1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
|
# Owner(s): ["module: dataloader"]
import math
import sys
import errno
import os
import ctypes
import faulthandler
import torch
import gc
import time
import signal
import unittest
import itertools
import warnings
import tempfile
import torch.utils.data.datapipes as dp
from torch import multiprocessing as mp
from torch.utils.data import (
ChainDataset,
ConcatDataset,
DataLoader,
DataLoader2,
Dataset,
IterableDataset,
IterDataPipe,
Subset,
TensorDataset,
communication,
_utils
)
from torch.utils.data._utils import MP_STATUS_CHECK_INTERVAL
from torch.utils.data.dataset import random_split
from torch.utils.data.datapipes.iter import IterableWrapper
from torch.utils.data.datapipes.map import SequenceWrapper
from torch._utils import ExceptionWrapper
from torch.testing._internal.common_utils import (TestCase, run_tests, TEST_NUMPY, IS_WINDOWS,
IS_CI, NO_MULTIPROCESSING_SPAWN, skipIfRocm, slowTest,
load_tests, TEST_WITH_ASAN, TEST_WITH_TSAN, IS_SANDCASTLE,
IS_MACOS)
try:
import psutil
HAS_PSUTIL = True
except ImportError:
HAS_PSUTIL = False
err_msg = ("psutil not found. Some critical data loader tests relying on it "
"(e.g., TestDataLoader.test_proper_exit) will not run.")
if IS_CI:
raise ImportError(err_msg) from None
else:
warnings.warn(err_msg)
try:
import dill
# XXX: By default, dill writes the Pickler dispatch table to inject its
# own logic there. This globally affects the behavior of the standard library
# pickler for any user who transitively depends on this module!
# Undo this extension to avoid altering the behavior of the pickler globally.
dill.extend(use_dill=False)
HAS_DILL = True
except ImportError:
HAS_DILL = False
skipIfNoDill = unittest.skipIf(not HAS_DILL, "no dill")
try:
import numpy as np
HAS_NUMPY = True
except ImportError:
HAS_NUMPY = False
skipIfNoNumpy = unittest.skipIf(not HAS_NUMPY, "no NumPy")
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
# We cannot import TEST_CUDA from torch.testing._internal.common_cuda here, because if we do that,
# the TEST_CUDNN line from torch.testing._internal.common_cuda will be executed multiple times
# as well during the execution of this test suite, and it will cause
# CUDA OOM error on Windows.
TEST_CUDA = torch.cuda.is_available()
if TEST_CUDA:
dev_name = torch.cuda.get_device_name(torch.cuda.current_device()).lower()
IS_JETSON = 'xavier' in dev_name or 'nano' in dev_name or 'jetson' in dev_name or 'tegra' in dev_name
else:
IS_JETSON = False
if not NO_MULTIPROCESSING_SPAWN:
# We want to use `spawn` if able because some of our tests check that the
# data loader terminiates gracefully. To prevent hanging in the testing
# process, such data loaders are run in a separate subprocess.
#
# We also want to test the `pin_memory=True` configuration, thus `spawn` is
# required to launch such processes and they initialize the CUDA context.
#
# Mixing different start method is a recipe for disaster (e.g., using a fork
# `mp.Event` with a spawn `mp.Process` segfaults). So we set this globally
# to avoid bugs.
#
# Get a multiprocessing context because some test / third party library will
# set start_method when imported, and setting again triggers `RuntimeError`.
mp = mp.get_context(method='spawn')
# 60s of timeout?
# Yes, in environments where physical CPU resources are shared, e.g., CI, the
# time for a inter-process communication can be highly varying. With 15~17s of
# timeout, we have observed flakiness in some CI builds (see
# pytorch/pytorch#14501, pytorch/pytorch#16608). We follow the CPython
# multiprocessing setup and set the timeout to 60s here:
#
# https://github.com/python/cpython/blob/e8113f51a8bdf33188ee30a1c038a298329e7bfa/Lib/test/_test_multiprocessing.py#L73
JOIN_TIMEOUT = 60.0 # seconds
supported_multiprocessing_contexts = [None] + list(torch.multiprocessing.get_all_start_methods())
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestDatasetRandomSplit(TestCase):
def test_lengths_must_equal_dataset_size(self):
with self.assertRaises(ValueError):
random_split([1, 2, 3, 4], [1, 2])
def test_splits_have_correct_size(self):
splits = random_split([1, 2, 3, 4, 5, 6], [2, 4])
self.assertEqual(len(splits), 2)
self.assertEqual(len(splits[0]), 2)
self.assertEqual(len(splits[1]), 4)
splits = random_split([1, 2, 3, 4, 5, 6], [0.5, 0.5])
self.assertEqual(len(splits), 2)
self.assertEqual(len(splits[0]), 3)
self.assertEqual(len(splits[1]), 3)
# Odd size splits
self.assertEqual(
len(random_split(range(3), [0.5, 0.5], generator=torch.Generator().manual_seed(1))),
2
)
# Odd sized round-robin splits
splits = random_split(range(106), [0.1, 0.2, 0.3, 0.4],
generator=torch.Generator().manual_seed(1))
self.assertEqual(len(splits[0]), 11)
self.assertEqual(len(splits[1]), 22)
self.assertEqual(len(splits[2]), 31)
self.assertEqual(len(splits[3]), 42)
def test_splits_are_mutually_exclusive(self):
data = [5, 2, 3, 4, 1, 6]
splits = random_split(data, [2, 4])
all_values = []
all_values.extend(list(splits[0]))
all_values.extend(list(splits[1]))
data.sort()
all_values.sort()
self.assertListEqual(data, all_values)
splits = random_split(data, [0.33, 0.67])
all_values = []
all_values.extend(list(splits[0]))
all_values.extend(list(splits[1]))
data.sort()
all_values.sort()
self.assertListEqual(data, all_values)
data = [1, 2, 3, 4]
splits = random_split(data, [0.25, 0.75])
all_values = []
all_values.extend(list(splits[0]))
all_values.extend(list(splits[1]))
data.sort()
all_values.sort()
self.assertListEqual(data, all_values)
def test_splits_indexing_type(self):
r"""Indices generated by random_split
should be of integer type
"""
class CustomDataset():
def __init__(self, test_object, custom_list):
self.data = custom_list
self.test_object = test_object
def __getitem__(self, key):
self.test_object.assertEqual(type(key), type(0))
return self.data[key]
def __len__(self):
return len(self.data)
x = [1, 2, 3, 4, 5]
dataset = CustomDataset(self, x)
dataset = random_split(dataset, [5])[0]
data_loader = DataLoader(dataset)
for batch in data_loader:
pass
# fractional splitting
dataset = CustomDataset(self, x)
dataset = random_split(dataset, [1.0])[0]
data_loader = DataLoader(dataset)
for batch in data_loader:
pass
def test_splits_reproducibility(self):
self.assertEqual(
[list(x) for x in random_split(range(10), [3, 7], generator=torch.Generator().manual_seed(1))],
[[5, 6, 1], [2, 0, 8, 9, 3, 7, 4]],
)
self.assertEqual(
random_split(range(100), [60, 40], generator=torch.Generator().manual_seed(42)),
random_split(range(100), [60, 40], generator=torch.Generator().manual_seed(42)),
)
self.assertEqual(
random_split(range(100), [0.5, 0.5], generator=torch.Generator().manual_seed(42)),
random_split(range(100), [0.5, 0.5], generator=torch.Generator().manual_seed(42)),
)
self.assertEqual(
random_split(range(100), [0.33, 0.33, 0.34], generator=torch.Generator().manual_seed(42)),
random_split(range(100), [0.33, 0.33, 0.34], generator=torch.Generator().manual_seed(42)),
)
def test_incomplete_fractional_splits(self):
with self.assertRaises(ValueError):
# should raise since the sum of fractions is not 1
random_split([1, 2, 3, 4], [0.1])
with self.assertRaises(ValueError):
# should raise since fraction > 1
random_split([1, 2, 3, 4], [1.1])
def test_splits_generator(self):
# A random_split without a specific generator should affect the default one
state = torch.get_rng_state()
a = torch.rand(10)
torch.set_rng_state(state)
random_split(range(10), [5, 5])
b = torch.rand(10)
self.assertNotEqual(a, b)
# A random_split with a specific generator should not affect the default one
state = torch.get_rng_state()
a = torch.rand(10)
torch.set_rng_state(state)
random_split(range(10), [5, 5], generator=torch.Generator().manual_seed(42))
b = torch.rand(10)
self.assertEqual(a, b)
def test_slicing_of_subset_of_dataset(self):
# Testing slicing a subset initialized with a dataset
dataset = TensorDataset(torch.tensor([1, 2, 3, 4, 5]))
subset_of_dataset = Subset(dataset, [0, 1, 2, 3, 4])
self.assertEqual(subset_of_dataset[:], dataset[:])
self.assertEqual(subset_of_dataset[1:2], dataset[1:2])
self.assertEqual(subset_of_dataset[0:-1:2], dataset[0:-1:2])
# Testing slicing of subset from random split
subset1, subset2 = random_split(dataset, [3, 2])
self.assertEqual(subset1[:], dataset[subset1.indices[:]])
self.assertEqual(subset1[0:2], dataset[subset1.indices[0:2]])
self.assertEqual(subset1[0:-1:2], dataset[subset1.indices[0:-1:2]])
def test_slicing_of_subset_of_subset(self):
# Testing slicing a subset initialized with a subset
dataset = TensorDataset(torch.tensor([1, 2, 3, 4, 5]))
subset_of_dataset = Subset(dataset, [0, 1, 2, 3, 4])
subset_of_subset = Subset(subset_of_dataset, [0, 1, 2, 3, 4])
self.assertEqual(subset_of_subset[:], dataset[:])
self.assertEqual(subset_of_subset[0:2], dataset[0:2])
self.assertEqual(subset_of_subset[0:-1:2], dataset[0:-1:2])
# Testing slicing of subset of subset from random split
subset1, subset2 = random_split(dataset, [4, 1])
subset_of_subset1, subset_of_subset2 = random_split(subset1, [3, 1])
idx = [subset1.indices[i] for i in subset_of_subset1.indices]
self.assertEqual(subset_of_subset1[:], dataset[idx[:]])
self.assertEqual(subset_of_subset1[0:2], dataset[idx[0:2]])
self.assertEqual(subset_of_subset1[0:-1:2], dataset[idx[0:-1:2]])
class CUDACountingDataset(Dataset):
def __init__(self, n):
super(CUDACountingDataset, self).__init__()
self.n = n
def __getitem__(self, i):
return torch.as_tensor(i, device='cuda')
def __len__(self):
return self.n
class CountingDataset(Dataset):
def __init__(self, n):
super(CountingDataset, self).__init__()
self.n = n
def __getitem__(self, i):
return i
def __len__(self):
return self.n
class CountingIterableDataset(IterableDataset):
def __init__(self, n):
super(CountingIterableDataset, self).__init__()
self.n = n
def __iter__(self):
return iter(range(self.n))
def __len__(self):
return self.n
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestTensorDataset(TestCase):
def test_len(self):
source = TensorDataset(torch.randn(15, 10, 2, 3, 4, 5), torch.randperm(15))
self.assertEqual(len(source), 15)
def test_getitem(self):
t = torch.randn(15, 10, 2, 3, 4, 5)
l = torch.randn(15, 10)
source = TensorDataset(t, l)
for i in range(15):
self.assertEqual(t[i], source[i][0])
self.assertEqual(l[i], source[i][1])
def test_getitem_1d(self):
t = torch.randn(15)
l = torch.randn(15)
source = TensorDataset(t, l)
for i in range(15):
self.assertEqual(t[i], source[i][0])
self.assertEqual(l[i], source[i][1])
def test_single_tensor(self):
t = torch.randn(5, 10)
source = TensorDataset(t)
self.assertEqual(len(source), 5)
for i in range(5):
self.assertEqual(t[i], source[i][0])
def test_many_tensors(self):
t0 = torch.randn(5, 10, 2, 3, 4, 5)
t1 = torch.randn(5, 10)
t2 = torch.randn(5, 10, 2, 5)
t3 = torch.randn(5, 10, 3, 7)
source = TensorDataset(t0, t1, t2, t3)
self.assertEqual(len(source), 5)
for i in range(5):
self.assertEqual(t0[i], source[i][0])
self.assertEqual(t1[i], source[i][1])
self.assertEqual(t2[i], source[i][2])
self.assertEqual(t3[i], source[i][3])
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestConcatDataset(TestCase):
def test_concat_two_singletons(self):
result = ConcatDataset([[0], [1]])
self.assertEqual(2, len(result))
self.assertEqual(0, result[0])
self.assertEqual(1, result[1])
def test_concat_two_non_singletons(self):
result = ConcatDataset([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
self.assertEqual(10, len(result))
self.assertEqual(0, result[0])
self.assertEqual(5, result[5])
def test_concat_two_non_singletons_with_empty(self):
# Adding an empty dataset somewhere is correctly handled
result = ConcatDataset([[0, 1, 2, 3, 4],
[],
[5, 6, 7, 8, 9]])
self.assertEqual(10, len(result))
self.assertEqual(0, result[0])
self.assertEqual(5, result[5])
def test_concat_raises_index_error(self):
result = ConcatDataset([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
with self.assertRaises(IndexError):
# this one goes to 11
result[11]
def test_add_dataset(self):
d1 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
d2 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
d3 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
result = d1 + d2 + d3
self.assertEqual(21, len(result))
self.assertEqual(0, (d1[0][0] - result[0][0]).abs().sum())
self.assertEqual(0, (d2[0][0] - result[7][0]).abs().sum())
self.assertEqual(0, (d3[0][0] - result[14][0]).abs().sum())
def test_iterable_dataset_err(self):
d1 = TensorDataset(torch.rand(7, 3, 28, 28), torch.rand(7))
it1 = CountingIterableDataset(5)
it2 = CountingIterableDataset(10)
with self.assertRaisesRegex(AssertionError, "does not support IterableDataset"):
ConcatDataset([d1, it2, it1])
with self.assertRaisesRegex(AssertionError, "does not support IterableDataset"):
ConcatDataset([it2])
with self.assertRaisesRegex(AssertionError, "does not support IterableDataset"):
ConcatDataset([it1, d1])
# takes in dummy var so this can also be used as a `worker_init_fn`
def set_faulthander_if_available(_=None):
faulthandler.enable(sys.__stderr__)
if not IS_WINDOWS:
# windows does not have faulthandler.register
# chain=False prevents the default behavior of killing the process
faulthandler.register(signal.SIGUSR1, file=sys.__stderr__, chain=False)
set_faulthander_if_available()
# Process `pid` must have called `set_faulthander_if_available`
def print_traces_of_all_threads(pid):
if not IS_WINDOWS:
# use the custom signal if available
os.kill(pid, signal.SIGUSR1)
else:
