assertEqual(found_inf, 1.0)
else:
self.assertEqual(found_inf, 0.0)
for grad in grads:
self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7)
# When passing lists with mismatched dtypes to a raw
# _amp_foreach_non_finite_check_and_unscale_ call,
# it's expected to fall back to single-tensor TensorIterator kernel.
grads = [g.clone(), g.to(dtype=torch.float16)]
torch._amp_foreach_non_finite_check_and_unscale_(grads, found_inf, inv_scale)
for grad in grads:
self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7)
# Passing lists with mismatched devices to a raw
# _amp_foreach_non_finite_check_and_unscale_ call should raise errors.
if TEST_MULTIGPU:
with self.assertRaisesRegex(RuntimeError, r"Expected all tensors to be on the same device"):
torch._amp_foreach_non_finite_check_and_unscale_([g.clone(), g.to(device="cuda:1")],
found_inf,
inv_scale)
# Creates a list of grads with mismatched dtypes and devices, to ensure
# scaler._unscale_grads_ organizes grads by dtype and device before calling
# _amp_foreach_non_finite_check_and_unscale_ on each set.
# If inject_inf >= 0, writes an inf into one grad for _unscale_grads_ to find.
def perfect_storm_grads(inject_inf):
grads = [g.clone(), g.clone()[:, :5], g.to(dtype=torch.float16), g.to(dtype=torch.float16)]
if TEST_MULTIGPU:
grads += [g.to(device="cuda:1"),
g.to(device="cuda:1")[:, :5],
g.to(device="cuda:1", dtype=torch.float16),
g.to(device="cuda:1", dtype=torch.float16)]
if inject_inf >= 0:
grads[inject_inf][2, 2] = float('inf')
return grads
scaler = torch.cuda.amp.GradScaler()
dummy_params = [torch.empty_like(g) for g in perfect_storm_grads(-1)]
dummy_opt = torch.optim.SGD(dummy_params, lr=1.)
# Ensures the inf/nan checking can find an inf injected onto any grad in the perfect storm.
for inject_inf in range(-1, len(dummy_params)):
found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0")
grads = perfect_storm_grads(inject_inf)
for i, p in enumerate(dummy_params):
p.grad = grads[i]
found_inf_per_device = scaler._unscale_grads_(dummy_opt, inv_scale, found_inf, True)
if inject_inf < 0:
# No inf was injected, ensures unscaling worked normally.
self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 0)
for grad in grads:
self.assertEqual(grad, torch.ones_like(grad), rtol=1e-5, atol=1e-7)
else:
# inf was injected, ensures inf was found.
self.assertTrue(sum(v.item() for v in found_inf_per_device.values()) == 1)
def test_grad_scaling_update_scale(self, device="cuda", dtype=torch.float):
growth = 2.0
backoff = 0.25
growth_interval = 2
scale = torch.full((1,), 4.0, dtype=dtype, device=device)
growth_tracker = torch.full((1,), 0.0, dtype=torch.int32, device=device)
found_inf = torch.full((1,), 0.0, dtype=torch.float, device="cuda:0")
# Simulates 2 consecutive unskipped iterations
torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval)
self.assertEqual(growth_tracker, 1)
self.assertEqual(scale, 4.0)
torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval)
self.assertEqual(growth_tracker, 0)
self.assertEqual(scale, 8.0)
# Simulates a skipped iteration
found_inf.fill_(1.0)
torch._amp_update_scale_(scale, growth_tracker, found_inf, growth, backoff, growth_interval)
self.assertEqual(growth_tracker, 0)
self.assertEqual(scale, 2.0)
def test_grad_scaling_unscale_sparse(self, device="cuda", dtype=torch.float):
scaler = torch.cuda.amp.GradScaler()
inv_scale = torch.full((1,), 0.25, dtype=dtype, device=device)
found_inf = torch.empty((1,), dtype=dtype, device=device)
cur = found_inf.device
# As of d0c925f (4/16/20), docs are unclear about best API for sparse cuda tensor construction.
# https://pytorch.org/docs/master/tensors.html shows torch.sparse_coo_tensor(...), but it has no docstring.
# The same page shows several tensors with layout=torch.sparse_coo, but no constructors using that layout.
# Meanwhile, https://pytorch.org/docs/master/sparse.html shows torch.sparse.FloatTensor(...), which looks
# legacy and does not accept a device="cuda" kwarg. Going with torch.sparse_coo_tensor.
i = torch.tensor([[0, 1, 1],
[2, 0, 2]], device="cuda", dtype=torch.int64)
v = torch.tensor([16., 32., 64.], device="cuda", dtype=torch.float)
s = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype)
p = s.clone()
assert p.is_sparse
opt = torch.optim.SGD([p], lr=1.)
p.grad = s.clone()
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur]
self.assertEqual(found_inf, 0.0)
self.assertEqual(p.grad.to_dense(), (s / 4).to_dense())
v = torch.FloatTensor([16., 32., float('inf')])
p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype)
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur]
self.assertEqual(found_inf, 1.0)
v = torch.FloatTensor([16., 32., float('nan')])
p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=dtype)
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, False)[cur]
self.assertEqual(found_inf, 1.0)
p = s.clone().half()
assert p.is_sparse
opt = torch.optim.SGD([p], lr=1.)
p.grad = s.clone().half()
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur]
self.assertEqual(found_inf, 0.0)
self.assertEqual(p.grad.to_dense(), (s.half() / 4).to_dense())
# Creates fp16 sparse tensor with duplicated indices (uncoalesced). The uncoalesced representation
# does not overflow in fp16, but the coalesced representation would, because 64000 + 64000 > fp16 max.
# _amp_non_finite_check_and_unscale_ should report an overflow here.
i = torch.LongTensor([[0, 1, 0],
[2, 0, 2]])
v = torch.FloatTensor([64000., 32., 64000.])
p.grad = torch.sparse_coo_tensor(i, v, torch.Size([2, 3]), device="cuda", dtype=torch.float16)
found_inf.zero_()
found_inf = scaler._unscale_grads_(opt, inv_scale, found_inf, True)[cur]
self.assertEqual(found_inf, 1.0)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_grad_scaling_device_as_key(self):
# Ensure that different instances of "device" objects that point to the same device
# are treated as identical keys by dicts. GradScaler relies on this behavior, and may
# error otherwise in a way that's difficult to detect (a silent performance hit).
d = {}
t = torch.empty((1,), device="cuda:0")
dev0a = torch.device("cuda:0")
dev0b = torch.device("cuda:0")
dev1a = torch.device("cuda:1")
dev1b = torch.device("cuda:1")
self.assertTrue(hash(dev0a) == hash(dev0b))
self.assertTrue(hash(dev1a) == hash(dev1b))
d[dev0a] = "0a"
d[dev0b] = "0b"
self.assertTrue(len(d) == 1)
self.assertTrue(d[dev0a] == "0b")
d[t.device] = "t"
self.assertTrue(len(d) == 1)
self.assertTrue(d[dev0a] == "t")
d[dev1a] = "1a"
d[dev1b] = "1b"
self.assertTrue(len(d) == 2)
self.assertTrue(d[dev1a] == "1b")
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_grad_scaling_scale(self):
scaler = torch.cuda.amp.GradScaler(init_scale=2.)
t0 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0")
t1 = torch.full((1,), 4.0, dtype=torch.float32, device="cuda:1")
# Create some nested iterables of tensors on different devices.
outputs = (t1.clone(), (t0.clone(), t1.clone()), [t0.clone(), (t1.clone(), t0.clone())])
outputs = scaler.scale(outputs)
self.assertTrue(outputs[0] == 8.0 and outputs[1][0] == 8.0 and outputs[1][1] == 8.0 and
outputs[2][0] == 8.0 and outputs[2][1][0] == 8.0 and outputs[2][1][1] == 8.0)
self.assertTrue(scaler._scale.device == t1.device)
def test_grad_scaling_state_dict(self):
for lazy_init_scale in True, False:
s0 = torch.cuda.amp.GradScaler(init_scale=3., growth_factor=4., backoff_factor=.5, growth_interval=2)
s1 = torch.cuda.amp.GradScaler(init_scale=6., growth_factor=7., backoff_factor=.8, growth_interval=1)
# sets a random value for load_state_dict to overwrite
s1._init_growth_tracker = 7
if lazy_init_scale:
# Dummy scale() call to ensure the scale tensor is lazily initialized.
s1.scale(torch.full((1,), 4.0, dtype=torch.float32, device="cuda:0"))
self.assertTrue(isinstance(s1._scale, torch.cuda.FloatTensor))
s1.load_state_dict(s0.state_dict())
self.assertEqual(s1.get_scale(), 3.)
self.assertEqual(s1.get_growth_factor(), 4.)
self.assertEqual(s1.get_backoff_factor(), .5)
self.assertEqual(s1.get_growth_interval(), 2)
self.assertEqual(s1._init_growth_tracker, 0)
def _create_scaling_models_optimizers(self, device="cuda", optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
# Create a module+optimizer that will use scaling, and a control module+optimizer
# that will not use scaling, against which the scaling-enabled module+optimizer can be compared.
mod_control = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
mod_scaling = torch.nn.Sequential(torch.nn.Linear(8, 8), torch.nn.Linear(8, 8)).to(device=device)
with torch.no_grad():
for c, s in zip(mod_control.parameters(), mod_scaling.parameters()):
s.copy_(c)
kwargs = {"lr": 1.0}
if optimizer_kwargs is not None:
kwargs.update(optimizer_kwargs)
opt_control = optimizer_ctor(mod_control.parameters(), **kwargs)
opt_scaling = optimizer_ctor(mod_scaling.parameters(), **kwargs)
return mod_control, mod_scaling, opt_control, opt_scaling
def _create_scaling_case(self, device="cuda", dtype=torch.float, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
data = [(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device)),
(torch.randn((8, 8), dtype=dtype, device=device), torch.randn((8, 8), dtype=dtype, device=device))]
loss_fn = torch.nn.MSELoss().cuda()
skip_iter = 2
return self._create_scaling_models_optimizers(
device=device, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
) + (data, loss_fn, skip_iter)
# _run_scaling_case generalizes some single-optimizer test logic to avoid too much copy-pasting below.
def _run_scaling_case(self, run, unskipped, skipped, atol=1e-7, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
# Ensure scaling can be disabled without changing user control flow.
for enabled in True, False:
(
mod_control, mod_scaling, opt_control, opt_scaling, data, loss_fn, skip_iter,
) = self._create_scaling_case(optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs)
# For functionality, test with a modest initial scale, and an unrealistically-large growth factor
# so any potential errors with the growth factor handling will be magnified.
scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1)
_ = run(data, mod_control, opt_control, scaler, loss_fn, skip_iter, False)
ret = run(data, mod_scaling, opt_scaling, scaler, loss_fn, skip_iter, True)
# Allows run() to optionally return a different scaler instance.
scaler = ret if ret else scaler
# If scaling was enabled, the scale factor should have been multiplied by the growth factor
# len(data) - skipped times and the backoff factor "skipped" times.
if enabled:
net_growth = scaler.get_growth_factor()**unskipped if unskipped > 0 else 1.0
net_backoff = scaler.get_backoff_factor()**skipped if skipped > 0 else 1.0
self.assertTrue(scaler.get_scale() == (128. * net_growth * net_backoff))
else:
self.assertTrue(scaler.get_scale() == 1.0)
for c, s in zip(mod_control.parameters(), mod_scaling.parameters()):
self.assertEqual(c.grad, s.grad, atol=atol, rtol=1e-05)
c_state, s_state = opt_control.state[c], opt_scaling.state[s]
for k in c_state:
self.assertEqual(c_state[k], s_state[k], atol=atol, rtol=1e-05, msg=k)
self.assertEqual(c, s, atol=atol, rtol=1e-05)
# Compares no scaling + no autocasting against scaling + autocasting.
def _grad_scaling_autocast_test(self, *, atol=1e-3, optimizer_ctor=torch.optim.SGD, optimizer_kwargs=None):
try_pickle = False
def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
for i, (input, target) in enumerate(data):
optimizer.zero_grad()
with torch.autocast('cuda', enabled=try_scaling_api):
output = model(input)
loss = loss_fn(output, target)
if try_scaling_api:
scaler.scale(loss).backward()
if i == skip_iter and scaler.is_enabled():
with torch.no_grad():
model[1].weight.grad.fill_(float('inf'))
scaler.step(optimizer)
scaler.update()
if try_pickle:
scaler = pickle.loads(pickle.dumps(scaler))
else:
loss.backward()
if (not scaler.is_enabled()) or (i != skip_iter):
optimizer.step()
