1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
# Owner(s): ["module: primTorch"]
from collections import defaultdict
from torch import Tensor
import torch.autograd
from torch._decomp import decomposition_table
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
from torch.utils._mode_utils import no_dispatch
from torch.testing._internal.common_utils import (
is_iterable_of_tensors,
TestCase,
skipIfCrossRef,
suppress_warnings,
TEST_WITH_ASAN,
run_tests,
skipIfSlowGradcheckEnv,
skipIfTorchDynamo,
)
from torch.testing._internal.common_device_type import (
onlyNativeDeviceTypes,
ops,
instantiate_device_type_tests,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch._dispatch.python import enable_python_dispatcher
import itertools
import functools
from functools import partial
import unittest
aten = torch.ops.aten
# TODO: this isn't going to work with non-aten namespaces
def overload_to_aten_name(overload):
return overload._schema.name.split("::")[1]
# All operators that can have decomp tests
decomposition_names = {overload_to_aten_name(k) for k in decomposition_table}
_decomp_test_ops = [
op
for op in op_db
if op.aten_name in decomposition_names
or op.aten_backward_name in decomposition_names
]
def diff_arg(arg, requires_grad=True):
def is_differentiable_arg(arg):
if requires_grad:
return arg.requires_grad
else:
return arg.is_floating_point() or arg.is_complex()
if is_iterable_of_tensors(arg):
if all([is_differentiable_arg(a) for a in arg]):
return True
if all([not is_differentiable_arg(a) for a in arg]):
return False
raise RuntimeError("NYI: The test runner can't handle this")
return isinstance(arg, Tensor) and is_differentiable_arg(arg)
# Version of autograd.grad with some differences:
# - pytree inputs is allowed (but leaves of the pytree have to all
# be tensors)
# - if an input is not used as part of derivatives, we will return a
# zero-filled tensor for the result
def _autograd_grad(
outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True
):
inputs, inputs_spec = tree_flatten(inputs)
diff_inputs = tuple(inp for inp in inputs if inp.requires_grad)
if grad_outputs is None:
diff_outputs = tuple(out for out in outputs if out.requires_grad)
else:
diff_grad_outputs = [
(out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad
]
if len(diff_grad_outputs) == 0:
diff_outputs, grad_outputs = (), ()
else:
diff_outputs, grad_outputs = zip(*diff_grad_outputs)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs,
retain_graph=retain_graph,
create_graph=create_graph,
allow_unused=True,
)
result = []
grad_inputs_iter = iter(grad_inputs)
for inp in inputs:
if inp.requires_grad:
grad_input = next(grad_inputs_iter)
if grad_input is None:
result.append(torch.zeros_like(inp))
else:
result.append(grad_input)
else:
result.append(torch.zeros_like(inp))
return tree_unflatten(result, inputs_spec)
def _as_tuple(val):
if isinstance(val, tuple):
return val
return (val,)
def ref_vjp_no_create(f, *primals):
result = f(*primals)
def wrapped(cotangents):
return _autograd_grad(
_as_tuple(result), primals, _as_tuple(cotangents), create_graph=False
)