# otherwise we can still use the handler given by faulthandler.enable()
# at the cost of killing the process.
os.kill(pid, signal.SIGSEGV)
# wait in parent process to give subprocess some time to print
time.sleep(5)
# The following `ErrorTrackingProcess` stores the first encountered exception in
# its `.exception` attribute.
# Inspired by https://stackoverflow.com/a/33599967
class ErrorTrackingProcess(mp.Process):
# Why no *args?
# py2 doesn't support def fn(x, *args, key=val, **kwargs)
# Setting disable_stderr=True may generate a lot of unrelated error outputs
# but could be helpful for debugging.
def __init__(self, disable_stderr=True, **kwargs):
super(ErrorTrackingProcess, self).__init__(**kwargs)
self._pconn, self._cconn = mp.Pipe()
self._exception = None
self.disable_stderr = disable_stderr
def run(self):
set_faulthander_if_available()
if self.disable_stderr:
# Disable polluting stderr with errors that are supposed to happen.
with open(os.devnull, 'w') as devnull:
os.dup2(devnull.fileno(), sys.stderr.fileno())
try:
super(ErrorTrackingProcess, self).run()
self._cconn.send(None)
except Exception:
self._cconn.send(ExceptionWrapper(sys.exc_info()))
raise
def print_traces_of_all_threads(self):
assert self.is_alive(), "can only use print_traces_of_all_threads if the process is alive"
assert not self.disable_stderr, "do not disable stderr if you use print_traces_of_all_threads"
# On platforms without `SIGUSR1`, `set_faulthander_if_available` sets
# `faulthandler.enable()`, and `print_traces_of_all_threads` may kill
# the process. So let's poll the exception first
_ = self.exception
print_traces_of_all_threads(self.pid)
@property
def exception(self):
if self._pconn.poll():
self._exception = self._pconn.recv()
if self._exception is None:
return None
else:
return self._exception.exc_type(self._exception.exc_msg)
# ESRCH means that os.kill can't finds alive proc
def send_signal(self, signum, ignore_ESRCH=False):
try:
os.kill(self.pid, signum)
except OSError as e:
if not ignore_ESRCH or e.errno != errno.ESRCH:
raise
class ErrorDataset(Dataset):
def __init__(self, size):
self.size = size
def __len__(self):
return self.size
class SegfaultDataset(Dataset):
def __init__(self, size):
self.size = size
def __getitem__(self, idx):
return ctypes.string_at(0)
def __len__(self):
return self.size
class SleepDataset(Dataset):
def __init__(self, size, sleep_sec):
self.size = size
self.sleep_sec = sleep_sec
self.sleeped = False
def __getitem__(self, idx):
if not self.sleeped:
time.sleep(self.sleep_sec)
self.sleeped = True
return idx
def __len__(self):
return self.size
class SeedDataset(Dataset):
def __init__(self, size):
self.size = size
def __getitem__(self, idx):
return torch.initial_seed()
def __len__(self):
return self.size
class WorkerSpecificIterableDataset(IterableDataset):
def __init__(self, sizes_for_all_workers):
self.sizes_for_all_workers = sizes_for_all_workers
def __iter__(self):
worker_info = torch.utils.data.get_worker_info()
assert worker_info is not None
return iter(range(self.sizes_for_all_workers[worker_info.id]))
def __len__(self):
return sum(self.sizes_for_all_workers)
# Inspired by https://stackoverflow.com/a/26703365
# If all workers will call `sync_once`, they will be blocked until all workers
# reach the call (i.e., acting like a barrier).
# This can be used to ensure that each worker at least processes one data.
class SynchronizedDataset(Dataset):
def __init__(self, size, batch_size, num_workers):
assert size >= num_workers * batch_size
self.count = mp.Value('i', 0, lock=True)
self.barrier = mp.Semaphore(0)
self.num_workers = num_workers
self.size = size
def sync_once(self):
with self.count.get_lock():
self.count.value += 1
if self.count.value == self.num_workers:
self.barrier.release()
self.barrier.acquire()
self.barrier.release()
def __getitem__(self, idx):
raise NotImplementedError
def __len__(self):
return self.size
class EmptyTensorDataset(torch.utils.data.Dataset):
def __init__(self, len):
self.len = len
def __len__(self):
return self.len
def __getitem__(self, any):
return torch.empty(0)
class SynchronizedSeedDataset(SynchronizedDataset):
def __getitem__(self, idx):
self.sync_once()
return torch.initial_seed()
def _test_timeout(persistent_workers):
dataset = SleepDataset(10, 3)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2, timeout=1,
persistent_workers=persistent_workers)
_ = next(iter(dataloader))
def _test_timeout_pin_memory(persistent_workers):
dataset = SleepDataset(10, 3)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2, timeout=1, pin_memory=True,
persistent_workers=persistent_workers)
_ = next(iter(dataloader))
def _test_large_sampler_indices(persistent_workers):
# See
# test_large_sampler_indices
# https://github.com/pytorch/pytorch/issues/48666
dataloader = torch.utils.data.DataLoader(
EmptyTensorDataset(10000000),
batch_size=40960,
persistent_workers=persistent_workers,
num_workers=1)
it = iter(dataloader)
for x in it:
assert x.numel() == 0
raise RuntimeError('My Error')
def disable_stderr(worker_id):
r"""
Avoids printing "ERROR: Unexpected segmentation fault encountered in worker."
from workers. Since worker signal handler prints with low-level write(),
this has to be done on OS level via dup.
This is used as worker_init_fn for test_segfault.
"""
sys.stderr.flush() # flush library buffers that dup2 knows nothing about
# Can't use a with-block because otherwise the fd will be closed when this
# function ends.
with open(os.devnull, 'w') as devnull:
os.dup2(devnull.fileno(), sys.stderr.fileno())
def _test_segfault():
dataset = SegfaultDataset(10)
dataloader = DataLoader(dataset, batch_size=2, num_workers=2, worker_init_fn=disable_stderr)
_ = next(iter(dataloader))
def _test_no_segfault():
dataset = [1, 2, 3]
num_threads = torch.get_num_threads()
if num_threads < 4:
torch.set_num_threads(4)
else:
torch.set_num_threads(num_threads)
mp_ctx = torch.multiprocessing.get_context(method='fork')
dataloader = DataLoader(dataset, num_workers=1, worker_init_fn=disable_stderr,
multiprocessing_context=mp_ctx)
_ = next(iter(dataloader))
class TestProperExitDataset(Dataset):
def __init__(self, size, error_event):
self.size = size
self.error_event = error_event
def __len__(self):
return self.size
def __getitem__(self, idx):
worker_info = torch.utils.data.get_worker_info()
if self.error_event is not None and self.error_event.is_set() and \
worker_info.id == worker_info.num_workers - 1:
# only error in the last worker
raise RuntimeError('Worker error')
return torch.tensor([idx])
class TestProperExitIterableDataset(IterableDataset):
def __init__(self, size, error_event):
self.error_event = error_event
self.size = size
self.remaining = size
def __len__(self):
return self.size
def __iter__(self):
return self
def __next__(self):
worker_info = torch.utils.data.get_worker_info()
if self.error_event is not None and self.error_event.is_set() and \
worker_info.id == worker_info.num_workers - 1:
# only error in the last worker
raise RuntimeError('Worker error')
self.remaining -= 1
if self.remaining < 0:
raise StopIteration
return torch.tensor(-1000)
# See TestDataLoader.test_proper_exit for usage
def _test_proper_exit(is_iterable_dataset, use_workers, pin_memory, exit_method,
hold_iter_reference, loader_setup_event, tester_setup_event,
persistent_workers):
num_workers = 2 if use_workers else 0
if exit_method == 'worker_error' or exit_method == 'worker_kill':
assert use_workers is True
if exit_method == 'worker_error':
worker_error_event = mp.Event()
else:
worker_error_event = None
if is_iterable_dataset:
ds = TestProperExitIterableDataset(7, worker_error_event)
else:
ds = TestProperExitDataset(12, worker_error_event)
loader = DataLoader(ds, batch_size=1, shuffle=False,
num_workers=num_workers, pin_memory=pin_memory,
worker_init_fn=set_faulthander_if_available,
persistent_workers=persistent_workers)
error_it = 2
if use_workers:
# 2 is the magical per-worker prefetch number...
# FIXME: change this after the number becomes configurable.
if is_iterable_dataset:
assert len(ds) * num_workers > (error_it + 2 + 1)
else:
assert len(loader) > (error_it + 2 + 1) * num_workers
else:
if is_iterable_dataset:
assert len(ds) > error_it + 1
else:
assert len(loader) > error_it + 1
it = iter(loader)
if use_workers:
workers = it._workers
def kill_pid(pid):
psutil_p = psutil.Process(pid)
psutil_p.kill()
psutil_p.wait(JOIN_TIMEOUT)
assert not psutil_p.is_running()
for i, _ in enumerate(it):
if i == 0:
if not hold_iter_reference:
del it
del loader
loader_setup_event.set()
tester_setup_event.wait()
# ensure that the workers are still alive
if use_workers:
for w in workers:
assert w.is_alive()
if worker_error_event is not None:
worker_error_event.set()
if i == error_it:
if exit_method == 'loader_error':
raise RuntimeError('Loader error')
elif exit_method == 'loader_kill':
kill_pid(os.getpid())
elif exit_method == 'worker_kill':
kill_pid(workers[-1].pid) # kill last worker
if not hold_iter_reference:
# Tries to trigger the __del__ clean-up rather than the automatic
# exiting of daemonic children. Technically it should be automatically
# triggered, but I don't want to rely on the implementation detail of
# Python gc.
gc.collect()
class TestWorkerInfoDataset(SynchronizedDataset):
def __getitem__(self, idx):
self.sync_once()
return torch.tensor(self.value)