return scaler
# NOTE(mkozuki): With current way of testing, `torch.optim.Adam` is failing in spite of `foreach` and `fused`.
# Giving some flexibility to this test might help.
context = contextlib.nullcontext
if optimizer_ctor in (torch.optim.Adam,):
from functools import partial
context = partial(self.assertRaises, AssertionError)
with context():
# sets atol=1e-3 because we're comparing pure fp32 arithmetic vs a mixture of fp16 and fp32
self._run_scaling_case(
run, unskipped=3, skipped=1, atol=atol, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
)
# this will be picked up by try_pickle within run():
try_pickle = True
self._run_scaling_case(
run, unskipped=3, skipped=1, atol=atol, optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs,
)
def test_grad_scaling_autocast(self):
for optimizer_ctor in (torch.optim.SGD, torch.optim.Adam):
self._grad_scaling_autocast_test(optimizer_ctor=optimizer_ctor)
def test_grad_scaling_autocast_foreach(self):
for optimizer_ctor in (torch.optim.SGD, torch.optim.Adam):
self._grad_scaling_autocast_test(optimizer_ctor=optimizer_ctor, optimizer_kwargs={"foreach": True})
def test_grad_scaling_autocast_fused(self):
self._grad_scaling_autocast_test(optimizer_ctor=torch.optim.Adam, optimizer_kwargs={"fused": True})
def test_grad_scaling_autocast_fused_optimizers(self):
for optimizer_ctor, optimizer_kwargs in (
(torch.optim.Adam, {"fused": True, "amsgrad": False}),
(torch.optim.Adam, {"fused": True, "amsgrad": True}),
):
self._grad_scaling_autocast_fused_optimizers(
optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs)
def _grad_scaling_autocast_fused_optimizers(self, optimizer_ctor, optimizer_kwargs):
(
mod_control, mod_scaling, opt_control, opt_scaling, data, loss_fn, _,
) = self._create_scaling_case(optimizer_ctor=optimizer_ctor, optimizer_kwargs=optimizer_kwargs)
kwargs = deepcopy(optimizer_kwargs)
kwargs["fused"] = False
opt_control = optimizer_ctor(mod_control.parameters(), lr=1.0, **kwargs)
scaler = torch.cuda.amp.GradScaler(init_scale=128.0)
for input, target in data:
opt_control.zero_grad()
with torch.autocast('cuda'):
output_control = mod_control(input)
loss_control = loss_fn(output_control, target)
scaler.scale(loss_control).backward()
scaler.step(opt_control)
scaler.update()
opt_scaling.zero_grad()
with torch.autocast('cuda'):
output_scaling = mod_scaling(input)
loss_scaling = loss_fn(output_scaling, target)
scaler.scale(loss_scaling).backward()
scaler.step(opt_scaling)
scaler.update()
self.assertEqual(loss_control, loss_scaling)
for param_control, param_scaling in zip(mod_control.parameters(), mod_scaling.parameters()):
self.assertEqual(param_control.grad, param_scaling.grad)
self.assertEqual(param_control, param_scaling)
state_control, state_scaling = opt_control.state[param_control], opt_scaling.state[param_scaling]
for k in state_control:
actual = state_scaling[k]
if k == "step":
actual = actual.squeeze()
self.assertEqual(state_control[k], actual, msg=k)
def test_grad_scaling_clipping(self):
def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
max_norm = 0.2 # A reasonable value that actually has an effect, based on printouts of grads
for i, (input, target) in enumerate(data):
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
if try_scaling_api:
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm * scaler.get_scale())
if i == skip_iter and scaler.is_enabled():
model[1].weight.grad.data.fill_(float('inf'))
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
if (not scaler.is_enabled()) or (i != skip_iter):
optimizer.step()
self._run_scaling_case(run, unskipped=3, skipped=1, atol=1e-5)
def test_grad_scaling_clipping_separate_unscale(self):
def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
max_norm = 0.2 # A reasonable value that actually has an effect, based on printouts of grads
for i, (input, target) in enumerate(data):
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
if try_scaling_api:
scaler.scale(loss).backward()
if i == skip_iter and scaler.is_enabled():
model[1].weight.grad.data.fill_(float('inf'))
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm, error_if_nonfinite=False)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
if (not scaler.is_enabled()) or (i != skip_iter):
optimizer.step()
self._run_scaling_case(run, unskipped=3, skipped=1)
@unittest.skipIf(IS_WINDOWS, 'FIXME: fix this test for Windows')
def test_grad_scaling_penalty(self):
def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
for i, (input, target) in enumerate(data):
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
if try_scaling_api:
grad_params = torch.autograd.grad(scaler.scale(loss),
model.parameters(), create_graph=True)
inv_scale = 1. / scaler.get_scale()
grad_params = [p * inv_scale for p in grad_params]
else:
grad_params = torch.autograd.grad(loss, model.parameters(), create_graph=True)
grad_norm = 0
for grad in grad_params:
grad_norm += grad.pow(2).sum()
grad_norm = grad_norm.sqrt()
loss = loss + grad_norm
if try_scaling_api:
scaler.scale(loss).backward()
if i == skip_iter and scaler.is_enabled():
model[1].weight.grad.data.fill_(float('inf'))
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
if (not scaler.is_enabled()) or (i != skip_iter):
optimizer.step()
self._run_scaling_case(run, unskipped=3, skipped=1)
def test_grad_scaling_accumulation(self):
def run(data, model, optimizer, scaler, loss_fn, skip_iter, try_scaling_api):
iters_to_accumulate = 2
for i, (input, target) in enumerate(data):
output = model(input)
loss = loss_fn(output, target)
loss = loss / iters_to_accumulate
if try_scaling_api:
scaler.scale(loss).backward()
else:
loss.backward()
if (i + 1) % iters_to_accumulate == 0:
if try_scaling_api:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
else:
optimizer.step()
optimizer.zero_grad()
self._run_scaling_case(run, unskipped=2, skipped=0)
def test_grad_scaling_multiple(self):
# Tests gradient scaling with 2 models and 2 optimizers that both receive gradients from 2 losses.
# Some of the logic here cannot reuse the generic helper functions created for the 1-optimizer cases.
for enabled in True, False:
mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \
self._create_scaling_case()
mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \
self._create_scaling_models_optimizers()
scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1)
def run(model0, model1, optimizer0, optimizer1, try_scaling_api):
for i, (input, target) in enumerate(data):
optimizer0.zero_grad()
optimizer1.zero_grad()
output0 = model0(input)
output1 = model1(input)
loss0 = loss_fn(0.3 * output0 + 0.7 * output1, target)
loss1 = loss_fn(0.6 * output0 - 0.4 * output1, target)
if try_scaling_api:
scaler.scale(loss0).backward(retain_graph=True)
scaler.scale(loss1).backward()
if i == skip_iter and scaler.is_enabled():
model1[1].weight.grad.data.fill_(float('inf'))
# As an additional stress test, separately unscale for one of the optimizers.
scaler.unscale_(optimizer0)
scaler.step(optimizer0)
scaler.step(optimizer1)
scaler.update()
else:
loss0.backward(retain_graph=True)
loss1.backward()
optimizer0.step()
if (not scaler.is_enabled()) or (i != skip_iter):
optimizer1.step()
run(mod_control0, mod_control1, opt_control0, opt_control1, False)
run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True)
# The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once.
self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 *
scaler.get_backoff_factor()**1) if enabled else 1.0)
for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()),
chain(mod_scaling0.parameters(), mod_scaling1.parameters())):
self.assertEqual(c, s, rtol=1e-5, atol=1e-7)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_grad_scaling_multigpu(self):
# Same as above, but runs some of the models on device 1.
# GradScaler should transparently handle losses and gradients on multiple devices.
# This test could be combined with the test above, but I think it makes sense to treat
# multi-GPU operations separately.
dev0 = torch.device("cuda:0")
dev1 = torch.device("cuda:1")
for enabled in True, False:
mod_control0, mod_scaling0, opt_control0, opt_scaling0, data, loss_fn, skip_iter = \
self._create_scaling_case()
mod_control1, mod_scaling1, opt_control1, opt_scaling1 = \
self._create_scaling_models_optimizers(device=dev1)
scaler = torch.cuda.amp.GradScaler(init_scale=128., growth_factor=2.0, enabled=enabled, growth_interval=1)
def run(model0, model1, optimizer0, optimizer1, try_scaling_api):
for i, (input, target) in enumerate(data):
optimizer0.zero_grad()
optimizer1.zero_grad()
output0 = model0(input)
output1 = model1(input.to(dev1))
loss0 = loss_fn(0.3 * output0 + 0.7 * output1.to(dev0), target)
loss1 = loss_fn(0.6 * output0.to(dev1) - 0.4 * output1, target.to(dev1))
if try_scaling_api:
scaler.scale(loss0).backward(retain_graph=True)
scaler.scale(loss1).backward()
if i == skip_iter and scaler.is_enabled():
model1[1].weight.grad.data.fill_(float('inf'))
# As an additional stress test, separately unscale for one of the optimizers.
scaler.unscale_(optimizer0)
scaler.step(optimizer0)
scaler.step(optimizer1)
# Make sure the found_infs were collected properly across optimizers and devices.
if scaler.is_enabled():
self.assertTrue(len(scaler._found_inf_per_device(optimizer0)) == 1)
self.assertTrue(len(scaler._found_inf_per_device(optimizer1)) == 1)
self.assertTrue(scaler._found_inf_per_device(optimizer0)[dev0].item() == 0.)
self.assertTrue(scaler._found_inf_per_device(optimizer1)[dev1].item() ==
float(i == skip_iter))
scaler.update()
else:
loss0.backward(retain_graph=True)
loss1.backward()
optimizer0.step()
if (not scaler.is_enabled()) or (i != skip_iter):
optimizer1.step()
run(mod_control0, mod_control1, opt_control0, opt_control1, False)
run(mod_scaling0, mod_scaling1, opt_scaling0, opt_scaling1, True)
# The loss scale should have been multiplied by the growth factor 3 times and the backoff factor once.
self.assertTrue(scaler.get_scale() == (128. * scaler.get_growth_factor()**3 *
scaler.get_backoff_factor()**1) if enabled else 1.0)
# Copy mod_control1 and mod_scaling1 back the device 0 for comparison
mod_control1.to(dev0)
mod_scaling1.to(dev0)
for c, s in zip(chain(mod_control0.parameters(), mod_control1.parameters()),
chain(mod_scaling0.parameters(), mod_scaling1.parameters())):
self.assertEqual(c, s, rtol=1e-5, atol=1e-7)
def test_cublas_multiple_threads_same_device(self):
# Note, these parameters should be very carefully tuned
# Too small number makes it hard for the racing condition
# to happen, while too large number sometimes cause hang
size = 1024
num_threads = 2
trials = 3
test_iters = 100
weight = torch.ones((size, size), device='cuda')
results = {}
barrier = threading.Barrier(num_threads)
def _worker(t):
my_stream = torch.cuda.Stream()
# Hard sync so we don't need to worry about creating and using tensors
# across streams or the fact that default streams are thread-local.
# Those issues are not the target of this test.
torch.cuda.synchronize()
# Line up threads to increase likelihood of race conditions.
barrier.wait()
with torch.cuda.stream(my_stream):
for i in range(test_iters):