# Should be used as worker_init_fn with TestWorkerInfoDataset.
# See _test_get_worker_info below for usage.
def _test_worker_info_init_fn(worker_id):
worker_info = torch.utils.data.get_worker_info()
assert worker_id == worker_info.id, "worker_init_fn and worker_info should have consistent id"
assert worker_id < worker_info.num_workers, "worker_init_fn and worker_info should have valid id"
assert worker_info.seed == torch.initial_seed(), "worker_init_fn and worker_info should have consistent seed"
dataset = worker_info.dataset
assert isinstance(dataset, TestWorkerInfoDataset), "worker_info should have correct dataset copy"
assert not hasattr(dataset, 'value'), "worker_info should have correct dataset copy"
# test that WorkerInfo attributes are read-only
try:
worker_info.id = 3999
except RuntimeError as e:
assert str(e) == "Cannot assign attributes to WorkerInfo objects"
try:
worker_info.a = 3
except RuntimeError as e:
assert str(e) == "Cannot assign attributes to WorkerInfo objects"
for k in ['id', 'num_workers', 'seed', 'dataset']:
assert "{}=".format(k) in repr(worker_info)
dataset.value = [worker_id, os.getpid()]
def _test_get_worker_info():
# get_worker_info returns None in main proc
assert torch.utils.data.get_worker_info() is None
num_workers = 2
batch_size = 2
dataset = TestWorkerInfoDataset(6, batch_size, num_workers)
dataloader = DataLoader(dataset, batch_size=batch_size,
num_workers=num_workers,
worker_init_fn=_test_worker_info_init_fn)
it = iter(dataloader)
data = []
for d in it:
data.append(d)
worker_pids = [w.pid for w in it._workers]
data = torch.cat(data, 0)
for d in data:
# each `d` is a [worker_id, worker_pid] pair, which is set in
# _test_worker_info_init_fn
assert d[1] == worker_pids[d[0]]
# get_worker_info returns None in main proc after data loading
assert torch.utils.data.get_worker_info() is None
# main proc dataset was never assigned this attribute
assert not hasattr(dataset, 'value')
try:
_ = dataset[0]
except AttributeError:
return
raise RuntimeError('Expected AttributeError')
# test custom init function
def init_fn(worker_id):
torch.manual_seed(12345)
# used with test_error_in_init
class ErrorIterableDataset(IterableDataset):
def __iter__(self):
raise RuntimeError("Error in __iter__")
# used with test_error_in_init
def error_worker_init_fn(_):
raise RuntimeError("Error in worker_init_fn")
class BulkLoadingDataset(Dataset):
def __init__(self, length):
self.length = length
def __getitem__(self, indices):
assert isinstance(indices, (list, tuple))
return torch.as_tensor(indices)
def __len__(self):
return self.length
class BulkLoadingSampler(torch.utils.data.Sampler):
def __init__(self, dataset, batch_size):
self.dataset = dataset
self.batch_size = batch_size
def __iter__(self):
for x in torch.randperm(len(self.dataset)).split(self.batch_size):
yield x.tolist()
def __len__(self):
return int(math.ceil(len(self.dataset) / float(self.batch_size)))
class TestMultiEpochDataset(IterableDataset):
def __init__(self, length):
self.length = length
def __iter__(self):
worker_info = torch.utils.data.get_worker_info()
assert worker_info is not None
worker_id = worker_info.id
for idx in range(self.length // worker_info.num_workers):
yield worker_id
def __len__(self):
return self.length
class CustomList(list):
pass
class CustomDict(dict):
pass
def row_processor(row):
return np.add(row, 1)
def filter_len(row):
return len(row) == 4
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
@unittest.skipIf(
TEST_WITH_ASAN,
"DataLoader tests hang in ASAN, see: https://github.com/pytorch/pytorch/issues/66223")
class TestDataLoader(TestCase):
def setUp(self):
super(TestDataLoader, self).setUp()
self.data = torch.randn(100, 2, 3, 5)
self.labels = torch.randperm(50).repeat(2)
self.dataset = TensorDataset(self.data, self.labels)
self.persistent_workers = False
def _get_data_loader(self, dataset, **kwargs):
persistent_workers = kwargs.get('persistent_workers', self.persistent_workers)
if persistent_workers and kwargs.get('num_workers', 0) == 0:
persistent_workers = False
kwargs['persistent_workers'] = persistent_workers
return DataLoader(dataset, **kwargs)
def _test_sequential(self, loader):
batch_size = loader.batch_size
if batch_size is None:
for idx, (sample, target) in enumerate(loader):
self.assertEqual(sample, self.data[idx])
self.assertEqual(target, self.labels[idx])
self.assertEqual(idx, len(self.dataset) - 1)
else:
for i, (sample, target) in enumerate(loader):
idx = i * batch_size
self.assertEqual(sample, self.data[idx:idx + batch_size])
self.assertEqual(target, self.labels[idx:idx + batch_size])
self.assertEqual(i, math.floor((len(self.dataset) - 1) / batch_size))
def _test_shuffle(self, loader):
found_data = {i: 0 for i in range(self.data.size(0))}
found_labels = {i: 0 for i in range(self.labels.size(0))}
batch_size = loader.batch_size
if batch_size is None:
for i, (batch_samples, batch_targets) in enumerate(loader):
sample, target = (batch_samples, batch_targets)
for data_point_idx, data_point in enumerate(self.data):
if data_point.eq(sample).all():
self.assertFalse(found_data[data_point_idx])
found_data[data_point_idx] += 1
break
self.assertEqual(target, self.labels[data_point_idx])
found_labels[data_point_idx] += 1
self.assertEqual(sum(found_data.values()), (i + 1))
self.assertEqual(sum(found_labels.values()), (i + 1))
self.assertEqual(i, (len(self.dataset) - 1))
else:
for i, (batch_samples, batch_targets) in enumerate(loader):
for sample, target in zip(batch_samples, batch_targets):
for data_point_idx, data_point in enumerate(self.data):
if data_point.eq(sample).all():
self.assertFalse(found_data[data_point_idx])
found_data[data_point_idx] += 1
break
self.assertEqual(target, self.labels[data_point_idx])
found_labels[data_point_idx] += 1
self.assertEqual(sum(found_data.values()), (i + 1) * batch_size)
self.assertEqual(sum(found_labels.values()), (i + 1) * batch_size)
self.assertEqual(i, math.floor((len(self.dataset) - 1) / batch_size))
def _test_error(self, loader):
it = iter(loader)
errors = 0
while True:
try:
next(it)
except NotImplementedError:
errors += 1
except StopIteration:
self.assertEqual(errors,
math.ceil(float(len(loader.dataset)) / loader.batch_size))
return
def test_error_in_init(self):
for num_workers in [0, 2]:
loader = self._get_data_loader(ErrorIterableDataset(), num_workers=num_workers)
with self.assertRaisesRegex(RuntimeError, 'Error in __iter__'):
list(iter(loader))
loader = self._get_data_loader(self.dataset, num_workers=2, worker_init_fn=error_worker_init_fn)
with self.assertRaisesRegex(RuntimeError, 'Error in worker_init_fn'):
list(iter(loader))
def test_typing(self):
from typing import List
# Make sure there is no TypeError
class SomeDatasetClass(Dataset[List[torch.Tensor]]):
pass
def _create_dataloader(is_train: bool) -> DataLoader[List[torch.Tensor]]:
pass
@unittest.skipIf(IS_SANDCASTLE, "subprocess doesn't work in FB internal CI")
@unittest.skipIf(IS_WINDOWS, "No 'resource' module on Windows")
def test_fd_limit_exceeded(self):
# See NOTE [ DataLoader on Linux and open files limit ]
import subprocess
subprocess.check_output([sys.executable, '-c', """\
import torch
import resource
from torch.utils.data import DataLoader, IterableDataset
class RandomDataset(IterableDataset):
def __init__(self, len, size):
super(RandomDataset).__init__()
self.len = len
self.size = size
def __iter__(self):
return self
def __next__(self):
if self.len <= 0:
raise StopIteration
self.len -= 1
return torch.randn(self.size)
try:
keep_fds_alive = []
resource.setrlimit(resource.RLIMIT_NOFILE, (100, 100))
for random_t in DataLoader(RandomDataset(200, (2,2)), multiprocessing_context="fork",
num_workers=1):
random_t.max(dim=0)
keep_fds_alive.append(random_t)
except RuntimeError as e:
assert "ulimit -n" in str(e)
assert "set_sharing_strategy" in str(e)
"""])
def test_invalid_assign_after_init(self):
dl = self._get_data_loader(self.dataset)
for attr in ('batch_size', 'sampler', 'batch_sampler', 'drop_last', 'dataset'):
def fn():
setattr(dl, attr, {})
self.assertRaises(ValueError, fn)
def test_sequential_nonbatch(self):
self._test_sequential(self._get_data_loader(self.dataset, batch_size=None))
def test_sequential_batch(self):
self._test_sequential(self._get_data_loader(self.dataset))
self._test_sequential(self._get_data_loader(self.dataset, batch_size=2))
def test_bulk_loading_nobatch(self):
n = 35
bs = 4
ds = BulkLoadingDataset(n)
sampler = BulkLoadingSampler(ds, batch_size=4)
for num_workers in [0, 4]:
dl = self._get_data_loader(ds, num_workers=num_workers, batch_size=None, sampler=sampler, pin_memory=TEST_CUDA)
self.assertFalse(dl._auto_collation)
samples = list(dl)
self.assertEqual(samples[0].is_pinned(), TEST_CUDA)
self.assertEqual(set(torch.cat(samples, 0).tolist()), set(range(n)))
def test_growing_dataset(self):
dataset = [torch.ones(4) for _ in range(4)]
dataloader_seq = self._get_data_loader(dataset, shuffle=False)
dataloader_shuffle = self._get_data_loader(dataset, shuffle=True)
dataset.append(torch.ones(4))
self.assertEqual(len(dataloader_seq), 5)
self.assertEqual(len(dataloader_shuffle), 5)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_sequential_pin_memory(self):
loader = self._get_data_loader(self.dataset, batch_size=2, pin_memory=True)
for input, target in loader:
self.assertTrue(input.is_pinned())
self.assertTrue(target.is_pinned())
def test_multiple_dataloaders(self):
for multiprocessing_context in supported_multiprocessing_contexts:
loader1_it = iter(self._get_data_loader(self.dataset, num_workers=1))
loader2_it = iter(self._get_data_loader(self.dataset, num_workers=2, multiprocessing_context=multiprocessing_context))
next(loader1_it)
next(loader1_it)
next(loader2_it)
next(loader2_it)
next(loader1_it)
next(loader2_it)
del loader1_it
del loader2_it
def test_segfault(self):
p = ErrorTrackingProcess(target=_test_segfault)
p.start()
p.join(JOIN_TIMEOUT)
try:
self.assertFalse(p.is_alive())
self.assertNotEqual(p.exitcode, 0)
if IS_WINDOWS:
self.assertIsInstance(p.exception, OSError)
self.assertRegex(str(p.exception), r'access violation reading ')
else:
self.assertIsInstance(p.exception, RuntimeError)
self.assertRegex(str(p.exception), r'DataLoader worker \(pid \d+\) is killed by signal: ')
finally:
p.terminate()
# Tests if the child process forked by the DataLoader segfaults due to having more than 3 threads
# in the parent process after at least one set_num_threads invocation in the parent process.
# After forking, set_num_threads(1) in the child process entails handling some inherited data-structures
# of the Caffe2 thread-pool of the parent process, culminating in a segfault.
# Reference: https://github.com/pytorch/pytorch/issues/54752
@unittest.skipIf(IS_WINDOWS, "Needs fork")
def test_no_segfault(self):
p = ErrorTrackingProcess(target=_test_no_segfault)
p.start()
p.join(JOIN_TIMEOUT)
try:
self.assertFalse(p.is_alive())
if p.exception:
self.assertIsInstance(p.exception, RuntimeError)
self.assertRegex(str(p.exception), r'DataLoader worker \(pid \d+\) is killed by signal: ')
self.fail("Segfault occurred in worker process after fork")
finally:
p.terminate()
def test_timeout(self):
if TEST_CUDA and not NO_MULTIPROCESSING_SPAWN:
# This test runs in a subprocess, which can only initialize CUDA with spawn.
# _test_timeout_pin_memory with pin_memory=True initializes CUDA when the iterator is
# constructed.
targets = (_test_timeout, _test_timeout_pin_memory)
else:
targets = (_test_timeout,)
for target in targets:
p = ErrorTrackingProcess(target=target, args=(self.persistent_workers,))
p.start()
p.join(JOIN_TIMEOUT)
try:
self.assertFalse(p.is_alive())
self.assertNotEqual(p.exitcode, 0)
self.assertIsInstance(p.exception, RuntimeError)
self.assertRegex(str(p.exception), r'DataLoader timed out after \d+ seconds')
finally:
p.terminate()
def test_large_sampler_indices(self):
# Test that the data loader cleanly exit when the process errors
# 1. having an reference to the iterator
# 2. using a sampler that yields big elements s.t. _index_queues putters block
#
# More context: https://github.com/pytorch/pytorch/issues/48666
p = ErrorTrackingProcess(target=_test_large_sampler_indices, args=(self.persistent_workers,))
p.start()
p.join(JOIN_TIMEOUT)
try:
self.assertFalse(p.is_alive())
self.assertNotEqual(p.exitcode, 0)
self.assertIsInstance(p.exception, RuntimeError)
self.assertRegex(str(p.exception), r'My Error')
finally:
p.terminate()
def test_invalid_ctor_args_combinations(self):
# general
with self.assertRaisesRegex(ValueError, "num_workers option should be non-negative"):
self._get_data_loader(self.dataset, num_workers=-1)
with self.assertRaisesRegex(ValueError, "timeout option should be non-negative"):
self._get_data_loader(self.dataset, timeout=-1)
# disable auto-batching
with self.assertRaisesRegex(ValueError,
"batch_size=None option disables auto-batching and is mutually exclusive"):
self._get_data_loader(self.dataset, batch_size=None, drop_last=True)
valid_ctx = list(torch.multiprocessing.get_all_start_methods())[-1]
with self.assertRaisesRegex(ValueError, r"multi-process loading \(num_workers > 0\), but got"):
self._get_data_loader(self.dataset, num_workers=0, multiprocessing_context=valid_ctx)
with self.assertRaisesRegex(ValueError, "should specify a valid start method in"):
self._get_data_loader(self.dataset, num_workers=1, multiprocessing_context='bad')
with self.assertRaisesRegex(TypeError, "multiprocessing_context option should be a valid context "):
self._get_data_loader(self.dataset, num_workers=1, multiprocessing_context=object())
# map-style
sampler = torch.utils.data.SequentialSampler(self.dataset)
batch_sampler = torch.utils.data.BatchSampler(sampler, 3, False)
with self.assertRaisesRegex(ValueError, "sampler option is mutually exclusive with shuffle"):
self._get_data_loader(self.dataset, batch_size=11, sampler=sampler, shuffle=True)
with self.assertRaisesRegex(ValueError, "sampler option is mutually exclusive with shuffle"):
self._get_data_loader(self.dataset, batch_sampler=batch_sampler, sampler=sampler, shuffle=True)
with self.assertRaisesRegex(ValueError, "sampler option is mutually exclusive with shuffle"):
self._get_data_loader(self.dataset, batch_sampler=batch_sampler, sampler=sampler, shuffle=3)
with self.assertRaisesRegex(ValueError, "batch_sampler option is mutually exclusive with"):
self._get_data_loader(self.dataset, batch_size=11, batch_sampler=batch_sampler)
with self.assertRaisesRegex(ValueError, "batch_sampler option is mutually exclusive with"):
self._get_data_loader(self.dataset, shuffle=True, batch_sampler=batch_sampler)
with self.assertRaisesRegex(ValueError, "batch_sampler option is mutually exclusive with"):
self._get_data_loader(self.dataset, drop_last=True, batch_sampler=batch_sampler)
with self.assertRaisesRegex(ValueError, "batch_sampler option is mutually exclusive with"):
self._get_data_loader(self.dataset, drop_last=3, batch_sampler=batch_sampler)
# iterable-style
dataset = CountingIterableDataset(20)
with self.assertRaisesRegex(ValueError, "DataLoader with IterableDataset: expected unspecified shuffle"):
self._get_data_loader(dataset, shuffle=True)
with self.assertRaisesRegex(ValueError, "DataLoader with IterableDataset: expected unspecified shuffle"):
self._get_data_loader(dataset, shuffle=3)
with self.assertRaisesRegex(ValueError, "DataLoader with IterableDataset: expected unspecified sampler"):
self._get_data_loader(dataset, sampler=torch.utils.data.SequentialSampler(dataset))
with self.assertRaisesRegex(ValueError, "DataLoader with IterableDataset: expected unspecified sampler"):
self._get_data_loader(dataset, sampler=3)
with self.assertRaisesRegex(ValueError, "DataLoader with IterableDataset: expected unspecified batch_sampler"):
self._get_data_loader(dataset, batch_sampler=torch.utils.data.BatchSampler(
torch.utils.data.SequentialSampler(dataset), 3, False))
with self.assertRaisesRegex(ValueError, "DataLoader with IterableDataset: expected unspecified batch_sampler"):
self._get_data_loader(dataset, batch_sampler=3)
def test_builtin_collection_conversion(self):
for coll_ty in (list, tuple):
for num_workers in (0, 1):
# map-style dataset
dataset = CountingDataset(20)
# no auto-batching
fetched = coll_ty(self._get_data_loader(dataset, batch_size=None, num_workers=num_workers))
self.assertEqual(fetched, coll_ty(range(20)))
# auto-batching
fetched = coll_ty(self._get_data_loader(dataset, batch_size=2, num_workers=num_workers))
self.assertEqual(fetched, coll_ty(torch.tensor([i, i + 1]) for i in range(0, 20, 2)))
# iterable-style dataset
dataset = CountingIterableDataset(20)
# no auto-batching
fetched = coll_ty(self._get_data_loader(dataset, batch_size=None, num_workers=num_workers))
self.assertEqual(fetched, coll_ty(range(20)))
# auto-batching
# this IterableDataset isn't configured for each worker, so for
# the equality test below to be valid, we cannot have more than 1 workers.
assert num_workers in [0, 1], "invalid test"
fetched = coll_ty(self._get_data_loader(dataset, batch_size=2, num_workers=num_workers))
self.assertEqual(fetched, coll_ty(torch.tensor([i, i + 1]) for i in range(0, 20, 2)))
def test_iterable_style_dataset(self):
# [no auto-batching] single process loading
dataset = CountingIterableDataset(20)
dataloader = self._get_data_loader(dataset, batch_size=None)
fetched = list(dataloader)
self.assertEqual(len(fetched), 20)
for i, d in enumerate(fetched):
# non-batched should not convert ints into tensors
self.assertIsInstance(d, int)
self.assertEqual(d, i)
# DataLoader should match len of the iterable-style dataset (if implemented)
self.assertEqual(len(dataloader), len(dataset))
# [no auto-batching] multiprocessing loading
num_workers = 3
sizes_for_all_workers = [0, 4, 20]
expected = sorted(sum((list(range(s)) for s in sizes_for_all_workers), []))
assert len(sizes_for_all_workers) == num_workers, 'invalid test case'
for prefetch_factor in [2, 3, 4]:
dataset = WorkerSpecificIterableDataset(sizes_for_all_workers)
dataloader = self._get_data_loader(dataset, num_workers=num_workers, batch_size=None,
worker_init_fn=set_faulthander_if_available,
prefetch_factor=prefetch_factor)
dataloader_iter = iter(dataloader)
fetched = sorted(dataloader_iter)
for a, b in zip(fetched, expected):
# non-batched should not convert ints into tensors
self.assertIsInstance(a, int)
self.assertEqual(a, b)
# DataLoader should match len of the iterable-style dataset (if implemented)
self.assertEqual(len(dataloader), len(dataset))
# When loading more than len(dataset) data, after accessing len(dataloader),
# we should get a warning. See NOTE [ IterableDataset and __len__ ].
dataset = CountingIterableDataset(20)
dataloader = self._get_data_loader(dataset, num_workers=num_workers,
worker_init_fn=set_faulthander_if_available,
prefetch_factor=prefetch_factor)
it = iter(dataloader)
for _ in range(40):
self.assertNotWarn(lambda: next(it), "Should not warn before accessing len(dataloader)")
self.assertEqual(len(dataloader), len(dataset))
self.assertEqual(len(dataloader), 20)
it = iter(dataloader)
for _ in range(20):
self.assertNotWarn(lambda: next(it), "Should not warn before exceeding length")
for _ in range(3):
with self.assertWarnsRegex(
UserWarning,
r"but [0-9]+ samples have been fetched\. For multiprocessing data-loading, this",
msg="Should always warn after exceeding length"):
next(it)
# [no auto-batching] test that workers exit gracefully
workers = dataloader_iter._workers
del dataloader_iter
del dataloader
try:
for w in workers:
w.join(JOIN_TIMEOUT)
self.assertFalse(w.is_alive())
self.assertEqual(w.exitcode, 0)
finally:
for w in workers:
w.terminate()
# [auto-batching] single process loading
dataset = CountingIterableDataset(20)
fetched = list(self._get_data_loader(dataset, batch_size=7))
self.assertEqual(len(fetched), 3)
self.assertEqual(fetched[0].tolist(), list(range(7)))
self.assertEqual(fetched[1].tolist(), list(range(7, 14)))
self.assertEqual(fetched[2].tolist(), list(range(14, 20)))
# [auto-batching] multiprocessing loading
num_workers = 3
sizes_for_all_workers = [0, 4, 20]
expected = sorted(sum((list(range(s)) for s in sizes_for_all_workers), []))
assert len(sizes_for_all_workers) == num_workers, 'invalid test case'
for prefetch_factor in [2, 3, 4]:
dataset = WorkerSpecificIterableDataset(sizes_for_all_workers)
# worker 0 should return 0 batches
# worker 1 should return 1 batches
# worker 2 should return 3 batches
dataloader = self._get_data_loader(dataset, num_workers=num_workers, batch_size=7, prefetch_factor=prefetch_factor)
dataloader_iter = iter(dataloader)
fetched = list(dataloader_iter)
self.assertEqual(len(fetched), 4)
fetched = set(tuple(t.tolist()) for t in fetched)
self.assertEqual(fetched, {tuple(range(4)), tuple(range(7)), tuple(range(7, 14)), tuple(range(14, 20))})
# [auto-batching] test that workers exit gracefully
workers = dataloader_iter._workers
del dataloader_iter
del dataloader
try:
for w in workers:
w.join(JOIN_TIMEOUT)
self.assertFalse(w.is_alive())
self.assertEqual(w.exitcode, 0)
finally:
for w in workers:
w.terminate()
# [auto-batching & drop_last] single process loading
dataset = CountingIterableDataset(20)
fetched = list(self._get_data_loader(dataset, batch_size=7, drop_last=True))
self.assertEqual(len(fetched), 2)
self.assertEqual(fetched[0].tolist(), list(range(7)))
self.assertEqual(fetched[1].tolist(), list(range(7, 14)))
# [auto-batching & drop_last] multiprocessing loading
num_workers = 3
sizes_for_all_workers = [0, 4, 20]
expected = sorted(sum((list(range(s)) for s in sizes_for_all_workers), []))
assert len(sizes_for_all_workers) == num_workers, 'invalid test case'
for prefetch_factor in [2, 3, 4]:
dataset = WorkerSpecificIterableDataset(sizes_for_all_workers)
# worker 0 should return 0 batches
# worker 1 should return 1 batches
# worker 2 should return 3 batches
dataloader = self._get_data_loader(dataset, num_workers=num_workers, batch_size=7, drop_last=True,
worker_init_fn=set_faulthander_if_available,
prefetch_factor=prefetch_factor)
dataloader_iter = iter(dataloader)
fetched = list(dataloader_iter)
self.assertEqual(len(fetched), 2)
fetched = set(tuple(t.tolist()) for t in fetched)
self.assertEqual(fetched, {tuple(range(7)), tuple(range(7, 14))})
# [auto-batching & drop_last] test that workers exit gracefully
workers = dataloader_iter._workers
del dataloader_iter
del dataloader
try:
for w in workers:
w.join(JOIN_TIMEOUT)
self.assertFalse(w.is_alive())
self.assertEqual(w.exitcode, 0)
finally:
for w in workers:
w.terminate()
def test_chain_iterable_style_dataset(self):
# chaining (concatenation)
dataset1 = CountingIterableDataset(20)
dataset2 = CountingIterableDataset(15)
expected = list(range(20)) + list(range(15))
for num_workers in [0, 1]:
for chained_dataset in [dataset1 + dataset2, ChainDataset([dataset1, dataset2])]:
fetched = list(self._get_data_loader(chained_dataset, num_workers=num_workers))
self.assertEqual(len(fetched), len(expected))
for e, d in zip(expected, fetched):
self.assertIsInstance(d, torch.Tensor)
self.assertEqual(e, d)
with self.assertRaisesRegex(AssertionError, "ChainDataset only supports IterableDataset"):
list(iter(dataset1 + self.dataset))
with self.assertRaisesRegex(AssertionError, "ChainDataset only supports IterableDataset"):
list(iter(ChainDataset([dataset1, self.dataset])))
@unittest.skipIf(IS_MACOS, "Not working on macos")
def test_multiprocessing_contexts(self):
reference = [
torch.arange(3),
torch.arange(3, 6),
torch.arange(6, 9),
torch.arange(9, 11),
]
counting_ds_n = 11
dl_common_args = dict(num_workers=3, batch_size=3, pin_memory=(not TEST_CUDA))
for ctx in supported_multiprocessing_contexts:
# windows and jetson devices don't support sharing cuda tensor; ROCm does not yet fully support IPC
if ctx in ['spawn', 'forkserver'] and TEST_CUDA and not IS_WINDOWS and not IS_JETSON:
ds_cls = CUDACountingDataset
else:
ds_cls = CountingDataset
self.assertEqual(
reference, list(self._get_data_loader(ds_cls(counting_ds_n), multiprocessing_context=ctx, **dl_common_args)))
if ctx is not None:
# test ctx object
ctx = mp.get_context(ctx)
self.assertEqual(
reference, list(self._get_data_loader(ds_cls(counting_ds_n), multiprocessing_context=ctx, **dl_common_args)))
@skipIfNoNumpy
def test_multiprocessing_iterdatapipe(self):
# Testing to make sure that function from global scope (e.g. imported from library) can be serialized
# and used with multiprocess DataLoader
reference = [torch.as_tensor([[2, 3, 4, 5]], dtype=torch.int64),
torch.as_tensor([[2, 3, 4, 5]], dtype=torch.int64)]
datapipe: IterDataPipe = IterableWrapper([[1, 2, 3, 4], [1, 2, 3, 4, 5, 6]])
datapipe = datapipe.map(row_processor)
datapipe = datapipe.filter(lambda row: len(row) == 4) if HAS_DILL else datapipe.filter(filter_len)
dl_common_args = dict(num_workers=2, batch_size=2, shuffle=True, pin_memory=(not TEST_CUDA))
for ctx in supported_multiprocessing_contexts:
self.assertEqual(reference,
[t.type(torch.int64)
for t in self._get_data_loader(datapipe, multiprocessing_context=ctx, **dl_common_args)])
if ctx is not None:
# test ctx object
ctx = mp.get_context(ctx)
self.assertEqual(reference,
[t.type(torch.int64)
for t in
self._get_data_loader(datapipe, multiprocessing_context=ctx, **dl_common_args)])
def test_worker_seed(self):
num_workers = 6
batch_size = 1
dataset = SynchronizedSeedDataset(num_workers, batch_size, num_workers)
dataloader = self._get_data_loader(dataset, batch_size=batch_size, num_workers=num_workers)
seeds = set()
for batch in dataloader:
seeds.add(batch[0])
self.assertEqual(len(seeds), num_workers)
def test_worker_seed_reproducibility(self):
def get_dataloader():
return DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, generator=torch.Generator().manual_seed(42))
num_workers = 6
batch_size = 1
dataset = SynchronizedSeedDataset(num_workers, batch_size, num_workers)
self.assertEqual(set(int(batch) for batch in get_dataloader()), set(int(batch) for batch in get_dataloader()))
def test_multi_epochs_reproducibility(self):
num_workers = 2
batch_size = 10
num_epochs = 3
dataset = TestMultiEpochDataset(batch_size * num_workers)
dataloader = self._get_data_loader(dataset, batch_size=batch_size,
shuffle=False, num_workers=num_workers)
for ind in range(num_epochs):
for batch_idx, sample in enumerate(dataloader):
self.assertEqual(sample.tolist(), [batch_idx % num_workers] * batch_size)
def test_worker_init_fn(self):
dataset = SeedDataset(4)
dataloader = self._get_data_loader(dataset, batch_size=2, num_workers=2,
worker_init_fn=init_fn)
for batch in dataloader:
self.assertEqual(12345, batch[0])
self.assertEqual(12345, batch[1])
def test_get_worker_info(self):
p = ErrorTrackingProcess(target=_test_get_worker_info)
p.start()
p.join(JOIN_TIMEOUT)
try:
self.assertFalse(p.is_alive())
self.assertEqual(p.exitcode, 0)
finally:
p.terminate()
def test_shuffle(self):
self._test_shuffle(self._get_data_loader(self.dataset, shuffle=True))
def test_shuffle_batch_none(self):
self._test_shuffle(DataLoader(self.dataset, batch_size=None, shuffle=True))
def test_shuffle_batch(self):
self._test_shuffle(self._get_data_loader(self.dataset, batch_size=2, shuffle=True))
def test_shuffle_reproducibility(self):
for fn in (
lambda: DataLoader(self.dataset, shuffle=True, num_workers=0, generator=torch.Generator().manual_seed(42)),
lambda: DataLoader(self.dataset, shuffle=True, num_workers=2, generator=torch.Generator().manual_seed(42)),
):
self.assertEqual(list(fn()), list(fn()))
def test_sequential_workers(self):
self._test_sequential(self._get_data_loader(self.dataset, num_workers=4))
def test_seqential_batch_workers(self):
self._test_sequential(self._get_data_loader(self.dataset, batch_size=2, num_workers=4))
def test_seqential_batch_workers_prefetch(self):
self._test_sequential(DataLoader(self.dataset, batch_size=2, num_workers=4, prefetch_factor=3))
def test_shuffle_workers(self):
self._test_shuffle(self._get_data_loader(self.dataset, shuffle=True, num_workers=4))
def test_shuffle_batch_workers(self):
self._test_shuffle(self._get_data_loader(self.dataset, batch_size=2, shuffle=True, num_workers=4))
def test_shuffle_batch_workers_prefetch(self):
self._test_shuffle(DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4, prefetch_factor=3))
def test_random_sampler(self):
from collections import Counter
from torch.utils.data import RandomSampler
def sample_stat(sampler, num_samples):
counts = Counter(sampler)
count_repeated = sum(val > 1 for val in counts.values())
return (count_repeated, min(counts.keys()), max(counts.keys()), sum(counts.values()))
# test sample with replacement
n = len(self.dataset) + 1 # ensure at least one sample is drawn more than once
sampler_with_replacement = RandomSampler(self.dataset, replacement=True, num_samples=n)
count_repeated, minval, maxval, count_total = sample_stat(sampler_with_replacement, n)
self.assertTrue(count_repeated > 0)
self.assertTrue(minval >= 0)
self.assertTrue(maxval < len(self.dataset))
self.assertTrue(count_total == n)
# test sample without replacement and without specified num_samples
sampler_without_replacement = RandomSampler(self.dataset)
count_repeated, minval, maxval, count_total = sample_stat(sampler_without_replacement, len(self.dataset))
self.assertTrue(count_repeated == 0)
self.assertTrue(minval == 0)
self.assertTrue(maxval == len(self.dataset) - 1)
self.assertTrue(count_total == len(self.dataset))
# test sample without replacement and with specified num_samples
n = len(self.dataset) * 2
sampler_without_replacement = RandomSampler(self.dataset, num_samples=n)
count_repeated, minval, maxval, count_total = sample_stat(sampler_without_replacement, len(self.dataset))
self.assertTrue(count_repeated == len(self.dataset))
self.assertTrue(minval == 0)
self.assertTrue(maxval == len(self.dataset) - 1)
self.assertTrue(count_total == n)
n = len(self.dataset) - 1
sampler_without_replacement = RandomSampler(self.dataset, num_samples=n)
count_repeated, minval, maxval, count_total = sample_stat(sampler_without_replacement, len(self.dataset))
self.assertTrue(count_repeated == 0)
self.assertTrue(minval >= 0)
self.assertTrue(maxval < len(self.dataset))
self.assertTrue(count_total == n)
n = len(self.dataset) + 1
sampler_without_replacement = RandomSampler(self.dataset, num_samples=n)
count_repeated, minval, maxval, count_total = sample_stat(sampler_without_replacement, len(self.dataset))
self.assertTrue(count_repeated == 1)
self.assertTrue(minval == 0)
self.assertTrue(maxval == len(self.dataset) - 1)
self.assertTrue(count_total == n)
# raise error when replacement is non-boolean
with self.assertRaisesRegex(TypeError, "replacement should be a boolean value, but got replacement=0"):
RandomSampler(self.dataset, replacement=0)
def test_random_sampler_len_with_replacement(self):
from torch.utils.data import RandomSampler
# add 5 extra samples
num_samples = len(self.dataset) + 5
sampler = RandomSampler(self.dataset,
replacement=True,
num_samples=num_samples)
# test len method
self.assertEqual(num_samples, len(sampler))
# test with iteration
count_num_samples = sum(1 for _ in sampler)
self.assertEqual(num_samples, count_num_samples)
# test with dataloader, batch_size = 1
batch_size = 1
count_num_samples_in_data_loader = len(self._get_data_loader(
self.dataset, batch_size=batch_size, sampler=sampler))
self.assertEqual(num_samples, count_num_samples_in_data_loader)
# test with dataloader, batch_size = 6
batch_size = 6
count_num_samples_in_data_loader = len(self._get_data_loader(
self.dataset, batch_size=batch_size, sampler=sampler))
self.assertEqual(int(math.ceil(float(num_samples) / batch_size)),
count_num_samples_in_data_loader)
def test_random_sampler_len_without_replacement(self):
from torch.utils.data import RandomSampler
# add 5 extra samples
num_samples = len(self.dataset) + 5
sampler = RandomSampler(self.dataset,
replacement=False,
num_samples=num_samples)
# test len method
self.assertEqual(num_samples, len(sampler))
# test with iteration
count_num_samples = sum(1 for _ in sampler)
self.assertEqual(num_samples, count_num_samples)
# test with dataloader, batch_size = 1
batch_size = 1
count_num_samples_in_data_loader = len(self._get_data_loader(
self.dataset, batch_size=batch_size, sampler=sampler))
self.assertEqual(num_samples, count_num_samples_in_data_loader)
# test with dataloader, batch_size = 6
batch_size = 6
count_num_samples_in_data_loader = len(self._get_data_loader(
self.dataset, batch_size=batch_size, sampler=sampler))
self.assertEqual(num_samples // batch_size + (num_samples % batch_size > 0),
count_num_samples_in_data_loader)
def test_distributed_sampler_invalid_rank(self):
from torch.utils.data.distributed import DistributedSampler
dataset = torch.IntTensor(range(10))
with self.assertRaisesRegex(ValueError, "Invalid rank"):
sampler = DistributedSampler(dataset, 3, 3)
with self.assertRaisesRegex(ValueError, "Invalid rank"):
sampler = DistributedSampler(dataset, 3, -1)
def test_duplicating_data_with_drop_last(self):
from torch.utils.data.distributed import DistributedSampler
num_processes = 4
num_batches = 9
data_set = torch.IntTensor(range(num_batches))
scanned_data = torch.IntTensor([])
for i in range(num_processes):
s = DistributedSampler(data_set, num_processes, i)
d_loader = self._get_data_loader(data_set, batch_size=int(num_batches / num_processes), drop_last=True, sampler=s)
for data in d_loader:
scanned_data = torch.cat((scanned_data, data), 0)
self.assertEqual(scanned_data.size(), scanned_data.unique().size())
def test_sampler_reproducibility(self):
from torch.utils.data import RandomSampler, WeightedRandomSampler, SubsetRandomSampler
weights = [0.1, 0.9, 0.4, 0.7, 3.0, 0.6]
for fn in (
lambda: RandomSampler(self.dataset, num_samples=5, replacement=True, generator=torch.Generator().manual_seed(42)),
lambda: RandomSampler(self.dataset, replacement=False, generator=torch.Generator().manual_seed(42)),
lambda: WeightedRandomSampler(weights, num_samples=5, replacement=True, generator=torch.Generator().manual_seed(42)),
lambda: WeightedRandomSampler(weights, num_samples=5, replacement=False, generator=torch.Generator().manual_seed(42)),
lambda: SubsetRandomSampler(range(10), generator=torch.Generator().manual_seed(42)),
):
self.assertEqual(list(fn()), list(fn()))
for sampler in (
RandomSampler(self.dataset, num_samples=5, replacement=True),
RandomSampler(self.dataset, replacement=False),
WeightedRandomSampler(weights, num_samples=5, replacement=True),
WeightedRandomSampler(weights, num_samples=5, replacement=False),
SubsetRandomSampler(range(10)),
):
torch.manual_seed(0)
l1 = list(sampler) + list(sampler)
torch.manual_seed(0)
l2 = list(sampler) + list(sampler)
self.assertEqual(l1, l2)
its = (iter(sampler), iter(sampler))
ls = ([], [])
for idx in range(len(sampler)):
for i in range(2):
if idx == 0:
torch.manual_seed(0)
ls[i].append(next(its[i]))
self.assertEqual(ls[0], ls[1])
def _test_sampler(self, **kwargs):
indices = range(2, 12) # using a regular iterable
dl = self._get_data_loader(self.dataset, sampler=indices, batch_size=2, **kwargs)
self.assertEqual(len(dl), 5)
for i, (input, _target) in enumerate(dl):
self.assertEqual(len(input), 2)
self.assertEqual(input, self.data[i * 2 + 2:i * 2 + 4])
def test_sampler(self):
self._test_sampler()
self._test_sampler(num_workers=4)
if not NO_MULTIPROCESSING_SPAWN:
self._test_batch_sampler(num_workers=4, multiprocessing_context='spawn')
def _test_batch_sampler(self, **kwargs):