# If all threads are sharing the same cublas handle,
# the following sequence may occur:
# thread 0 calls cublasSetStream()
# thread 1 calls cublasSetStream()
# thread 0 launches its raw gemm, which it thinks is in
# its own stream, but is actually in thread 1's stream.
# thread 0 enqueues its div_, which IS is its own stream,
# but actually now races with its gemm.
results[t] = torch.mm(results[t], weight)
results[t].div_(float(size))
torch.cuda.synchronize()
for _ in range(trials):
for t in range(num_threads):
results[t] = torch.ones((size, size), device='cuda')
threads = [threading.Thread(target=_worker,
args=(t,)) for t in range(num_threads)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
for t in range(num_threads):
self.assertEqual(results[t].sum().item(), size * size)
# Test is flaky on Windows (https://github.com/pytorch/pytorch/issues/57401)
@unittest.skipIf(IS_WINDOWS, 'Test is flaky on Windows (see issue 57401)')
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
@skipIfRocm
def test_cudnn_multiple_threads_same_device(self):
# This function is intended to test the lazy creation and reuse of per-thread
# cudnn handles on each device in aten/src/ATen/cudnn/Handles.cpp.
# Failure here likely indicates something wrong with that logic.
weight = torch.ones((1, 1, 2, 2), device='cuda')
results = {}
num_threads = 2
trials = 3
test_iters = 1000
barrier = threading.Barrier(num_threads)
with torch.backends.cudnn.flags(enabled=True):
def _worker(t):
my_stream = torch.cuda.Stream()
# Hard sync so we don't need to worry about creating and using tensors
# across streams or the fact that default streams are thread-local.
# Those issues are not the target of this test.
torch.cuda.synchronize()
# Line up threads to increase likelihood of race conditions.
barrier.wait()
with torch.cuda.stream(my_stream):
for _ in range(test_iters):
# If all threads are sharing the same cudnn handle,
# the following sequence may occur:
# thread 0 calls setCuDNNStreamToCurrent()
# thread 1 calls setCuDNNStreamToCurrent()
# thread 0 launches its raw convolution, which it thinks is in
# its own stream, but is actually in thread 1's stream.
# thread 0 enqueues its div_, which IS is its own stream,
# but now races with its convolution.
results[t] = torch.nn.functional.conv2d(results[t], weight, padding=0)
results[t].div_(4.0)
torch.cuda.synchronize()
for _ in range(trials):
for t in range(num_threads):
results[t] = torch.ones((1, 1, 2048, 2048), device='cuda')
threads = [threading.Thread(target=_worker,
args=(t,)) for t in range(num_threads)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
for t in range(num_threads):
self.assertEqual(results[t].sum().item(),
(2048 - test_iters) * (2048 - test_iters))
def test_cusparse_multiple_threads_same_device(self):
size = 1024
num_threads = 2
trials = 3
test_iters = 500
def ones_sparse(size):
a = torch.arange(size, device='cuda')
indices = torch.cartesian_prod(a, a).t()
values = torch.ones(size * size, device='cuda')
return torch.sparse_coo_tensor(indices, values)
weight = ones_sparse(size)
results = {}
barrier = threading.Barrier(num_threads)
def _worker(t):
my_stream = torch.cuda.Stream()
# Hard sync so we don't need to worry about creating and using tensors
# across streams or the fact that default streams are thread-local.
# Those issues are not the target of this test.
torch.cuda.synchronize()
# Line up threads to increase likelihood of race conditions.
barrier.wait()
with torch.cuda.stream(my_stream):
for i in range(test_iters):
# If all threads are sharing the same cublas handle,
# the following sequence may occur:
# thread 0 calls cublasSetStream()
# thread 1 calls cublasSetStream()
# thread 0 launches its raw gemm, which it thinks is in
# its own stream, but is actually in thread 1's stream.
# thread 0 enqueues its div_, which IS is its own stream,
# but actually now races with its gemm.
results[t] = weight.mm(results[t])
results[t].div_(float(size))
torch.cuda.synchronize()
for _ in range(trials):
for t in range(num_threads):
results[t] = torch.ones((size, size), device='cuda')
threads = [threading.Thread(target=_worker,
args=(t,)) for t in range(num_threads)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
for t in range(num_threads):
self.assertEqual(results[t].sum().item(), size * size)
def _run_autocast_outofplace(self, op, args, run_as_type, out_type=None, module=torch, add_kwargs=None):
# helper to cast args
def cast(val, to_type):
if isinstance(val, torch.Tensor):
return val.to(to_type) if val.is_floating_point() else val
elif isinstance(val, collections.abc.Iterable):
return type(val)(cast(v, to_type) for v in val)
else:
return val
if add_kwargs is None:
add_kwargs = {}
fast_dtype = torch.bfloat16 if run_as_type == torch.bfloat16 else torch.float16
self.assertFalse(torch.is_autocast_enabled())
with torch.autocast('cuda', dtype=fast_dtype):
self.assertTrue(torch.is_autocast_enabled())
out_type = out_type if out_type is not None else run_as_type
output = output_method = None
# Try module.* variant, if requested:
if module is not None and hasattr(module, op):
output = getattr(module, op)(*args, **add_kwargs)
if isinstance(output, torch.Tensor):
self.assertTrue(out_type == output.dtype,
"autocast for torch.{} produced {}, should produce {}"
.format(op, output.dtype, out_type))
# Try Tensor.* variant:
if hasattr(torch.Tensor, op):
output_method = getattr(args[0], op)(*args[1:], **add_kwargs)
if isinstance(output_method, torch.Tensor):
self.assertTrue(out_type == output_method.dtype,
"autocast for torch.{} produced {}, should produce torch.{}"
.format(op, output_method.dtype, out_type))
self.assertTrue((output is not None) or (output_method is not None),
"{} not found as an attribute on either Tensor or the requested module {}".format(
op, module))
# Accounts for ops that return Tensors, iterables, and other non-Tensors.
# For example, lstm_cell returns a tuple and equal returns bool.
def compare(first, second):
if isinstance(first, torch.Tensor):
return torch.equal(first, second)
elif isinstance(first, collections.abc.Iterable):
return all(compare(f, s) for f, s in zip(first, second))
else:
return first == second
# If both torch.* and Tensor.* variants were found, check outputs are identical
if (output is not None) and (output_method is not None):
self.assertTrue(type(output) == type(output_method))
comparison = compare(output, output_method)
self.assertTrue(comparison, "torch.{0} result did not match Tensor.{0} result".format(op))
# Compare numerics to Python-side "autocasting" that (we expect) does the same thing
# as the C++-side autocasting, and should be bitwise accurate.
output_to_compare = output if output is not None else output_method
with torch.autocast('cuda', enabled=False):
self.assertFalse(torch.is_autocast_enabled())
if module is not None and hasattr(module, op):
control = getattr(module, op)(*cast(args, run_as_type), **add_kwargs)
else:
control = getattr(args[0].to(run_as_type), op)(*cast(args[1:], run_as_type), **add_kwargs)
self.assertTrue(type(output_to_compare) == type(control))
comparison = compare(output_to_compare, control)
self.assertTrue(comparison, "torch.{} result did not match control".format(op))
self.assertTrue(torch.is_autocast_enabled())
self.assertFalse(torch.is_autocast_enabled())
def args_maybe_kwargs(self, op_with_args):
if len(op_with_args) == 2:
return op_with_args[0], op_with_args[1], {}
else:
return op_with_args[0], op_with_args[1], op_with_args[2]
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_torch_fp16(self):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
for op_with_args in self.autocast_lists.torch_fp16:
skip_test = False
op, args = op_with_args[0], op_with_args[1]
if len(op_with_args) == 3:
skip_test = op_with_args[2] # TEST_WITH_ROCM
if not skip_test:
self._run_autocast_outofplace(op, args, torch.float16)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_torch_bf16(self):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
for op_with_args in self.autocast_lists.torch_fp16:
skip_test = False
op, args = op_with_args[0], op_with_args[1]
if len(op_with_args) == 3:
skip_test = op_with_args[2] # TEST_WITH_ROCM
should_error_from_cudnn = 'cudnn' in op and not\
('TORCH_CUDNN_V8_API_ENABLED' in os.environ and
int(os.environ['TORCH_CUDNN_V8_API_ENABLED']) and
torch.cuda.get_device_capability() >= (8, 0))
should_error_from_not_implemented = should_error_from_cudnn or 'prelu' in op or 'thnn' in op \
or 'fused' in op or 'gru' in op or op == '_thnn_fused_lstm_cell' or op == 'lstm_cell'
if not skip_test:
if should_error_from_not_implemented:
with self.assertRaises(RuntimeError, msg=str(op) + ' should not be supported for bfloat16!'):
self._run_autocast_outofplace(op, args, torch.bfloat16)
else:
if torch.cuda.is_bf16_supported():
self._run_autocast_outofplace(op, args, torch.bfloat16)
else:
with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'):
self._run_autocast_outofplace(op, args, torch.bfloat16)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_torch_fp32(self):
for op_with_args in self.autocast_lists.torch_fp32:
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
self._run_autocast_outofplace(op, args, torch.float32, add_kwargs=maybe_kwargs)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_torch_need_autocast_promote(self):
for op, args in self.autocast_lists.torch_need_autocast_promote:
self._run_autocast_outofplace(op, args, torch.float32)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_torch_expect_builtin_promote(self):
for op, args, out_type in self.autocast_lists.torch_expect_builtin_promote:
self._run_autocast_outofplace(op, args, torch.float32, out_type=out_type)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_nn_fp16(self):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
for op, args in self.autocast_lists.nn_fp16:
self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._nn)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_nn_bf16(self):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
for op, args in self.autocast_lists.nn_fp16:
if torch.cuda.is_bf16_supported():
self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn)
else:
with self.assertRaisesRegex(RuntimeError, 'Device does not support bfloat16'):
self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_nn_fp32(self):
for op, args in self.autocast_lists.nn_fp32:
self._run_autocast_outofplace(op, args, torch.float32, module=torch._C._nn)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_linalg_fp16(self):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
for op, args in self.autocast_lists.linalg_fp16:
self._run_autocast_outofplace(op, args, torch.float16, module=torch._C._linalg)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_methods_fp16(self):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
for op, args in self.autocast_lists.methods_fp16:
self._run_autocast_outofplace(op, args, torch.float16, module=None)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_methods_fp32(self):
for op, args in self.autocast_lists.methods_fp32:
self._run_autocast_outofplace(op, args, torch.float32, module=None)
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_methods_expect_builtin_promote(self):
for op, args, out_type in self.autocast_lists.methods_expect_builtin_promote:
self._run_autocast_outofplace(op, args, torch.float32, module=None, out_type=out_type)
def test_autocast_banned(self):
with torch.autocast('cuda'):
for op, args, module in self.autocast_lists.banned:
with self.assertRaises(RuntimeError):
getattr(module, op)(*args)
def test_autocast_ignored_types(self):
with torch.autocast('cuda'):
for ignore_type in (torch.double, torch.int32):
a_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0")
b_ignore = torch.ones((8, 8), dtype=ignore_type, device="cuda:0")
c_16 = torch.ones((8, 8), dtype=torch.float16, device="cuda:0")
# Tests if CastPolicy::fp16 ops ignore double and int
# Currently, no ops belonging to this policy support integer inputs.
if ignore_type is torch.double:
with self.assertRaises(RuntimeError):
torch.mm(a_ignore, c_16)
with torch.autocast('cuda', enabled=False):
type_no_autocast = torch.mm(a_ignore, b_ignore).dtype
self.assertTrue(torch.mm(a_ignore, b_ignore).dtype is type_no_autocast)
# Tests if CastPolicy::fp32 ops ignore double and int
with torch.autocast('cuda', enabled=False):
type_no_autocast = torch.pow(a_ignore, 2.0).dtype
self.assertTrue(torch.pow(a_ignore, 2.0).dtype is type_no_autocast)
# Tests if CastPolicy::fp32_set_opt_dtype ops ignore double and int
with torch.autocast('cuda', enabled=False):
type_no_autocast = torch.sum(a_ignore).dtype
self.assertTrue(torch.sum(a_ignore).dtype is type_no_autocast)
# Tests if CastPolicy::fp32_append_dtype ops ignore double and int
# Currently, no ops belonging to this policy support integer inputs.
if ignore_type is torch.double:
with torch.autocast('cuda', enabled=False):
type_no_autocast = torch.norm(a_ignore).dtype
self.assertTrue(torch.norm(a_ignore).dtype is type_no_autocast)
def test_autocast_custom_enabled(self):
class MyMM(torch.autograd.Function):
@staticmethod
@torch.cuda.amp.custom_fwd
def forward(ctx, a, b):
self.assertTrue(a.dtype is torch.float32)
self.assertTrue(b.dtype is torch.float32)
self.assertTrue(torch.is_autocast_enabled())
ctx.save_for_backward(a, b)
return a.mm(b)
@staticmethod
@torch.cuda.amp.custom_bwd
def backward(ctx, grad):
self.assertTrue(torch.is_autocast_enabled())
a, b = ctx.saved_tensors
return grad.mm(b.t()), a.t().mm(grad)
mymm = MyMM.apply
x = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True)
y = torch.randn((8, 8), device="cuda", dtype=torch.float32, requires_grad=True)
with torch.cuda.amp.autocast():
output = mymm(x, y)
self.assertTrue(output.dtype is torch.float16)
loss = output.sum()
loss.backward()
def test_autocast_custom_cast_inputs(self):
class MyMM(torch.autograd.Function):
@staticmethod
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def forward(ctx, a, container, expect_type):
b = container[1][0]
self.assertTrue(a.dtype is expect_type)
self.assertTrue(b.dtype is expect_type)
self.assertFalse(torch.is_autocast_enabled())
ctx.save_for_backward(a, b)
return a.mm(b)
@staticmethod
@torch.cuda.amp.custom_bwd
def backward(ctx, grad):
self.assertFalse(torch.is_autocast_enabled())
a, b = ctx.saved_tensors
return grad.mm(b.t()), None, None
mymm = MyMM.apply
x = torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=True)