# [(0, 1), (2, 3, 4), (5, 6), (7, 8, 9), ...]
batches = [] # using a regular iterable
for i in range(0, 20, 5):
batches.append(tuple(range(i, i + 2)))
batches.append(tuple(range(i + 2, i + 5)))
dl = self._get_data_loader(self.dataset, batch_sampler=batches, **kwargs)
self.assertEqual(len(dl), 8)
for i, (input, _target) in enumerate(dl):
if i % 2 == 0:
offset = i * 5 // 2
self.assertEqual(len(input), 2)
self.assertEqual(input, self.data[offset:offset + 2])
else:
offset = i * 5 // 2
self.assertEqual(len(input), 3)
self.assertEqual(input, self.data[offset:offset + 3])
def test_batch_sampler(self):
self._test_batch_sampler()
self._test_batch_sampler(num_workers=4)
if not NO_MULTIPROCESSING_SPAWN:
self._test_batch_sampler(num_workers=4, multiprocessing_context='spawn')
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_shuffle_pin_memory(self):
loader = self._get_data_loader(self.dataset, batch_size=2, shuffle=True, num_workers=4, pin_memory=True)
for input, target in loader:
self.assertTrue(input.is_pinned())
self.assertTrue(target.is_pinned())
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_numpy(self):
import numpy as np
class TestDataset(torch.utils.data.Dataset):
def __getitem__(self, i):
return np.ones((2, 3, 4)) * i
def __len__(self):
return 1000
loader = self._get_data_loader(TestDataset(), batch_size=12)
batch = next(iter(loader))
self.assertIsInstance(batch, torch.DoubleTensor)
self.assertEqual(batch.size(), torch.Size([12, 2, 3, 4]))
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_numpy_gen_state(self):
from torch.utils.data._utils.worker import _generate_state
# Using NumPy generated states as the reference to test `_generate_state`
# having the same result.
# Test case: ((worker_id, base_seed), expected_state)
test_cases = [
((4, 13434589827475259383), (2884386318, 1088094898, 3523808998, 3860348662)),
((1, 15014285634777110771), (1934848465, 763213760, 2959016433, 179751970)),
((10, 978296274032934101), (1759791917, 3550927336, 1225977135, 1036538043)),
((12, 11868770762134256968), (3974661794, 3331131333, 3630387033, 2885815368)),
((9, 15378787925219019706), (3815056996, 3162224466, 2735102421, 3190253477)),
((5, 9055612723125076328), (3522565701, 3368424109, 959377806, 621878693)),
((15, 14617792358407278405), (3402479508, 1588702753, 1169536393, 3675067356)),
((9, 17363320784006640087), (957989458, 2518334477, 1421725660, 3086155459)),
((12, 480002904169484764), (2732851467, 1762620729, 4055801988, 1277640511)),
((15, 16803975943592702950), (3479415043, 4022359553, 295994005, 3358606349)),
((9, 11704776406047813044), (1968928009, 710113752, 2442656196, 1587420279)),
((10, 16357891985431864516), (1271733898, 4197047399, 3727213786, 2338547348)),
((2, 17423369006318065007), (544294336, 1911284083, 3299147734, 3231058347)),
((2, 2889492011444113593), (3721591783, 2595811276, 2212881745, 977682627)),
((0, 8979703111668486195), (4276723937, 2556068849, 2962827292, 233130238)),
((6, 6269787272229682235), (2548857855, 1216457374, 1012973562, 2999759647))
]
for (worker_id, base_seed), exp in test_cases:
self.assertEqual(exp, _generate_state(base_seed, worker_id))
def test_error(self):
self._test_error(self._get_data_loader(ErrorDataset(100), batch_size=2, shuffle=True))
def test_error_workers(self):
self._test_error(self._get_data_loader(ErrorDataset(41), batch_size=2, shuffle=True, num_workers=4))
@unittest.skipIf(IS_WINDOWS, "FIXME: stuck test")
def test_partial_workers(self):
r"""Check that workers exit even if the iterator is not exhausted."""
if TEST_CUDA:
pin_memory_configs = (True, False)
else:
pin_memory_configs = (False,)
for pin_memory in pin_memory_configs:
loader = iter(self._get_data_loader(self.dataset, batch_size=2, num_workers=4, pin_memory=pin_memory))
workers = loader._workers
if pin_memory:
pin_memory_thread = loader._pin_memory_thread
for i, _ in enumerate(loader):
if i == 10:
break
assert i == 10
del loader
for w in workers:
w.join(JOIN_TIMEOUT)
self.assertFalse(w.is_alive(), 'subprocess not terminated')
if pin_memory:
pin_memory_thread.join(JOIN_TIMEOUT)
self.assertFalse(pin_memory_thread.is_alive())
# Takes 2.5min to finish, see https://github.com/pytorch/pytorch/issues/46065
@skipIfRocm
@unittest.skipIf(not HAS_PSUTIL, "psutil not found")
@slowTest
def test_proper_exit(self):
(r'''There might be ConnectionResetError or leaked semaphore warning '''
r'''(due to dirty process exit), but they are all safe to ignore''')
# TODO: test the case where the pin_memory_thread triggers an
# error/fatal signal. I haven't found out how to properly do that.
for is_iterable_dataset, use_workers, pin_memory, hold_iter_reference in \
itertools.product([True, False], repeat=4):
# `hold_iter_reference` specifies whether we hold a reference to the
# iterator. This is interesting because Python3 error traces holds a
# reference to the frames, which hold references to all the local
# variables including the iterator, and then the iterator dtor may
# not be called before process end. It is important to see that the
# processes still exit in both cases.
if pin_memory and (not TEST_CUDA or NO_MULTIPROCESSING_SPAWN or IS_WINDOWS):
# This test runs in a subprocess, which can only initialize CUDA with spawn.
# DataLoader with pin_memory=True initializes CUDA when its iterator is constructed.
# For windows, pin_memory sometimes causes CUDA oom.
continue
# `exit_method` controls the way the loader process ends.
# - `*_kill` means that `*` is killed by OS.
# - `*_error` means that `*` raises an error.
# - `None` means that no error happens.
# In all cases, all processes should end properly.
if use_workers:
# TODO: Fix test for 'loader_kill' that would cause running out of shared memory.
# Killing loader process would prevent DataLoader iterator clean up all queues
# and worker processes
exit_methods = [None, 'loader_error', 'worker_error', 'worker_kill']
persistent_workers = self.persistent_workers
else:
exit_methods = [None, 'loader_error', 'loader_kill']
persistent_workers = False
for exit_method in exit_methods:
if exit_method == 'worker_kill':
# FIXME: This sometimes hangs. See #16608.
continue
desc = []
desc.append('is_iterable_dataset={}'.format(is_iterable_dataset))
desc.append('use_workers={}'.format(use_workers))
desc.append('pin_memory={}'.format(pin_memory))
desc.append('hold_iter_reference={}'.format(hold_iter_reference))
desc.append('exit_method={}'.format(exit_method))
desc = 'test_proper_exit with ' + ', '.join(desc)
# Event that the loader process uses to signal testing process
# that various things are setup, including that the worker pids
# are specified in `worker_pids` array.
loader_setup_event = mp.Event()
# Event that this process has finished setting up, and the
# loader process can now proceed to trigger error events or
# finish normally.
tester_setup_event = mp.Event()
loader_p = ErrorTrackingProcess(target=_test_proper_exit,
args=(is_iterable_dataset, use_workers, pin_memory,
exit_method, hold_iter_reference,
loader_setup_event, tester_setup_event,
persistent_workers),
disable_stderr=False)
loader_p.start()
loader_psutil_p = psutil.Process(loader_p.pid)
# Wait for loader process to set everything up, e.g., starting
# workers.
loader_setup_event.wait(timeout=JOIN_TIMEOUT)
if not loader_setup_event.is_set():
fail_msg = desc + ': loader process failed to setup within given time'
if loader_p.exception is not None:
fail_msg += ', and had exception {}'.format(loader_p.exception)
elif not loader_p.is_alive():
fail_msg += ', and exited with code {} but had no exception'.format(loader_p.exitcode)
else:
fail_msg += ', and is still alive.'
if loader_p.is_alive():
# this may kill the process, needs to run after the above lines
loader_p.print_traces_of_all_threads()
self.fail(fail_msg)
# We are certain that the workers have started now.
worker_psutil_ps = loader_psutil_p.children()
def fail(reason):
report_psutil_attrs = ['pid', 'name', 'cpu_times', 'io_counters',
'memory_full_info', 'num_ctx_switches',
'open_files', 'threads', 'status',
'nice', 'ionice']
if reason is None:
err_msg = desc
else:
err_msg = '{}: {}'.format(desc, reason)
err_msg += '\nLoader info:\n\t'
if loader_psutil_p.is_running():
err_msg += str(loader_psutil_p.as_dict(attrs=report_psutil_attrs))
# this may kill the process, needs to run after the above line
loader_p.print_traces_of_all_threads()
else:
err_msg += 'exited with code {}'.format(loader_p.exitcode)
if use_workers:
err_msg += '\nWorker(s) info:'
for idx, worker_psutil_p in enumerate(worker_psutil_ps):
err_msg += '\n\tWorker {}:\n\t\t'.format(idx)
if worker_psutil_p.is_running():
err_msg += str(worker_psutil_p.as_dict(attrs=report_psutil_attrs))
# this may kill the process, needs to run after the above line
print_traces_of_all_threads(worker_psutil_p.pid)
else:
err_msg += 'exited with unknown code'
self.fail(err_msg)
tester_setup_event.set()
try:
loader_p.join(JOIN_TIMEOUT + MP_STATUS_CHECK_INTERVAL)
if loader_p.is_alive():
fail_reason = 'loader process did not terminate'
if loader_p.exception is not None:
fail(fail_reason + ', and had exception {}'.format(loader_p.exception))
else:
fail(fail_reason + ', and had no exception')
_, alive = psutil.wait_procs(worker_psutil_ps, timeout=(MP_STATUS_CHECK_INTERVAL + JOIN_TIMEOUT))
if len(alive) > 0:
fail('worker process (pid(s) {}) did not terminate'.format(
', '.join(str(p.pid) for p in alive)))
if exit_method is None:
if loader_p.exitcode != 0:
fail('loader process had nonzero exitcode {}'.format(loader_p.exitcode))
else:
if loader_p.exitcode == 0:
fail('loader process had zero exitcode')
if exit_method == 'loader_error':
if not isinstance(loader_p.exception, RuntimeError) or \
'Loader error' not in str(loader_p.exception):
fail('loader process did not raise expected exception, but had {}'.format(
loader_p.exception))
elif exit_method == 'worker_kill':
if isinstance(loader_p.exception, RuntimeError):
if 'DataLoader worker (pid' not in str(loader_p.exception):
fail('loader process did not raise expected exception, but had {}'.format(
loader_p.exception))
elif isinstance(loader_p.exception, ConnectionRefusedError):