# Puts one input tensor in a nested container. y's contained Tensor won't receive a gradient,
# because torch.autograd.Function can't hand gradients back to non-Tensor forward arguments.
# Sets requires_grad=False explicitly so we don't lie about expecting a gradient.
y = (0, {0: torch.randn((8, 8), device="cuda", dtype=torch.float16, requires_grad=False)})
with torch.autocast('cuda', ):
output = mymm(x, y, torch.float32)
self.assertTrue(output.dtype is torch.float32)
loss = output.sum()
loss.backward()
# Tests if custom_fwd becomes a no-op when mymm runs outside an autocast-enabled region.
output = mymm(x, y, torch.float16)
self.assertTrue(output.dtype is torch.float16)
loss = output.sum()
loss.backward()
def test_autocast_cat_jit(self):
# Reported at https://github.com/pytorch/pytorch/issues/38958
class Model(torch.nn.Module):
def forward(self):
a = torch.randn(1)
b = torch.randn(1)
c = torch.cat((a, b), 0)
d = torch.stack([c, c], 0)
return d
# The JIT here doesn't really matter, we just need to call
# cat via the boxed API
model = Model()
model_jit_script = torch.jit.script(model)
with torch.autocast('cuda', enabled=True):
model()
model_jit_script()
# cudnn RNNs require special backend handling (weights are cast to FP16 and reflattened)
# so they get a dedicated test.
# Despite the large number of RNN cases it tries, the test takes < 15 seconds on a Titan V (similar to V100).
@skipIfRocm
@unittest.skipIf(not TEST_CUDNN, 'CUDNN not available')
def test_autocast_rnn(self):
with torch.backends.cudnn.flags(enabled=True, deterministic=True):
# seq, batch, features, hidden size
clses = ("RNN", "GRU", "LSTM")
T, B, F, H = 3, 4, 5, 6
dtypes = (torch.float16, torch.float32)
input_layouts = ("seq_first", "batch_first", "packed")
for (cls, num_layers, bias, input_layout, bidirectional, try_nonpreflattened_weights,
input_dtype, hidden_dtype, weight_dtype) in \
product(clses, (1, 2), (True, False), input_layouts, (True, False), (True, False),
dtypes, dtypes, dtypes):
if input_layout == "seq_first":
batch_first = False
x = torch.randn((T, B, F), device="cuda", dtype=input_dtype)
elif input_layout == "batch_first":
batch_first = True
x = torch.randn((B, T, F), device="cuda", dtype=input_dtype)
elif input_layout == "packed":
batch_first = False
x = torch.nn.utils.rnn.pack_padded_sequence(torch.randn((T, B, F),
device="cuda", dtype=input_dtype),
lengths=(3, 2, 1, 3),
enforce_sorted=False)
rnn = getattr(torch.nn, cls)(F, H, num_layers=num_layers, bidirectional=bidirectional,
bias=bias, batch_first=batch_first).cuda().to(dtype=weight_dtype)
if try_nonpreflattened_weights:
for p in rnn.parameters():
with torch.no_grad():
p.set_(p.clone())
h = torch.randn((num_layers * (2 if bidirectional else 1), B, H),
device="cuda", dtype=hidden_dtype)
if cls == "LSTM":
c = torch.randn((num_layers * (2 if bidirectional else 1), B, H),
device="cuda", dtype=hidden_dtype)
h = (h, c)
with torch.autocast('cuda', ):
out, h_out = rnn(x, h)
out = out.data if input_layout == "packed" else out
self.assertEqual(out.dtype, torch.float16)
# Autocast wrapper requires at::_cudnn_rnn is autograd-exposed. This check can't guarantee
# at::_cudnn_rnn is autograd-exposed, but if it fires, it indicates some funny business has
# occurred and we should double check that at::_cudnn_rnn remains autograd-exposed.
self.assertEqual(out.grad_fn.name(), "CudnnRnnBackward0")
out.sum().backward()
grads = [p.grad.clone() for p in rnn.parameters()]
rnn.zero_grad()
if cls == "LSTM":
out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), (h[0].half(), h[1].half()))
else:
out_control, h_out_control = rnn.to(dtype=torch.float16)(x.half(), h.half())
out_control = out_control.data if input_layout == "packed" else out_control
out_control.sum().backward()
grads_control = [p.grad.clone() for p in rnn.parameters()]
# Compares with default tolerances, even for FP16 execution. Barring nondeterminism,
# autocast and control results should be bitwise identical.
self.assertEqual(out, out_control)
if cls == "LSTM":
self.assertTrue(h_out[0].dtype is torch.float16 and h_out[1].dtype is torch.float16)
self.assertEqual(h_out[0], h_out_control[0])
self.assertEqual(h_out[1], h_out_control[1])
else:
self.assertEqual(h_out.dtype, torch.float16)
self.assertEqual(h_out, h_out_control)
for grad, grad_control in zip(grads, grads_control):
self.assertEqual(grad.half(), grad_control)
def test_autocast_cache_leak(self):
# Reported at https://github.com/pytorch/pytorch/issues/48049
# Test is used to check, if autocast recaches the same parameters
# when executed in a `torch.no_grad()` block.
linear = torch.nn.Linear(10, 10).to('cuda')
data = torch.randn(1, 10, device='cuda')
with torch.autocast('cuda', ):
with torch.no_grad():
out = linear(data)
first_iter_mem = torch.cuda.memory_allocated()
for _ in range(3):
out = linear(data)
self.assertTrue(first_iter_mem == torch.cuda.memory_allocated())
def test_autocast_checkpointing(self):
model = torch.nn.Sequential(torch.nn.Linear(8, 8),
torch.nn.Linear(8, 8),
torch.nn.Linear(8, 8)).cuda()
input = torch.rand((8, 8), device="cuda", dtype=torch.float16, requires_grad=True)
with torch.autocast('cuda', ):
output = checkpoint_sequential(model, 2, input)
self.assertTrue(output.requires_grad)
self.assertTrue(output.dtype is torch.float16)
output.sum().backward()
@slowTest
@unittest.skipIf(not TEST_LARGE_TENSOR, "not enough memory")
def test_max_large_axis(self):
x = torch.zeros(2**32, device='cuda', dtype=torch.int8)
x[-1] = 1
val, idx = x.max(0)
self.assertEqual(val, 1)
self.assertEqual(idx, x.shape[0] - 1)
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_to_numpy(self):
self.assertRaises(TypeError, lambda: torch.empty(1, device="cuda").numpy())
def test_graph_is_current_stream_capturing(self):
self.assertFalse(torch.cuda.is_current_stream_capturing())
if (TEST_CUDA and (not TEST_WITH_ROCM) and int(torch.version.cuda.split(".")[0]) >= 11):
s = torch.cuda.Stream()
with torch.cuda.stream(s):
g = torch.cuda.CUDAGraph()
self.assertFalse(torch.cuda.is_current_stream_capturing())
g.capture_begin()
self.assertTrue(torch.cuda.is_current_stream_capturing())
g.capture_end()
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_capture_simple(self):
s = torch.cuda.Stream()
with torch.cuda.stream(s):
a = torch.full((1000,), 1, device="cuda")
g = torch.cuda.CUDAGraph()
torch.cuda.empty_cache()
g.capture_begin()
b = a
for _ in range(10):
b = b + 1
g.capture_end()
torch.cuda.current_stream().wait_stream(s)
g.replay()
self.assertTrue(b.sum().item() == 11000.)
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_capture_oom(self):
with self.assertRaisesRegex(RuntimeError, "out of memory"):
with torch.cuda.graph(torch.cuda.CUDAGraph()):
torch.zeros(2 ** 40, device="cuda")
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_rng_functional(self):
ops_with_kwargs = ((torch.nn.functional.dropout, {"p": 0.1}),
(torch.nn.functional.rrelu, {"training": True}),)
size = 10000
def run(op, kwargs):
a = torch.randn((size,), device="cuda", dtype=torch.float)
# Control
torch.cuda.manual_seed(5)
eager_out = a
for _ in range(6):
eager_out = op(eager_out, **kwargs)
graph_in = a.clone()
stream = torch.cuda.Stream()
stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(stream):
torch.cuda.manual_seed(5)
g = torch.cuda.CUDAGraph()
torch.cuda.empty_cache()
g.capture_begin()
graph_out = graph_in
for _ in range(2):
graph_out = op(graph_out, **kwargs)
g.capture_end()
torch.cuda.current_stream().wait_stream(stream)
# Runs a graphed->eager->graphed sequence of RNG ops.
# replay() plays 2 invocations of the op, so the sequence has 6
# invocations total, matching Control.
# replay() reads from graph_in and writes to graph_out.
g.replay()
out = op(graph_out, **kwargs)
out = op(out, **kwargs)
graph_in.copy_(out)
g.replay()
# If replay() updated RNG state correctly, graph_out
# should now hold data equal to eager_out.
try:
self.assertEqual(eager_out, graph_out)
except Exception as e:
raise RuntimeError("Failed on ", op) from e
# Do the same operations varying seeds
seeds = [6, 128, 9999]
for seed in seeds:
torch.cuda.manual_seed(seed)
graph_in.copy_(a)
for _ in range(3):
g.replay()
# If the random seed was not updated then the graph would
# generate the same output as in previous check.
try:
self.assertNotEqual(eager_out, graph_out)
except Exception as e:
raise RuntimeError("Failed on ", op) from e
# Now repeat the same operations in non-graphed mode.
torch.cuda.manual_seed(seed)
for _ in range(3):
eager_out.copy_(a)
eager_out = op(eager_out, **kwargs)
eager_out = op(eager_out, **kwargs)
# In the end, graph_out and eager_out must be equal
# as they went under the same set of operations.
try:
self.assertEqual(eager_out, graph_out)
except Exception as e:
raise RuntimeError("Failed on ", op) from e
# We hold references to all tensors used across streams up til this sync,
# so no need to call record_stream on those tensors.
torch.cuda.synchronize()
for op, kwargs in ops_with_kwargs:
run(op, kwargs)
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_rng_distributions(self):
size = 10000
input = torch.rand((size,), device="cuda", dtype=torch.float)
alloc = torch.empty((size,), device="cuda", dtype=torch.float)