# Sometimes, when the worker is being killed and is freeing its
# resources, the unpickling in loader process will be met an
# a `ConnectionRefusedError` as it can not open a socket to receive
# resource. In such cases, the worker may not have fully exited,
# and the loader can't know this via `is_alive` check or `SIGCHLD`
# handler. So we permit this as an allowed error as well.
# After all, we are happy as long as it terminates.
pass
else:
fail('loader process did not raise expected exception, but had {}'.format(
loader_p.exception))
elif exit_method == 'worker_error':
if not isinstance(loader_p.exception, RuntimeError) or \
'Worker error' not in str(loader_p.exception):
fail('loader process did not raise expected exception, but had {}'.format(
loader_p.exception))
finally:
loader_p.terminate()
def test_len(self):
def check_len(dl, expected):
self.assertEqual(len(dl), expected)
n = 0
for _ in dl:
n += 1
self.assertEqual(n, expected)
check_len(self.dataset, 100)
check_len(self._get_data_loader(self.dataset, batch_size=2), 50)
check_len(self._get_data_loader(self.dataset, batch_size=3), 34)
def test_iterabledataset_len(self):
class IterableDataset(torch.utils.data.IterableDataset):
def __len__(self):
return 10
def __iter__(self):
return iter(range(10))
iterable_loader = DataLoader(IterableDataset(), batch_size=1)
self.assertEqual(len(iterable_loader), 10)
iterable_loader = DataLoader(IterableDataset(), batch_size=1, drop_last=True)
self.assertEqual(len(iterable_loader), 10)
iterable_loader = DataLoader(IterableDataset(), batch_size=2)
self.assertEqual(len(iterable_loader), 5)
iterable_loader = DataLoader(IterableDataset(), batch_size=2, drop_last=True)
self.assertEqual(len(iterable_loader), 5)
iterable_loader = DataLoader(IterableDataset(), batch_size=3)
self.assertEqual(len(iterable_loader), 4)
iterable_loader = DataLoader(IterableDataset(), batch_size=3, drop_last=True)
self.assertEqual(len(iterable_loader), 3)
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_numpy_scalars(self):
import numpy as np
class ScalarDataset(torch.utils.data.Dataset):
def __init__(self, dtype):
self.dtype = dtype
def __getitem__(self, i):
return self.dtype()
def __len__(self):
return 4
dtypes = {
np.float64: torch.DoubleTensor,
np.float32: torch.FloatTensor,
np.float16: torch.HalfTensor,
np.int64: torch.LongTensor,
np.int32: torch.IntTensor,
np.int16: torch.ShortTensor,
np.int8: torch.CharTensor,
np.uint8: torch.ByteTensor,
}
for dt, tt in dtypes.items():
dset = ScalarDataset(dt)
loader = self._get_data_loader(dset, batch_size=2)
batch = next(iter(loader))
self.assertIsInstance(batch, tt)
def test_default_convert_mapping_keep_type(self):
data = CustomDict({"a": 1, "b": 2})
converted = _utils.collate.default_convert(data)
self.assertEqual(converted, data)
def test_default_convert_sequence_keep_type(self):
data = CustomList([1, 2, 3])
converted = _utils.collate.default_convert(data)
self.assertEqual(converted, data)
def test_default_convert_sequence_dont_keep_type(self):
data = range(2)
converted = _utils.collate.default_convert(data)
self.assertEqual(converted, [0, 1])
def test_default_collate_dtype(self):
arr = [1, 2, -1]
collated = _utils.collate.default_collate(arr)
self.assertEqual(collated, torch.tensor(arr))
self.assertEqual(collated.dtype, torch.int64)
arr = [1.1, 2.3, -0.9]
collated = _utils.collate.default_collate(arr)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(collated, torch.tensor(arr))
self.assertEqual(collated.dtype, torch.float64)
arr = [True, False]
collated = _utils.collate.default_collate(arr)
self.assertEqual(collated, torch.tensor(arr))
self.assertEqual(collated.dtype, torch.bool)
# Should be a no-op
arr = ['a', 'b', 'c']
self.assertEqual(arr, _utils.collate.default_collate(arr))
def test_default_collate_mapping_keep_type(self):
batch = [CustomDict({"a": 1, "b": 2}), CustomDict({"a": 3, "b": 4})]
collated = _utils.collate.default_collate(batch)
expected = CustomDict({"a": torch.tensor([1, 3]), "b": torch.tensor([2, 4])})
self.assertEqual(collated, expected)
def test_default_collate_sequence_keep_type(self):
batch = [CustomList([1, 2, 3]), CustomList([4, 5, 6])]
collated = _utils.collate.default_collate(batch)
expected = CustomList([
torch.tensor([1, 4]),
torch.tensor([2, 5]),
torch.tensor([3, 6]),
])
self.assertEqual(collated, expected)
def test_default_collate_sequence_dont_keep_type(self):
batch = [range(2), range(2)]
collated = _utils.collate.default_collate(batch)
self.assertEqual(collated, [torch.tensor([0, 0]), torch.tensor([1, 1])])
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_default_collate_bad_numpy_types(self):
import numpy as np
# Should be a no-op
arr = np.array(['a', 'b', 'c'])
self.assertEqual(arr, _utils.collate.default_collate(arr))
arr = np.array([[['a', 'b', 'c']]])
self.assertRaises(TypeError, lambda: _utils.collate.default_collate(arr))
arr = np.array([object(), object(), object()])
self.assertRaises(TypeError, lambda: _utils.collate.default_collate(arr))
arr = np.array([[[object(), object(), object()]]])
self.assertRaises(TypeError, lambda: _utils.collate.default_collate(arr))
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_default_collate_numpy_memmap(self):
import numpy as np
with tempfile.TemporaryFile() as f:
arr = np.array([[0, 1], [2, 3], [4, 5], [6, 7]])
arr_memmap = np.memmap(f, dtype=arr.dtype, mode='w+', shape=arr.shape)
arr_memmap[:] = arr[:]
arr_new = np.memmap(f, dtype=arr.dtype, mode='r', shape=arr.shape)
tensor = _utils.collate.default_collate(list(arr_new))
self.assertTrue((tensor == tensor.new_tensor([[0, 1], [2, 3], [4, 5], [6, 7]])).all().item())
def test_default_collate_bad_sequence_type(self):
batch = [['X'], ['X', 'X']]
self.assertRaises(RuntimeError, lambda: _utils.collate.default_collate(batch))
self.assertRaises(RuntimeError, lambda: _utils.collate.default_collate(batch[::-1]))
@unittest.skipIf(not TEST_NUMPY, "numpy unavailable")
def test_default_collate_shared_tensor(self):
import numpy as np
t_in = torch.zeros(1)
n_in = np.zeros(1)
self.assertEqual(t_in.is_shared(), False)
self.assertEqual(_utils.collate.default_collate([t_in]).is_shared(), False)
self.assertEqual(_utils.collate.default_collate([n_in]).is_shared(), False)
# FIXME: fix the following hack that makes `default_collate` believe
# that it is in a worker process (since it tests
# `get_worker_info() != None`), even though it is not.
old = _utils.worker._worker_info
try:
_utils.worker._worker_info = 'x'
self.assertEqual(_utils.collate.default_collate([t_in]).is_shared(), True)
self.assertEqual(_utils.collate.default_collate([n_in]).is_shared(), True)
finally:
_utils.worker._worker_info = old
def test_excessive_thread_creation_warning(self):
with self.assertWarnsRegex(
UserWarning,
r"excessive worker creation might get DataLoader running slow or even freeze"):
dataloader = DataLoader(self.dataset, batch_size=2, num_workers=1000)
# Define a global function for testing purposes since local functions cannot be pickled
def identity(x):
return x
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestDataLoader2(TestCase):
@skipIfNoDill
def test_basics(self):
# TODO(VitalyFedyunin): This test will start breaking if we remove guaranteed order
# of traversing workers
dp = IterableWrapper(list(range(1000))).sharding_filter()
dl = DataLoader(dp, batch_size=3, collate_fn=identity, num_workers=2)
dl2 = DataLoader2(dp, batch_size=3, collate_fn=identity, num_workers=2)
dl2_threading = DataLoader2(dp, batch_size=3, collate_fn=identity, num_workers=2, parallelism_mode='thread')
self.assertEqual(list(dl), list(dl2))
self.assertEqual(list(dl), list(dl2_threading))
class Sorter(IterDataPipe):
def __init__(self, datapipe):
self.datapipe = datapipe
def __iter__(self):
return iter(sorted(self.datapipe))
def test_shuffle(self):
items = list(range(1000))
dp = IterableWrapper(items).sharding_filter().shuffle()
dl = DataLoader2(dp, batch_size=None, num_workers=2, shuffle=False)
self.assertEqual(items, list(dl))
dl = DataLoader2(dp, batch_size=None, num_workers=2, shuffle=True)
self.assertNotEqual(items, list(dl))
self.assertEqual(items, sorted(list(dl)))
dl = DataLoader2(dp, batch_size=None, num_workers=2, shuffle=True)
self.assertNotEqual(items, list(dl))
self.assertEqual(items, sorted(list(dl)))
dl = DataLoader2(self.Sorter(dp), batch_size=None, num_workers=2, shuffle=True)
self.assertEqual(list(dl), items)
dl = DataLoader2(self.Sorter(dp), batch_size=None, num_workers=2, shuffle=True)
self.assertEqual(list(dl), items)
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestDataLoader2_EventLoop(TestCase):
@skipIfNoDill
def test_basic_threading(self):
def clean_me(process, req_queue, res_queue):
req_queue.put(communication.messages.TerminateRequest())
_ = res_queue.get()
process.join()
it = list(range(100))
numbers_dp = IterableWrapper(it)
(process, req_queue, res_queue, _thread_local_datapipe) = communication.eventloop.SpawnThreadForDataPipeline(numbers_dp)
process.start()
local_datapipe = communication.iter.QueueWrapper(
communication.protocol.IterDataPipeQueueProtocolClient(req_queue, res_queue))
actual = list(local_datapipe)
clean_me(process, req_queue, res_queue)
self.assertEqual(list(range(100)), actual)
@skipIfNoDill
def test_basic_mapdatapipe_threading(self):
def clean_me(process, req_queue, res_queue):
req_queue.put(communication.messages.TerminateRequest())
_ = res_queue.get()
process.join()
input_len = 100
it = list(range(input_len))
numbers_dp = SequenceWrapper(it)
(process, req_queue, res_queue, _thread_local_datapipe) = communication.eventloop.SpawnThreadForDataPipeline(
numbers_dp)
process.start()
# Functional Test: Ensure that you can retrieve every element from the Queue and DataPipe
local_datapipe = communication.map.QueueWrapperForMap(
communication.protocol.MapDataPipeQueueProtocolClient(req_queue, res_queue))
actual = list(local_datapipe)
self.assertEqual([(x, x) for x in range(100)], actual)
# Functional Test: raise Error when input
local_datapipe = communication.map.QueueWrapperForMap(
communication.protocol.MapDataPipeQueueProtocolClient(req_queue, res_queue))
with self.assertRaisesRegex(IndexError, "out of bound"):
local_datapipe[1000]
# __len__ Test: Ensure that the correct length is returned
local_datapipe = communication.map.QueueWrapperForMap(
communication.protocol.MapDataPipeQueueProtocolClient(req_queue, res_queue))
self.assertEqual(input_len, len(local_datapipe))
clean_me(process, req_queue, res_queue)
class IntegrationTestDataLoaderDataPipe(TestCase):
r"""
Verify the behavior of a certain ``DataPipes`` with ``DataLoader``
"""
def test_shuffler_iterdatapipe(self):
r"""
Verify ``IterDataPipe.shuffle`` is controlled by ``DataLoader``
to generate different seeds deterministically per epoch.
"""
exp = list(range(100))
def _create_dp(buffer_size):
input_ds = dp.iter.IterableWrapper(exp)
return input_ds.shuffle(buffer_size=buffer_size).sharding_filter()
for bs in (5, 20, 33):
# Test Deterministic
for num_workers, pw in itertools.product((0, 1, 2), (True, False)):
if num_workers == 0 and pw:
continue
shuffle_dp = _create_dp(bs)
mp_ctx = "spawn" if num_workers > 0 else None
dl = DataLoader(
shuffle_dp,
num_workers=num_workers,
shuffle=True,
multiprocessing_context=mp_ctx,
persistent_workers=pw
)
# No seed
dl_res_ns = list(dl)
self.assertEqual(sorted(dl_res_ns), exp)
# Same seeds
dl_res = []
for epoch in range(2):
torch.manual_seed(123)
dl_res.append(list(dl))
self.assertEqual(dl_res[0], dl_res[1])
self.assertEqual(sorted(dl_res[0]), exp)
# Different seeds
torch.manual_seed(321)
dl_res.append(list(dl))
self.assertEqual(len(dl_res[0]), len(dl_res[2]))
self.assertNotEqual(dl_res[0], dl_res[2])
self.assertEqual(sorted(dl_res[0]), sorted(dl_res[2]))
if dl._iterator is not None:
dl._iterator._shutdown_workers()
dl._iterator = None
del dl
class StringDataset(Dataset):
def __init__(self):
self.s = '12345'
def __len__(self):
return len(self.s)
def __getitem__(self, ndx):
return (self.s[ndx], ndx)
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestStringDataLoader(TestCase):
def setUp(self):
super(TestStringDataLoader, self).setUp()
self.dataset = StringDataset()
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_shuffle_pin_memory(self):
loader = DataLoader(self.dataset, batch_size=2, shuffle=True, num_workers=4, pin_memory=True)
for (s, n) in loader:
self.assertIsInstance(s[0], str)
self.assertTrue(n.is_pinned())
class DictDataset(Dataset):
def __len__(self):
return 4
def __getitem__(self, ndx):
return {
'a_tensor': torch.empty(4, 2).fill_(ndx),
'another_dict': {
'a_number': ndx,
},
}
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestDictDataLoader(TestCase):
def setUp(self):
super(TestDictDataLoader, self).setUp()
self.dataset = DictDataset()
def test_sequential_batch(self):
for persistent_workers in (False, True):
if persistent_workers:
loader = DataLoader(self.dataset, batch_size=2, shuffle=False,
persistent_workers=persistent_workers, num_workers=1)
else:
loader = DataLoader(self.dataset, batch_size=2, shuffle=False,
persistent_workers=persistent_workers)
batch_size = loader.batch_size
for i, sample in enumerate(loader):
idx = i * batch_size
self.assertEqual(set(sample.keys()), {'a_tensor', 'another_dict'})
self.assertEqual(set(sample['another_dict'].keys()), {'a_number'})
t = sample['a_tensor']
self.assertEqual(t.size(), torch.Size([batch_size, 4, 2]))
self.assertTrue((t[0] == idx).all())
self.assertTrue((t[1] == idx + 1).all())
n = sample['another_dict']['a_number']
self.assertEqual(n.size(), torch.Size([batch_size]))
self.assertEqual(n[0], idx)
self.assertEqual(n[1], idx + 1)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_pin_memory(self):
loader = DataLoader(self.dataset, batch_size=2, pin_memory=True)
for sample in loader:
self.assertTrue(sample['a_tensor'].is_pinned())
self.assertTrue(sample['another_dict']['a_number'].is_pinned())
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_pin_memory_device(self):
loader = DataLoader(self.dataset, batch_size=2, pin_memory=True, pin_memory_device='cuda')
for sample in loader:
self.assertTrue(sample['a_tensor'].is_pinned(device='cuda'))
self.assertTrue(sample['another_dict']['a_number'].is_pinned(device='cuda'))
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_pin_memory_with_only_device(self):
loader = DataLoader(self.dataset, batch_size=2, pin_memory_device='cuda')
for sample in loader:
self.assertFalse(sample['a_tensor'].is_pinned(device='cuda'))
self.assertFalse(sample['another_dict']['a_number'].is_pinned(device='cuda'))
class DummyDataset(torch.utils.data.Dataset):
def __init__(self):
self.data = list(range(10))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
# The persistent workers always maintain the original
# dataset through the dataloader lifetime
# so the attributes will remain the same as the
# first time the workers where spawned (dataloader iteration)
assert self.start == 0
return self.data[idx]
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
@unittest.skipIf(
TEST_WITH_ASAN, "DataLoader tests hang in ASAN, see: https://github.com/pytorch/pytorch/issues/66223")
class TestDataLoaderPersistentWorkers(TestDataLoader):
def setUp(self):
super(TestDataLoaderPersistentWorkers, self).setUp()
self.persistent_workers = True
@unittest.skipIf(IS_SANDCASTLE, "subprocess doesn't work in FB internal CI")
@unittest.skipIf(IS_WINDOWS, "No 'resource' module on Windows")
def test_fd_limit_exceeded(self):
# See NOTE [ DataLoader on Linux and open files limit ]
import subprocess
subprocess.check_output([sys.executable, '-c', """\
import torch
import resource
from torch.utils.data import DataLoader, IterableDataset
class RandomDataset(IterableDataset):
def __init__(self, len, size):
super(RandomDataset).__init__()
self.len = len
self.size = size
def __iter__(self):
return self
def __next__(self):
if self.len <= 0:
raise StopIteration
self.len -= 1
return torch.randn(self.size)
try:
keep_fds_alive = []
resource.setrlimit(resource.RLIMIT_NOFILE, (100, 100))
for random_t in DataLoader(RandomDataset(200, (2,2)), multiprocessing_context="fork",
num_workers=1, persistent_workers=True):
random_t.max(dim=0)
keep_fds_alive.append(random_t)
except RuntimeError as e:
assert "ulimit -n" in str(e)
assert "set_sharing_strategy" in str(e)
"""])
def test_dataset_not_reset(self):
dataset = DummyDataset()
pin_memory_configs = [False]
if TEST_CUDA:
pin_memory_configs.append(True)
for pin_memory in pin_memory_configs:
dataloader = self._get_data_loader(dataset, num_workers=2, pin_memory=pin_memory)
dataset.start = 0
for i in range(10):
for x in dataloader:
pass
# Changing the start value here doesn't have any effect in the dataset
# cached by the workers. since they are not recreated between epochs
# and can cache values safely
dataset.start = i
@unittest.skipIf(IS_SANDCASTLE, "subprocess doesn't work in FB internal CI")
@unittest.skipIf(IS_WINDOWS, "Needs fork")
def test_early_exit(self):
import subprocess
proc = subprocess.check_output([sys.executable, '-c', """\
import torch
from torch.utils.data import DataLoader, IterableDataset
class RandomDataset(IterableDataset):
def __init__(self, len, size):
super(RandomDataset).__init__()
self.len = len
self.size = size
def __iter__(self):
return self
def __next__(self):
if self.len <= 0:
raise StopIteration
self.len -= 1
return torch.randn(self.size)
if __name__ == '__main__':
dl = DataLoader(
RandomDataset(64, (28, 28)),
batch_size=16,
num_workers=2,
pin_memory=True,
persistent_workers=True,
multiprocessing_context="fork",
)
for _ in dl:
break
"""])
class NamedTupleDataset(Dataset):
from collections import namedtuple
Batch = namedtuple('Batch', ['data', 'label', 'random_tensor'])
Data = namedtuple('Data', ['positive', 'negative'])
def __len__(self):
return 4
def __getitem__(self, ndx):
return self.Batch(data=self.Data(positive=ndx, negative=-ndx),
label=str(ndx), random_tensor=torch.randn(3))
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestNamedTupleDataLoader(TestCase):
def setUp(self):
super(TestNamedTupleDataLoader, self).setUp()
self.dataset = NamedTupleDataset()
def test_dataloader_with_namedtuple(self):
# auto-collation
loader = DataLoader(self.dataset, batch_size=2, pin_memory=TEST_CUDA)
for batch in loader:
self.assertIsInstance(batch, NamedTupleDataset.Batch)
self.assertEqual(batch.random_tensor.is_pinned(), TEST_CUDA)
self.assertIsInstance(batch.data, NamedTupleDataset.Data)
self.assertIsInstance(batch.data.positive, torch.Tensor)
self.assertEqual(batch.data.positive.is_pinned(), TEST_CUDA)
# no auto-collation
loader = DataLoader(self.dataset, batch_size=None, pin_memory=TEST_CUDA)
for batch in loader:
self.assertIsInstance(batch, NamedTupleDataset.Batch)
self.assertEqual(batch.random_tensor.is_pinned(), TEST_CUDA)
self.assertIsInstance(batch.data, NamedTupleDataset.Data)
self.assertNotIsInstance(batch.data.positive, torch.Tensor)
class SimpleCustomBatch(object):
def __init__(self, data):
transposed_data = list(zip(*data))
self.inp = torch.stack(transposed_data[0], 0)
self.tgt = torch.stack(transposed_data[1], 0)
def pin_memory(self):
self.inp = self.inp.pin_memory()
self.tgt = self.tgt.pin_memory()
return self
def is_pinned(self):
return self.inp.is_pinned() and self.tgt.is_pinned()
# Workaround for https://github.com/pytorch/pytorch/issues/50661
# Classes from `__main__` can not be correctly unpickled from spawned module
# See https://docs.python.org/3/library/multiprocessing.html#multiprocessing-programming
self_module = __import__(os.path.splitext(os.path.basename(__file__))[0])
def collate_wrapper(batch):
return self_module.SimpleCustomBatch(batch)
def collate_into_packed_sequence(batch):
data = torch.stack([sample[0] for sample in batch], 1)
t, b = data.size()
lengths = torch.randint(1, t, size=(b,), dtype=torch.int64)
return torch.nn.utils.rnn.pack_padded_sequence(data, lengths, enforce_sorted=False)
def collate_into_packed_sequence_batch_first(batch):
data = torch.stack([sample[0] for sample in batch], 0)
b, t = data.size()
lengths = torch.randint(1, t, size=(b,), dtype=torch.int64)
return torch.nn.utils.rnn.pack_padded_sequence(data, lengths, batch_first=True, enforce_sorted=False)
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
class TestCustomPinFn(TestCase):
def setUp(self):
super(TestCustomPinFn, self).setUp()
inps = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
tgts = torch.arange(10 * 5, dtype=torch.float32).view(10, 5)
self.dataset = TensorDataset(inps, tgts)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_custom_batch_pin(self):
test_cases = [
(collate_wrapper, self_module.SimpleCustomBatch),
(collate_into_packed_sequence, torch.nn.utils.rnn.PackedSequence),
(collate_into_packed_sequence_batch_first, torch.nn.utils.rnn.PackedSequence),
]
for collate_fn, elem_cls in test_cases:
loader = DataLoader(self.dataset, batch_size=2, collate_fn=collate_fn,
pin_memory=True)
for sample in loader:
self.assertIsInstance(sample, elem_cls)
self.assertTrue(sample.is_pinned())
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_custom_batch_pin_worker(self):
test_cases = [
(collate_wrapper, self_module.SimpleCustomBatch),
(collate_into_packed_sequence, torch.nn.utils.rnn.PackedSequence),
(collate_into_packed_sequence_batch_first, torch.nn.utils.rnn.PackedSequence),
]
for collate_fn, elem_cls in test_cases:
loader = DataLoader(self.dataset, batch_size=2, collate_fn=collate_fn,
pin_memory=True, num_workers=1)
for sample in loader:
self.assertIsInstance(sample, elem_cls)
self.assertTrue(sample.is_pinned())
class TestWorkerQueueDataset(Dataset):
def __init__(self, data):
self.data = data
self.worker_id = None
def worker_init_fn(self, worker_id):
self.worker_id = worker_id
def __getitem__(self, item):
return self.worker_id, self.data[item]
def __len__(self):
return len(self.data)
@unittest.skipIf(
TEST_WITH_TSAN,
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)")
@unittest.skipIf(
TEST_WITH_ASAN,
"Flaky with ASAN, see https://github.com/pytorch/pytorch/issues/65727")
class TestIndividualWorkerQueue(TestCase):
def setUp(self):
super(TestIndividualWorkerQueue, self).setUp()
self.dataset = TestWorkerQueueDataset(list(range(128)))
def _run_ind_worker_queue_test(self, batch_size, num_workers):
loader = DataLoader(
self.dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers,
timeout=5, worker_init_fn=self.dataset.worker_init_fn
)
current_worker_idx = 0
for i, (worker_ids, sample) in enumerate(loader):
self.assertEqual(worker_ids.tolist(), [current_worker_idx] * batch_size)
self.assertEqual(sample.tolist(), list(range(i * batch_size, (i + 1) * batch_size)))
current_worker_idx += 1
if current_worker_idx == num_workers:
current_worker_idx = 0
def test_ind_worker_queue(self):
max_num_workers = None
if hasattr(os, 'sched_getaffinity'):
try:
max_num_workers = len(os.sched_getaffinity(0))
except Exception:
pass
if max_num_workers is None:
cpu_count = os.cpu_count()
if cpu_count is not None:
# Use half number of CPUs
max_num_workers = cpu_count // 2
if max_num_workers is None:
max_num_workers = 1
for batch_size in (8, 16, 32, 64):
for num_workers in range(0, min(6, max_num_workers)):
self._run_ind_worker_queue_test(batch_size=batch_size, num_workers=num_workers + 1)
class SetAffinityDataset(IterableDataset):
def __iter__(self):
torch.randperm(1)
after = os.sched_getaffinity(0)
return iter(after)
@unittest.skipIf(
not hasattr(os, 'sched_setaffinity'),
"os.sched_setaffinity is not available")
class TestSetAffinity(TestCase):
def test_set_affinity_in_worker_init(self):
# Query the current affinity mask to avoid setting a disallowed one
old_affinity = os.sched_getaffinity(0)
if not old_affinity:
self.skipTest("No affinity information")
# Choose any
expected_affinity = list(old_affinity)[-1]
def worker_set_affinity(_):
os.sched_setaffinity(0, [expected_affinity])
dataset = SetAffinityDataset()
dataloader = torch.utils.data.DataLoader(
dataset, num_workers=2, worker_init_fn=worker_set_affinity)
for sample in dataloader:
self.assertEqual(sample, [expected_affinity])
class ConvDataset(Dataset):
def __init__(self):
self.x = torch.ones(1, 1, 24000)
# Call convolution on parent process
self[0]
def __len__(self):
return 1
def __getitem__(self, index):
return torch.nn.functional.conv1d(self.x, torch.ones(1, 1, 2))
@unittest.skipIf(IS_WINDOWS, "Needs fork")
class TestConvAfterFork(TestCase):
# Tests crash reported in https://github.com/pytorch/pytorch/issues/53565
def test_conv_after_fork(self):
loader = DataLoader(ConvDataset(), num_workers=1)
for x in loader:
self.assertEqual(x.shape, (1, 1, 1, 23999))
if __name__ == '__main__':
run_tests()
|