# Torch ops to test with sample args (tuple) and kwargs (dict)
torch_with_args = (("bernoulli", (input.clone(),), {}),
# multinomial uses some uncapturable CUDA calls.
# TODO: reenable multinomial tests if/when the implementation is capturable.
# ("multinomial", (input.clone(), size, True), {}),
# ("multinomial", (input.clone(), size // 2, False), {}),
# TODO: reenable normal test, where std is a device
# tensor, when graph test failures are fixed
# ("normal", (input.clone() + 1, input.clone()), {}),
("normal", (input.clone() + 1, 1.0), {}),
("poisson", (input.clone(),), {}),
("rand", (size,), {"device": "cuda", "dtype": torch.float}),
("randint", (0, 3, (size,)), {"device": "cuda", "dtype": torch.float}),
("randn", (size,), {"device": "cuda", "dtype": torch.float}),)
# Tensor methods to test with sample args (tuple)
tensor_with_args = (("bernoulli_", (input.clone(),)),
("cauchy_", ()),
("exponential_", ()),
("geometric_", (0.3,)),
("log_normal_", ()),
("normal_", ()),
("random_", ()),
("uniform_", ()),)
def run(module, op, args, kwargs):
torch.cuda.manual_seed(5)
# Each path runs a dummy op to increment the state a bit before creating controls.
if (module == "torch"):
dummy = getattr(torch, op)(*args, **kwargs)
control1 = getattr(torch, op)(*args, **kwargs)
control2 = getattr(torch, op)(*args, **kwargs)
else:
dummy = alloc.clone()
control1 = alloc.clone()
control2 = alloc.clone()
getattr(dummy, op)(*args)
getattr(control1, op)(*args)
getattr(control2, op)(*args)
stream = torch.cuda.Stream()
stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(stream):
torch.cuda.manual_seed(5)
g = torch.cuda.CUDAGraph()
torch.cuda.empty_cache()
if (module == "torch"):
g.capture_begin()
t1 = getattr(torch, op)(*args, **kwargs)
t2 = getattr(torch, op)(*args, **kwargs)
g.capture_end()
else:
t1 = alloc.clone()
t2 = alloc.clone()
g.capture_begin()
getattr(t1, op)(*args)
getattr(t2, op)(*args)
g.capture_end()
torch.cuda.current_stream().wait_stream(stream)
try:
self.assertNotEqual(control1, t1)
self.assertNotEqual(control2, t2)
except Exception as e:
raise RuntimeError("Failed on " + module + "." + op) from e
# Set a new seed to check if graph would use it
for seed in [6, 314, 271]:
torch.cuda.manual_seed(seed)
# Runs a dummy op prelude, as for controls, to make sure replay()
# picks up the dummy op's state increment.
if (module == "torch"):
dummy = getattr(torch, op)(*args, **kwargs)
control1 = getattr(torch, op)(*args, **kwargs)
control2 = getattr(torch, op)(*args, **kwargs)
else:
getattr(dummy, op)(*args)
getattr(control1, op)(*args)
getattr(control2, op)(*args)
torch.cuda.manual_seed(seed)
if (module == "torch"):
dummy = getattr(torch, op)(*args, **kwargs)
else:
getattr(dummy, op)(*args)
t1.copy_(alloc)
t2.copy_(alloc)
# Runs RNG ops that fill t1 and t2.
g.replay()
try:
self.assertEqual(control1, t1)
self.assertEqual(control2, t2)
except Exception as e:
raise RuntimeError("Failed on " + module + "." + op) from e
# We hold references to all tensors used across streams up til this sync,
# so no need to call record_stream on those tensors.
torch.cuda.synchronize()
for op_with_args in torch_with_args:
run("torch", *op_with_args)
for meth_with_args in tensor_with_args:
# Adds an empty dict for kwargs, which none of the Tensor methods use
run("Tensor", *(meth_with_args + ({},)))
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_two_successive(self):
torch.cuda.empty_cache()
size = 1000
kSmallBuffer = 2097152
def func_with_temps(t, val):
x = t.clone() + val
y = t.clone() + val
return x + y
s = torch.cuda.Stream()
for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"):
g0 = torch.cuda.CUDAGraph()
g1 = torch.cuda.CUDAGraph()
a = torch.ones((size,), device="cuda")
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else ()
g0.capture_begin(*g0_args)
b = a.clone()
for _ in range(5):
b = func_with_temps(b, 1)
g0.capture_end()
g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args
g1.capture_begin(*g1_args)
for _ in range(5):
b = func_with_temps(b, 1)
g1.capture_end()
torch.cuda.current_stream().wait_stream(s)
# mixes unrelated eager ops with replays
c = a.clone()
for _ in range(2):
c = func_with_temps(c, 3)
g0.replay()
for _ in range(2):
c = func_with_temps(c, 3)
g1.replay()
for _ in range(2):
c = func_with_temps(c, 3)
self.assertEqual(b.sum().item(), size * 3070)
self.assertEqual(c.sum().item(), size * 442)
if share_mem != "Don't share":
self.assertEqual(reserved_no_sharing - torch.cuda.memory_stats()["reserved_bytes.all.current"],
kSmallBuffer)
else:
reserved_no_sharing = torch.cuda.memory_stats()["reserved_bytes.all.current"]
del a, b, c, g0, g1
# Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them.
torch.cuda.synchronize()
torch.cuda.empty_cache()
@unittest.skip("Temporarily disabled due to a graphs bug in libcuda.so, " +
"see https://github.com/pytorch/pytorch/pull/57556")
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_concurrent_replay(self):
torch.cuda.empty_cache()
size = 1000000 # largeish to help expose race conditions
def func_with_temps(t, val):
x = t.clone() + val
y = t.clone() + val
return x + y
s = torch.cuda.Stream()
for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"):
g0 = torch.cuda.CUDAGraph()
g1 = torch.cuda.CUDAGraph()
s0 = torch.cuda.Stream()
s1 = torch.cuda.Stream()
a = torch.ones((size,), device="cuda")
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else ()
g0.capture_begin(*g0_args)
b = a.clone()
for _ in range(5):
b = func_with_temps(b, 1)
g0.capture_end()
g1_args = (g0.pool(),) if share_mem == "via pool()" else g0_args
g1.capture_begin(*g1_args)
c = a.clone()
for _ in range(5):
c = func_with_temps(c, 2)
g1.capture_end()
# To reproduce data corruption, I need g0 and g1's kernels to run concurrently.
# But replay() (especially cudaGraphLaunch) can incur significant CPU overhead.
# The following pattern helps align device-side execution of g0 and g1's kernels.
torch.cuda.synchronize()
with torch.cuda.stream(s0):
torch.cuda._sleep(1000000)
s1.wait_stream(s0)
g0.replay()
with torch.cuda.stream(s1):
g1.replay()
torch.cuda.current_stream().wait_stream(s0)
torch.cuda.current_stream().wait_stream(s1)
if share_mem != "Don't share":
# Confirms concurrent replays using the same mempool corrupted each other.
self.assertNotEqual(b.sum().item(), size * 94)
self.assertNotEqual(c.sum().item(), size * 156)
else:
# Confirms concurrent replays using different mempools did not corrupt each other.
self.assertEqual(b.sum().item(), size * 94)
self.assertEqual(c.sum().item(), size * 156)
del a, b, c, g0, g1
# Tensors used across streams (a, b, c) were held until just now, so no need to call record_stream on them.
torch.cuda.synchronize()
torch.cuda.empty_cache()
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_three_successive(self):
torch.cuda.empty_cache()
size = 1000
s = torch.cuda.Stream()
for share_mem in ("Don't share", "via pool()", "via graph_pool_handle()"):
a = torch.ones((size,), device="cuda")
g0 = torch.cuda.CUDAGraph()
g1 = torch.cuda.CUDAGraph()
g2 = torch.cuda.CUDAGraph()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
g0_args = (torch.cuda.graph_pool_handle(),) if share_mem == "via graph_pool_handle()" else ()
g0.capture_begin(*g0_args)
b = a.clone()
c = b + 1
d = b + 2
g0.capture_end()
args = (g0.pool(),) if share_mem == "via pool()" else g0_args
g1.capture_begin(*args)
e = c + 3
del c
g1.capture_end()
g2.capture_begin(*args)
f = d + 4
g2.capture_end()
torch.cuda.current_stream().wait_stream(s)
# Tests that replaying in capture order is valid
g0.replay()
g1.replay()
g2.replay()
self.assertEqual(e.sum().item(), size * 5)
self.assertEqual(f.sum().item(), size * 7)
# Tests that replaying as g0, g2, g1 is only valid if they don't share a pool
g0.replay()
g2.replay()
g1.replay()
# If share_mem is True, g2's capture should have reused c's memory for f. We replayed g2 then g1,
# so we expect g1's captured "e = c + 3" mistakenly filled e with "f's vals + 3".
self.assertEqual(e.sum().item(), size * (7 + 3) if share_mem != "Don't share" else size * 5)
self.assertEqual(f.sum().item(), size * 7)
del a, b, d, e, f, g0, g1, g2
# Tensors used across streams (a, e, f) were held until just now, so no need to call record_stream on them.
torch.cuda.synchronize()
torch.cuda.empty_cache()
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_memory_stats_and_use_result_after_destroy_graph(self):
kSmallSize = 1048576
kSmallBuffer = 2097152
kLargeBuffer = 20971520
kMinLargeAlloc = 10485760
kRoundLarge = 2097152
elem = 4
# this was annoying to write but stresses the expectations pretty rigorously
cases = ((512 // elem, 1, kSmallBuffer, kSmallBuffer, "small_pool"),
(kSmallSize // elem, 2, 2 * kSmallBuffer, kSmallBuffer, "small_pool"),
((kSmallSize + 512) // elem, 1, kLargeBuffer, kLargeBuffer, "large_pool"),
((kMinLargeAlloc - 512) // elem, 2, 2 * kLargeBuffer, kLargeBuffer, "large_pool"),
((kMinLargeAlloc + 512) // elem, 3,
3 * (kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge)),
kRoundLarge * ((kMinLargeAlloc + 512 + kRoundLarge - 1) // kRoundLarge),
"large_pool"),)
stats_to_check = ("segment.",
"reserved_bytes.",
"active.",
"active_bytes.")
gc.collect()
torch.cuda.empty_cache()
s = torch.cuda.Stream()
for (numel,
delta_cudaMallocs,
delta_cudaMalloc_bytes,
delta_cudaMalloc_bytes_post_del_g,
pool_string) in cases:
if pool_string == "small_pool":
delta_active_blocks = 3 # one from "b" plus a sneaky two from CUDAGraph's one-element rng seed and offset holders
delta_active_bytes = numel * elem + 1024 # + 1024 for CUDAGraph's rng seed and offset holders each
else:
delta_active_blocks = 1 # We only check the large pool, which isn't affected by rng offset holder
delta_active_bytes = numel * elem
g = torch.cuda.CUDAGraph()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
# Allocation stat estimates assume input is created on the same stream as capture_begin()
# (in other words, the same stream silo as the rng offset holder, which is not allocated from the
# capture's private pool).
a = torch.ones((numel,), device="cuda")
precapture_stats = torch.cuda.memory_stats()
g.capture_begin()
b = a.clone()
for _ in range(5):
b = b.clone() + 1
g.capture_end()
torch.cuda.current_stream().wait_stream(s)
gc.collect()
postcapture_stats = torch.cuda.memory_stats()
expecteds = (delta_cudaMallocs,
delta_cudaMalloc_bytes,
delta_active_blocks,
delta_active_bytes)
# Double checks replay and stats before and after a call to empty_cache
for i in range(2):
for stat, expected in zip(stats_to_check, expecteds):
stat = stat + pool_string + ".current"
current = postcapture_stats[stat] - precapture_stats[stat]
self.assertEqual(current, expected, "Pre to post capture delta of " +
stat + " = {}, expected = {}, numel = {}".format(current, expected, numel))
g.replay()
self.assertEqual(b.sum().item(), 6 * numel)
if i == 0:
torch.cuda.empty_cache()
del g
gc.collect()
torch.cuda.empty_cache()
postdel_stats = torch.cuda.memory_stats()
# Uses graph result b after graph has been deleted
self.assertEqual(b.sum().item(), 6 * numel)
# b should be the only live reference remaining from the graph's private pool
expecteds = (1, delta_cudaMalloc_bytes_post_del_g, 1, numel * elem)
for stat, expected in zip(stats_to_check, expecteds):
stat = stat + pool_string + ".current"
current = postdel_stats[stat] - precapture_stats[stat]
self.assertEqual(current, expected, "Pre capture to post graph delete delta of " +
stat + " = {}, expected = {}, numel = {}".format(current, expected, numel))
# del a, b before the next case is essential, otherwise overwriting a and b in the next case
# can throw off its allocation/deallocation counts.
del a, b
# Tensors used across streams (a and b) were held until just now, so no need to call record_stream on them.
torch.cuda.synchronize()
torch.cuda.empty_cache()
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_record_stream(self):
# Makes sure graph capture defers attempting to reclaim allocations used across streams. See
# "Q. Why skip process_events if a capture might be underway?" in c10/cuda/CUDACachingAllocator.cpp
torch.cuda.empty_cache()
potential_problem = torch.zeros((3,), device="cuda")
a = torch.zeros((3,), device="cuda")
s0 = torch.cuda.Stream()
s1 = torch.cuda.Stream()
s2 = torch.cuda.Stream()
g = torch.cuda.CUDAGraph()
torch.cuda.synchronize()
with torch.cuda.stream(s0):
potential_problem.record_stream(s0)
torch.cuda._sleep(TestCuda.FIFTY_MIL_CYCLES)
potential_problem.fill_(1.)
del potential_problem
with torch.cuda.stream(s1):
g.capture_begin()
# potential_problem's allocation should still be outstanding. if DeviceCachingAllocator::malloc
# mistakenly calls process_events, it will trigger cudaEventQueries on potential_problem's end-of-life
# event, which will cause the capture to error.
b = a.clone()
# Let's also see what happens if we record_stream on a tensor during capture.
s2.wait_stream(s1)
with torch.cuda.stream(s2):
b.fill_(1.)
b.record_stream(s2) # dummy record_stream
del b
s1.wait_stream(s2)
g.capture_end()
torch.cuda.synchronize()
# dummy allocation triggers process_events, Hopefully successfully processes b's end-of-life event.
c = torch.zeros((3,), device="cuda")
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
# If this test is the first in the process to try cudnn rnns with dropout, it'll initialize
# DropoutState's long-lived internal buffer. Calling code perceives this (correct) behavior
# as a memory leak unless we skip the leak check.
@skipCUDAMemoryLeakCheckIf(True)
def test_graph_cudnn_dropout(self):
# Tests the interaction of cuda graph capture with DropoutState's syncs in ATen/native/cudnn/RNN.cpp.
# In particular, if user runs a sequence of captured and noncaptured cudnn rnns, DropoutState should
# avoid syncing noncapturing streams with captured events or vice versa.
torch.cuda.empty_cache()
model = torch.nn.LSTM(512, 512, 2, dropout=0.5).cuda()
x = torch.ones(100, 192, 512, device="cuda")
y = model(x)
g = torch.cuda.CUDAGraph()
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
g.capture_begin()
y = model(x)
g.capture_end()
torch.cuda.current_stream().wait_stream(s)
y = model(x)
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_grad_scaling(self):
torch.cuda.empty_cache()
scaler = torch.cuda.amp.GradScaler(init_scale=4.)
g = torch.cuda.CUDAGraph()
s = torch.cuda.Stream()
weight = torch.ones((100,), device="cuda", requires_grad=True)
opt = torch.optim.SGD([weight], lr=0.1)
static_input = torch.ones_like(weight)
static_grad = torch.ones_like(weight)
# warmup
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
loss = (weight.half() * static_input).sum()
scaler.scale(loss).backward()
torch.cuda.current_stream().wait_stream(s)
opt.zero_grad(set_to_none=True)
# capture
with torch.cuda.graph(g):
loss = (weight.half() * static_input).sum()
scaler.scale(loss).backward()
input_vals = [5, 20000, 5, 40000]
# If the scale gets updated properly, these are the scale, growth tracker,
# and grad values we expect.
expected_scales = [4, 2, 2, 1]
expected_growth_trackers = [1, 0, 1, 0]
expected_grad_vals = [5 * 4, float("inf"), 5 * 2, float("inf")]
for data, scale, growth_tracker, grad_val in zip(input_vals,
expected_scales,
expected_growth_trackers,
expected_grad_vals):
static_input.fill_(data)
g.replay()
self.assertEqual(weight.grad, torch.full_like(weight.grad, grad_val))
scaler.step(opt)
scaler.update()
self.assertEqual(scaler._scale, scale)
self.assertEqual(scaler._growth_tracker, growth_tracker)
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
@parametrize('with_amp,cache_enabled', [(False, False), (True, False), subtest((True, True),
decorators=[unittest.expectedFailure])],
name_fn=lambda x, y: '{}{}'.format({True: "with_amp", False: "without_amp"}[x],
{True: "_cache_enabled", False: "_cache_disabled"}[y] if x else ''))
def test_graph_make_graphed_callables(self, with_amp, cache_enabled):
torch.manual_seed(5)
torch.cuda.manual_seed(5)
N, D_in, H, D_out = 640, 4096, 2048, 1024
models = []
for _ in range(2):
model_section1 = torch.nn.Sequential(torch.nn.Linear(D_in, H),
torch.nn.Dropout(p=0.1)).cuda()
model_section2 = torch.nn.Sequential(torch.nn.Linear(H, D_out),
torch.nn.Dropout(p=0.2)).cuda()
models.append(torch.nn.Sequential(model_section1, model_section2))
model_graphed = models[0]
model_control = models[1]
model_graphed.load_state_dict(model_control.state_dict())
opt_graphed = torch.optim.SGD(model_graphed.parameters(), lr=0.1)
opt_control = torch.optim.SGD(model_control.parameters(), lr=0.1)
x = torch.randn(N, D_in, device='cuda')
h = torch.randn(N, H, device='cuda', requires_grad=True)
y_pred = torch.randn(N, D_out, device='cuda', requires_grad=True)
y = torch.randn(N, D_out, device='cuda')
loss_fn_control = torch.nn.functional.mse_loss
relu_control = torch.nn.functional.relu
# This is a good stress test. It graphs four callables: two Modules and two python functions.
with torch.cuda.amp.autocast(with_amp, cache_enabled=cache_enabled):
model_graphed[0], model_graphed[1], relu_graphed, loss_fn_graphed = \
torch.cuda.make_graphed_callables((model_graphed[0], model_graphed[1], relu_control, loss_fn_control),
((x,), (h,), (y_pred,), (y_pred, y)))
real_inputs = [torch.rand_like(x) for _ in range(10)]
real_targets = [torch.rand_like(y) for _ in range(10)]
for m, opt, relu, loss_fn in zip((model_graphed, model_control),
(opt_graphed, opt_control),
(relu_graphed, relu_control),
(loss_fn_graphed, loss_fn_control)):
# Resets RNC states before iterations for graphed and ungraphed models,
# so dropout math should be bitwise identical for both.
torch.manual_seed(5)
torch.cuda.manual_seed(5)
for data, target in zip(real_inputs, real_targets):
opt.zero_grad(set_to_none=True)
with torch.cuda.amp.autocast(with_amp, cache_enabled=cache_enabled):
y_pred = m(data)
y_pred = relu(y_pred)
loss = loss_fn(y_pred, target)
loss.backward()
opt.step()
for p, pc in zip(model_graphed.parameters(), model_control.parameters()):
self.assertEqual(p, pc)
# We graphed the models in training mode. Eval should still run ungraphed.
model_graphed.eval()
model_control.eval()
self.assertEqual(model_graphed(real_inputs[0]), model_control(real_inputs[0]))
def _test_graphed_optimizer(self, steps_warmup, steps_train, optimizer_ctor, kwargs):
for actually_do_graphs in (True, False):
params = [torch.randn((i + 5, i + 5), device="cuda") for i in range(2)]
params_control = [p.clone().requires_grad_() for p in params]
params_graphed = [p.clone().requires_grad_() for p in params]
grads = [[torch.randn_like(p) for p in params] for _ in range(steps_warmup + steps_train)]
# Control (capturable=False)
opt = optimizer_ctor(params_control, capturable=False, **kwargs)
for i in range(steps_warmup + steps_train):
for j, p in enumerate(params_control):
p.grad = grads[i][j]
opt.step()
# capturable=True
opt = optimizer_ctor(params_graphed, capturable=True, **kwargs)
for i in range(steps_warmup):
for j, p in enumerate(params_graphed):
p.grad = grads[i][j]
opt.step()
if actually_do_graphs:
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
opt.step()
for i in range(steps_train):
if actually_do_graphs:
for j, p in enumerate(params_graphed):
p.grad.copy_(grads[i + steps_warmup][j])
g.replay()
else:
# Passing capturable=True to the constructor and running without graphs should still be
# numerically correct, even if it's not ideal for performance.
for j, p in enumerate(params_graphed):
p.grad = grads[i + steps_warmup][j]
opt.step()
for p_control, p_graphed in zip(params_control, params_graphed):
self.assertEqual(p_control, p_graphed)
@unittest.skipIf((not TEST_CUDA) or
TEST_WITH_ROCM or
int(torch.version.cuda.split(".")[0]) < 11, "CUDA >= 11.0 required for graphs")
def test_graph_adam_adamw(self):
# Needs generalization if we want to extend this test to non-Adam-like optimizers.
cases = [
(optimizer_ctor, {"lr": 0.1, "betas": (0.8, 0.7), "foreach": foreach, "amsgrad": amsgrad})
for optimizer_ctor, foreach, amsgrad in product(
(torch.optim.Adam, torch.optim.AdamW), (False, True), (False, True),)
] + [
(torch.optim.Adam, {"lr": 0.1, "betas": (0.8, 0.7), "fused": True, "amsgrad": amsgrad})
for amsgrad in (False, True)
]
for optimizer_ctor, kwargs in cases:
with self.subTest(optimizer_ctor=optimizer_ctor, kwargs=kwargs):
self._test_graphed_optimizer(3, 2, optimizer_ctor, kwargs)
@unittest.skipIf(
(not TEST_CUDA) or TEST_WITH_ROCM or int(torch.version.cuda.split(".")[0]) < 11,
"CUDA >= 11.0 required for graphs",
)
def test_graph_scaling_fusedadam(self):
cases = [
(torch.optim.Adam, {"lr": 0.1, "betas": (0.8, 0.7), "fused": True, "amsgrad": amsgrad})
for amsgrad in (False, True)
]
steps_warmup = 3
steps_train = 2
for OptClass, kwargs in cases:
for actually_do_graphs in (True, False):
params = [torch.randn((i + 5, i + 5), device="cuda") for i in range(2)]
params_control = [p.clone().requires_grad_() for p in params]
params_graphed = [p.clone().requires_grad_() for p in params]
# `GradScaler` in-place updates gradients thus it's necessary to duplicate gradients.
grads = [[torch.randn_like(p) for p in params] for _ in range(steps_warmup + steps_train)]
with torch.no_grad():
grads_control = [[g.clone() for g in gs] for gs in grads]
grads_graphed = [[g.clone() for g in gs] for gs in grads]
# Gradient Scaler
scaler_for_control = torch.cuda.amp.GradScaler(init_scale=128.0)
with torch.no_grad():
scaler_for_control._lazy_init_scale_growth_tracker(torch.device("cuda"))
scaler_for_graphed = torch.cuda.amp.GradScaler()
scaler_for_graphed.load_state_dict(scaler_for_control.state_dict())
with torch.no_grad():
scaler_for_graphed._lazy_init_scale_growth_tracker(torch.device("cuda"))
# Control (capturable=False)
opt = OptClass(params_control, capturable=False, **kwargs)
for i in range(steps_warmup + steps_train):
for j, p in enumerate(params_control):
p.grad = grads_control[i][j]
scaler_for_control.step(opt)
scaler_for_control.update()
# capturable=True
opt = OptClass(params_graphed, capturable=True, **kwargs)
for i in range(steps_warmup):
for j, p in enumerate(params_graphed):
p.grad = grads_graphed[i][j]
scaler_for_graphed.step(opt)
scaler_for_graphed.update()
if actually_do_graphs:
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
scaler_for_graphed.step(opt)
scaler_for_graphed.update()
for i in range(steps_train):
if actually_do_graphs:
for j, p in enumerate(params_graphed):
p.grad.copy_(grads_graphed[i + steps_warmup][j])
g.replay()
else:
# Passing capturable=True to the constructor and running without graphs should still be
# numerically correct, even if it's not ideal for performance.
for j, p in enumerate(params_graphed):
p.grad = grads_graphed[i + steps_warmup][j]
scaler_for_graphed.step(opt)
scaler_for_graphed.update()
for p_control, p_graphed in zip(params_control, params_graphed):
self.assertEqual(p_control, p_graphed)
def test_batch_norm_gather_stats(self):
input = torch.randn(1, 3, 3, 3, device='cuda')
mean, invstd = torch.batch_norm_gather_stats(
input, mean=torch.ones(2, 3, device='cuda'), invstd=torch.ones(2, 3, device='cuda'),
running_mean=None, running_var=None , momentum=.1, eps=1e-5, count=2
)
self.assertEqual(mean, torch.ones(3, device='cuda'))
self.assertEqual(invstd, torch.ones(3, device='cuda'))
@unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs")
def test_cuda_device_memory_allocated(self):
from torch.cuda import memory_allocated
device_count = torch.cuda.device_count()
current_alloc = [memory_allocated(idx) for idx in range(device_count)]
x = torch.ones(10, device="cuda:0")
self.assertTrue(memory_allocated(0) > current_alloc[0])
self.assertTrue(all(memory_allocated(torch.cuda.device(idx)) == current_alloc[idx] for idx in range(1, device_count)))
def test_matmul_memory_use(self):
def get_max_used():
torch.cuda.synchronize()
val = torch.cuda.max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
return val
a = torch.rand(1, 32, 32, device="cuda")
b = torch.rand(24, 32, 1, device="cuda")
get_max_used()
torch.matmul(a, b)
matmul_mem = get_max_used()
a = a.expand(24, 32, 32)
torch.matmul(a, b)
matmul_expand_mem = get_max_used()
torch.bmm(a, b)
bmm_mem = get_max_used()
self.assertEqual(matmul_expand_mem, matmul_mem)
self.assertEqual(bmm_mem, matmul_mem)
@unittest.skipIf(not TEST_WITH_ROCM, "ROCm-only test")
def test_rocm_backward_pass_guard(self):
# The test exercises a ROCm-specific feature.
class MyFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, tensor, constant):
self.assertFalse(torch._C._rocm_is_backward_pass())
ctx.constant = constant
return tensor * constant
@staticmethod
def backward(ctx, grad_output):
self.assertTrue(torch._C._rocm_is_backward_pass())
return grad_output * ctx.constant, None
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.nn.Parameter(torch.randn(()))
def forward(self, x):
return MyFunction.apply(x, self.a)
model = MyModule()
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-6)
x = torch.randn(5, 5)
result = model(x)
loss = criterion(result, x)
optimizer.zero_grad()
loss.backward()
optimizer.step()
@unittest.skipIf(TEST_MULTIGPU, "Testing on one GPU is sufficient")
def test_lazy_init(self):
""" Validate that no CUDA calls are made during `import torch` call"""
from subprocess import check_output
VISIBLE_DEVICES = "HIP_VISIBLE_DEVICES" if TEST_WITH_ROCM else "CUDA_VISIBLE_DEVICES"
test_script = f"import os; import torch;os.environ['{VISIBLE_DEVICES}']='32';print(torch.cuda.device_count())"
rc = check_output([sys.executable, '-c', test_script]).decode("ascii").strip()
self.assertEqual(rc, "0")
class TestCudaComm(TestCase):
def _test_broadcast(self, input):
if not TEST_MULTIGPU:
raise unittest.SkipTest("only one GPU detected")
# test regular
results = comm.broadcast(input, (0, 1))
for i, t in enumerate(results):
self.assertEqual(t.get_device(), i)
self.assertEqual(t, input)
if input.is_cuda and input.get_device() == i: # test not copying on same device
self.assertEqual(t.data_ptr(), input.data_ptr())
# test out=
for inplace in [True, False]:
if inplace:
outputs = [torch.empty_like(input, device=0), torch.empty_like(input, device=1)]
else:
outputs = [input.cuda(0), torch.empty_like(input, device=1)]
results = comm.broadcast(input, out=outputs)
for r, o in zip(results, outputs):
self.assertIs(r, o)
for i, t in enumerate(results):
self.assertEqual(t.get_device(), i)
self.assertEqual(t, input)
# test error msg
with self.assertRaisesRegex(RuntimeError, r"Exactly one of 'devices' and 'out'"):
comm.broadcast(input, (0, 1), out=outputs)
with self.assertRaisesRegex(RuntimeError,
r"Expected all output tensors to be CUDA tensors, but output tensor at index 1"):
comm.broadcast(input, out=[input.cuda(0), input.cpu()])
with self.assertRaisesRegex(RuntimeError,
r"Expected all output tensors to have same shape as the source .+ at index 1"):
comm.broadcast(input, out=[input.cuda(0), input.cuda(1).unsqueeze(0)])
def test_broadcast_cpu(self):
self._test_broadcast(torch.randn(5, 5))
def test_broadcast_gpu(self):
self._test_broadcast(torch.randn(5, 5).cuda())
def _test_broadcast_coalesced(self, tensors, buffer_size):
b_tensors = [comm.broadcast(t, (0, 1)) for t in tensors]
for (_, bt), t in zip(b_tensors, tensors):
self.assertEqual(bt.get_device(), 1)
self.assertEqual(bt, t)
self.assertIsInstance(bt, type(t))
bc_tensors = comm.broadcast_coalesced(tensors, (0, 1), buffer_size=buffer_size)
bc_tensors_t = list(zip(*bc_tensors))
self.assertEqual(b_tensors, bc_tensors_t)
for (_, bt), (_, bct) in zip(b_tensors, bc_tensors_t):
self.assertEqual(bt.get_device(), bct.get_device())
self.assertIsInstance(bct, type(bt))
# check that tensors on device[0] are returned as-is
for out_tensors in (b_tensors, bc_tensors_t):
for inp_t, (out_t, _) in zip(tensors, out_tensors):
self.assertIs(inp_t, out_t)
# check that the tensors not on device[0] have different version counters
# NOTE [ Version Counter in comm.*_coalesced ]
versions = [t._version for _, t in bc_tensors_t]
for old_version, (_, t) in zip(versions, bc_tensors_t):
self.assertEqual(t._version, old_version)
t.zero_()
self.assertEqual(t._version, old_version + 1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
# Note: fails sometimes on the CI, passes on dual gfx906
def test_broadcast_coalesced(self):
numel = 5
num_bytes = numel * 8
tensors = [
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3),
make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_broadcast_coalesced_dense_only(self):
numel = 5
num_bytes = numel * 8
tensors = [
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_broadcast_coalesced(tensors, num_bytes * 5 // 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_broadcast_coalesced_empty_tensors(self):
tensors = [
torch.tensor([]).byte().cuda(),
torch.randn(5).cuda(),
torch.randn(5).double().cuda()
]
self._test_broadcast_coalesced(tensors, 256)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_reduce_add(self):
x = torch.randn(5, 5)
y = torch.randn(5, 5)
x_cuda = x.cuda(0)
y_cuda = y.cuda(1)
result = comm.reduce_add((x_cuda, y_cuda))
self.assertEqual(result.get_device(), 0)
self.assertEqual(result.cpu(), x + y)
def _test_reduce_add_coalesced(self, tensors, buffer_size):
dup_tensors = [tensors, [t.cuda(1) for t in tensors]]
r_tensors = [comm.reduce_add(t) for t in zip(*dup_tensors)]
for r, t in zip(r_tensors, tensors):
self.assertEqualTypeString(r, t)
self.assertEqual(r.coalesce() if r.is_sparse else r, t * 2)
rc_tensors = comm.reduce_add_coalesced(dup_tensors, buffer_size=buffer_size)
self.assertEqual(r_tensors, rc_tensors)
for r, rc in zip(r_tensors, rc_tensors):
self.assertEqualTypeString(rc, r)
# Since we have both cuda:0 and cuda:1 inputs, the outputs must be new.
# We can check that they have different version counters.
# NOTE [ Version Counter in comm.*_coalesced ]
versions = [t._version for t in rc_tensors]
for old_version, t in zip(versions, rc_tensors):
self.assertEqual(t._version, old_version)
t.zero_()
self.assertEqual(t._version, old_version + 1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_reduce_add_coalesced(self):
numel = 5
num_bytes = numel * 8
tensors = [
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 1, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 10, 2, 3),
make_sparse_tensor(torch.cuda.sparse.DoubleTensor, 5, 2, 3),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 7, 3, 3),
make_sparse_tensor(torch.cuda.sparse.FloatTensor, 2, 2, 3),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
make_sparse_tensor(torch.cuda.sparse.LongTensor, 3, 2, 7),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_reduce_add_coalesced_dense_only(self):
numel = 5
num_bytes = numel * 8
tensors = [
torch.randn(numel).long().cuda(),
torch.randn(numel).cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel).long().cuda(),
torch.randn(numel * 2).int().cuda(), # int is 2x shorter
torch.randn(numel).cuda(),
]
self._test_reduce_add_coalesced(tensors, num_bytes * 5 // 2)
def _test_scatter(self, input, chunk_sizes=None, dim=0):
if not TEST_MULTIGPU:
raise unittest.SkipTest("only one GPU detected")
if chunk_sizes is None:
ref_chunk_sizes = tuple(repeat(input.size(dim) // 2, 2))
else:
ref_chunk_sizes = chunk_sizes
# test regular
result = comm.scatter(input, (0, 1), chunk_sizes, dim)
self.assertEqual(len(result), 2)
chunk_start = 0
for i, r in enumerate(result):
chunk_end = chunk_start + ref_chunk_sizes[i]
index = [slice(None, None) for _ in range(input.dim())]
index[dim] = slice(chunk_start, chunk_end)
self.assertEqual(r, input[tuple(index)], atol=0, rtol=0)
chunk_start = chunk_end
if r.device == input.device:
self.assertEqual(r.data_ptr(), input.data_ptr()) # for target @ same device, a view should be returned
# test out
out = [torch.empty_like(t) for t in result]
result = comm.scatter(input, dim=dim, out=out)
self.assertEqual(len(result), 2)
chunk_start = 0
for i, r in enumerate(result):
self.assertIs(r, out[i])
chunk_end = chunk_start + ref_chunk_sizes[i]
index = [slice(None, None) for _ in range(input.dim())]
index[dim] = slice(chunk_start, chunk_end)
self.assertEqual(r, input[tuple(index)], atol=0, rtol=0)
chunk_start = chunk_end
# test error msg
if chunk_sizes is not None:
with self.assertRaisesRegex(RuntimeError, r"Expected devices and chunk_sizes to be of same length"):
comm.scatter(input, [0 for _ in range(len(chunk_sizes) + 1)], dim=dim, chunk_sizes=chunk_sizes)
with self.assertRaisesRegex(RuntimeError, r"'devices' must not be specified"):
comm.scatter(input, (0, 1), dim=dim, out=out)
with self.assertRaisesRegex(RuntimeError, r"Expected at least one device to scatter to"):
comm.scatter(input, (), dim=dim)
with self.assertRaisesRegex(RuntimeError, r"Expected at least one output tensor to scatter to"):
comm.scatter(input, dim=dim, out=[])
with self.assertRaisesRegex(RuntimeError,
r"Expected all output tensors to be CUDA tensors, but output tensor at index 0"):
comm.scatter(input, dim=dim, out=([out[0].cpu()] + out[1:]))
with self.assertRaisesRegex(RuntimeError, r"Output tensor at index 0 has incorrect shape"):
comm.scatter(input, dim=dim, out=([out[0].unsqueeze(0)] + out[1:]))
with self.assertRaisesRegex(RuntimeError, r"Total size for output tensors along scatter dim \d+ does not match"):
index = [slice(None, None) for _ in range(input.dim())]
index[dim] = slice(1, None)
comm.scatter(input, dim=dim, out=([out[0][tuple(index)]] + out[1:]))
def test_scatter_cpu(self):
self._test_scatter(torch.randn(4, 4), dim=0)
def test_scatter_cpu_dim(self):
self._test_scatter(torch.randn(4, 4), dim=1)
def test_scatter_cpu_neg_dim(self):
self._test_scatter(torch.randn(4, 4), dim=-2)
def test_scatter_cpu_sizes(self):
self._test_scatter(torch.randn(6, 4), chunk_sizes=(2, 4))
def test_scatter_gpu(self):
self._test_scatter(torch.randn(4, 4).cuda(), dim=0)
def test_scatter_gpu_dim(self):
self._test_scatter(torch.randn(4, 4).cuda(), dim=1)
def test_scatter_gpu_neg_dim(self):
self._test_scatter(torch.randn(4, 4).cuda(), dim=-2)
def test_scatter_gpu_sizes(self):
self._test_scatter(torch.randn(6, 4).cuda(), chunk_sizes=(2, 4))
def _test_gather(self, dim):
if not TEST_MULTIGPU:
raise unittest.SkipTest("only one GPU detected")
x = torch.randn(2, 5, device=0)
y = torch.randn(2, 5, device=1)
expected_size = list(x.size())
expected_size[dim] += y.size(dim)
expected_size = torch.Size(expected_size)
destinations = [None, torch.device('cuda:0'), torch.device('cpu')]
if torch.cuda.device_count() > 2:
destinations.append(torch.device('cuda:2'))
with torch.cuda.device(1):
for destination in destinations:
if destination is None:
expected_device = torch.device('cuda', torch.cuda.current_device())
else:
expected_device = destination
for use_out in [True, False]:
if use_out:
out = torch.empty(expected_size, device=expected_device)
result = comm.gather((x, y), dim, out=out)
self.assertIs(out, result)
else:
result = comm.gather((x, y), dim, destination=destination)
self.assertEqual(result.device, expected_device)
self.assertEqual(result.size(), expected_size)
index = [slice(None, None), slice(None, None)]
index[dim] = slice(0, x.size(dim))
self.assertEqual(result[tuple(index)], x)
index[dim] = slice(x.size(dim), x.size(dim) + y.size(dim))
self.assertEqual(result[tuple(index)], y)
# test error msg
with self.assertRaisesRegex(RuntimeError, r"'destination' must not be specified"):
comm.gather((x, y), dim, destination='cpu', out=torch.empty(expected_size, device='cpu'))
with self.assertRaisesRegex(RuntimeError, r"Expected at least one tensor to gather from"):
comm.gather(())
with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to be CUDA tensors, "):
comm.gather((x.cpu(), y))
with self.assertRaisesRegex(RuntimeError, r"Expected all input tensors to have the same number of dimensions"):
comm.gather((x, y.unsqueeze(0)))
with self.assertRaisesRegex(RuntimeError, r"Input tensor at index 1 has invalid shape"):
if dim in [0, -2]:
comm.gather((x, y[:, 1:]), dim=dim)
elif dim in [1, -1]:
comm.gather((x, y[1:, :]), dim=dim)
def test_gather(self):
self._test_gather(0)
def test_gather_dim(self):
self._test_gather(1)
def test_gather_neg_dim(self):
self._test_gather(-1)
@unittest.skipIf(not TEST_MULTIGPU, "only one GPU detected")
def test_memory_format_scatter_gather(self):
nhwc = torch.randn((10, 3, 32, 32), device='cpu').contiguous(memory_format=torch.channels_last)
results = torch.cuda.comm.scatter(nhwc, (0, 1), None, 0)
for result in results:
self.assertFalse(result.is_contiguous())
self.assertTrue(result.is_contiguous(memory_format=torch.channels_last))
gathered = torch.cuda.comm.gather(results)
self.assertTrue(gathered.is_contiguous(memory_format=torch.channels_last))
def test_matmul_device_mismatch(self):
cpu = torch.rand((10, 10))
cuda = cpu.cuda()
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
cpu @ cuda
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
cuda @ cpu
for s, m1, m2 in product((cpu, cuda), repeat=3):
if s.device == m1.device == m2.device:
torch.addmm(s, m1, m2)
else:
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
torch.addmm(s, m1, m2)
@unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs")
def test_scatter_namedtuple(self):
# tests ability to scatter namedtuples and retrieve a list where each
# element is of the expected namedtuple type.
fields = ("a", "b")
TestNamedTupleInput_0 = collections.namedtuple("NamedTuple", fields)
num_gpus = torch.cuda.device_count()
a = torch.rand(num_gpus * 2, device=0)
b = torch.rand(num_gpus * 2, device=0)
a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]
b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]
inp = TestNamedTupleInput_0(a, b)
target_gpus = [torch.device(i) for i in range(num_gpus)]
scatter_out = scatter_gather.scatter(inp, target_gpus)
for i, x in enumerate(scatter_out):
self.assertTrue(isinstance(x, type(inp)))
self.assertEqual(x._fields, fields)
expected_a = a_tensors_for_gpu[i]
expected_b = b_tensors_for_gpu[i]
self.assertEqual(expected_a, x.a)
self.assertEqual(expected_b, x.b)
class TestNamedTupleInput_1(NamedTuple):
a: torch.tensor
b: torch.tensor
a = torch.rand(num_gpus * 2, device=0)
b = torch.rand(num_gpus * 2, device=0)
a_tensors_for_gpu = [a[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]
b_tensors_for_gpu = [b[2 * i : 2 * i + 2].to(i) for i in range(num_gpus)]
inp = TestNamedTupleInput_1(a, b)
scatter_out = scatter_gather.scatter(inp, target_gpus)
for i, x in enumerate(scatter_out):
self.assertTrue(isinstance(x, type(inp)))
self.assertEqual(x._fields, fields)
expected_a = a_tensors_for_gpu[i]
expected_b = b_tensors_for_gpu[i]
self.assertEqual(expected_a, x.a)
self.assertEqual(expected_b, x.b)
@unittest.skipIf(not TEST_MULTIGPU, "Test needs multiple GPUs")
def test_gather_namedtuple(self):
# tests ability to gather a list of namedtuples and return a namedtuple where each
# element is of the expected tensor type.
fields = ['a', 'b']
TestNamedTupleInput_0 = collections.namedtuple('NamedTuple', fields)
num_gpus = torch.cuda.device_count()
a = torch.rand(num_gpus * 2, device=0)
b = torch.rand(num_gpus * 2, device=1)
out1 = TestNamedTupleInput_0(a, b)
a = torch.rand(num_gpus * 2, device=1)
b = torch.rand(num_gpus * 2, device=0)
out2 = TestNamedTupleInput_0(a, b)
outputs = [out1, out2]
out = scatter_gather.gather(outputs, 'cpu') # test on CPU
for i, x in enumerate(out):
self.assertTrue(isinstance(x, type(out2[-1]))) # x must be a tensor
cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu')))
self.assertTrue(torch.equal(x, cat))
out = scatter_gather.gather(outputs, 0) # test on GPU
for i, x in enumerate(out):
self.assertTrue(isinstance(x, type(out2[-1])))
cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0)))
self.assertTrue(torch.equal(x, cat))
class TestNamedTupleInput_1(NamedTuple):
a: torch.tensor
b: torch.tensor
a = torch.rand(num_gpus * 2, device=0)
b = torch.rand(num_gpus * 2, device=1)
out1 = TestNamedTupleInput_1(a, b)
a = torch.rand(num_gpus * 2, device=1)
b = torch.rand(num_gpus * 2, device=0)
out2 = TestNamedTupleInput_1(a, b)
outputs = [out1, out2]
out = scatter_gather.gather(outputs, 0) # test on GPU
for i, x in enumerate(out):
self.assertTrue(isinstance(x, type(out2[-1])))
cat = torch.cat((outputs[0][i].to(0), outputs[1][i].to(0)))
self.assertTrue(torch.equal(x, cat))
out = scatter_gather.gather(outputs, 'cpu') # test on CPU
for i, x in enumerate(out):
self.assertTrue(isinstance(x, type(out2[-1])))
cat = torch.cat((outputs[0][i].to('cpu'), outputs[1][i].to('cpu')))
self.assertTrue(torch.equal(x, cat))
def test_memory_snapshot(self):
try:
torch.cuda.memory.empty_cache()
torch.cuda.memory._record_memory_history(True)
x = torch.rand(311, 411, device='cuda')
# create a bunch of tensors that all will tile into the
# same segment to exercise the history merging code
# 512B is the minimum block size,
# so we allocate all the tensors to this size to make sure
# they tile evenly
tensors = [torch.rand(128, device='cuda') for _ in range(1000)]
while tensors:
del tensors[randint(0, len(tensors) - 1)]
# exercise the history trimming code
torch.rand(128 * 5, device='cuda')
ss = torch.cuda.memory._snapshot()
found_it = False
for seg in ss:
for b in seg['blocks']:
if 'history' in b:
for h in b['history']:
if h['real_size'] == 311 * 411 * 4:
self.assertTrue('test_cuda' in h['frames'][0]['filename'])
found_it = True
self.assertTrue(found_it)
if not IS_WINDOWS:
with tempfile.NamedTemporaryFile() as f:
torch.cuda.memory._save_segment_usage(f.name)
with open(f.name, 'r') as f2:
self.assertTrue('test_cuda.py' in f2.read())
finally:
torch.cuda.memory._record_memory_history(False)
def test_allocator_settings(self):
def power2_div(size, div_factor):
pow2 = 1
while pow2 < size:
pow2 = pow2 * 2
if pow2 == size:
return pow2
step = pow2 / 2 / div_factor
ret = pow2 / 2
while ret < size:
ret = ret + step
return ret
torch.cuda.memory.empty_cache()
key = 'active_bytes.all.allocated'
nelems = 21 * 1024 * 1024
nbytes = 4 * nelems # floats are 4 bytes
start_mem = torch.cuda.memory_stats()[key]
torch.cuda.memory._set_allocator_settings("")
x = torch.rand(nelems, device='cuda')
reg_mem = torch.cuda.memory_stats()[key]
torch.cuda.memory._set_allocator_settings("roundup_power2_divisions:4")
y = torch.rand(nelems, device='cuda')
pow2_div4_mem = torch.cuda.memory_stats()[key]
self.assertTrue(reg_mem - start_mem == nbytes)
self.assertTrue(pow2_div4_mem - reg_mem == power2_div(nbytes, 4))
torch.cuda.memory._set_allocator_settings("garbage_collection_threshold:0.5")
torch.cuda.memory._set_allocator_settings("garbage_collection_threshold:0.5,max_split_size_mb:40")
# should have reset the power2 divisions now
torch.cuda.memory.empty_cache()
start_mem = torch.cuda.memory_stats()[key]
z = torch.rand(nelems, device='cuda')
reg_mem = torch.cuda.memory_stats()[key]
self.assertTrue(reg_mem - start_mem == nbytes)
with self.assertRaises(RuntimeError):
torch.cuda.memory._set_allocator_settings("foo:1,bar:2")
with self.assertRaises(RuntimeError):
torch.cuda.memory._set_allocator_settings("garbage_collection_threshold:1.2")
with self.assertRaises(RuntimeError):
torch.cuda.memory._set_allocator_settings("max_split_size_mb:2")
def test_raises_oom(self):
with self.assertRaises(torch.cuda.OutOfMemoryError):
torch.empty(1024 * 1024 * 1024 * 1024, device='cuda')
@unittest.skipIf(IS_WINDOWS, 'Windows CI does not like the load_inline')
def test_cpp_memory_snapshot_pickle(self):
from torch.utils.cpp_extension import load_inline
source = """
#include <torch/csrc/cuda/memory_snapshot.h>
py::object do_snapshot() {
std::string data = torch::cuda::_memory_snapshot_pickled();
return py::bytes(data);
}
void record(bool e) {
torch::cuda::_record_memory_history(e);
}
"""
m = load_inline(name='snapshot', cpp_sources=[source], functions=['do_snapshot', 'record'])
try:
m.record(True)
t = torch.rand(311, 411, device='cuda')
mem = pickle.loads(m.do_snapshot())
found = False
for s in mem:
for b in s['blocks']:
if b['state'] == 'active_allocated' and 'history' in b:
history = b['history']
if history and history[0]['real_size'] == 311 * 411 * 4:
found = True
self.assertTrue(found)
finally:
m.record(False)
instantiate_parametrized_tests(TestCuda)
if __name__ == '__main__':
run_tests()
|