return result, wrapped
dtype_precisions = {
torch.float16: (0.001, 1e-5),
torch.bfloat16: (0.016, 1e-4),
torch.float32: (1.3e-6, 1e-5),
torch.float64: (1e-7, 1e-7),
torch.complex32: (0.001, 1e-5),
torch.complex64: (1.3e-6, 1e-5),
torch.complex128: (1e-7, 1e-7),
}
# Returns the "default" rtol and atol for comparing scalars or
# tensors of the given dtypes.
def _getDefaultRtolAndAtol(dtype0, dtype1):
rtol = max(
dtype_precisions.get(dtype0, (0, 0))[0], dtype_precisions.get(dtype1, (0, 0))[0]
)
atol = max(
dtype_precisions.get(dtype0, (0, 0))[1], dtype_precisions.get(dtype1, (0, 0))[1]
)
return rtol, atol
def op_assert_ref(test_case, op, test_dtype, i, orig, decomp, ref, args, kwargs):
assert orig.dtype == decomp.dtype, f"{i} Operation: {op}"
if orig.numel() == 0 or decomp.numel() == 0:
assert orig.numel() == decomp.numel()
return
assert orig.shape == decomp.shape, f"{i} Operation: {op}"
tol_table = {
(torch.bfloat16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_layer_norm_backward.default): 1e-3,
(torch.bfloat16, torch.ops.aten.native_layer_norm_backward.default): 2e-2,
(torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5,
(torch.bfloat16, torch.ops.aten.linalg_vector_norm.default): 1e-6,
(torch.float16, torch.ops.aten.linalg_vector_norm.default): 1e-6,
}
if ref.is_floating_point():
orig_diff = (orig - ref).abs().max()
decomp_diff = (decomp - ref).abs().max()
atol = tol_table.get((test_dtype, op), 1e-7)
if decomp_diff > orig_diff + atol:
raise RuntimeError(
f"Difference from float64 is larger with decomposition {op.__name__}"
f" than original on output {i}. Original max diff: {orig_diff}, Decomp max diff: {decomp_diff}\n"
f"atol = {atol}\n"
f"args = {args}\n"
f"kwargs = {kwargs}"
)
else:
test_case.assertEqual(
orig, decomp, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}"
)
def op_assert_equal(test_case, op, test_dtype, orig, decomp, args, kwargs):
test_case.assertEqual(
orig.dtype, decomp.dtype, f"Operation: {op}, orig.dtype: {orig.dtype}, decomp.dtype: {decomp.dtype}, {args}, {kwargs}")
# Before adding an entry to this table, make sure your decomposition is right :)
tol_table = {
# Due to strange epsilon behaviors, see https://github.com/pytorch/pytorch/issues/73161
(torch.float32, torch.ops.aten.native_layer_norm.default): (1e-3, 1e-3),
(torch.float32, torch.ops.aten.native_layer_norm_backward.default): (
1e-3,
1e-3,
),
(torch.float64, torch.ops.aten.native_layer_norm.default): (1e-6, 1e-6),
# This exceeds default tolerances only on CPU, on CUDA it's fine
(torch.float32, torch.ops.aten.grid_sampler_2d.default) : (7e-6, 3e-5),
# Exceeds tolerances on CUDA, likely due to fma
(torch.float32, torch.ops.aten.mv.default) : (1e-5, 3e-5),
(torch.float64, torch.ops.aten.upsample_bicubic2d.vec) : (1e-5, 1e-6),
}
if (test_dtype, op) in tol_table:
rtol, atol = tol_table[(decomp.dtype, op)]
else:
rtol, atol = _getDefaultRtolAndAtol(orig.dtype, decomp.dtype)
test_case.assertEqual(orig, decomp, rtol=rtol, atol=atol, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}")
# Given f, returns an f' such that:
# - f' takes only positional arguments
# - All arguments to f' are floating-point Tensors
# - All outputs of f' are floating-point Tensors
def normalize_op_input_output2(
f, args, kwargs, output_process_fn_grad=None, requires_grad=True
):
flat_args, args_spec = tree_flatten(args)
diff_argnums = tuple(
i
for i, arg in enumerate(flat_args)
if diff_arg(arg, requires_grad=requires_grad)
)
assert len(diff_argnums) > 0
primals = tuple(flat_args[i] for i in diff_argnums)
@functools.wraps(f)
def wrapped(*primals):
_args = list(flat_args)
for num, arg in zip(diff_argnums, primals):
_args[num] = arg
_args = tree_unflatten(_args, args_spec)
result = f(*_args, **kwargs)
if output_process_fn_grad is not None:
result = output_process_fn_grad(result)
if isinstance(result, tuple):
# TODO: Remove the following hack for namedtuples
result = tuple(result)
result = tuple(
r
for r in result
if isinstance(r, Tensor) and (r.is_floating_point() or r.is_complex())
)
assert len(result) > 0
return result
return wrapped, primals
# NB: This also upcasts dtype arguments
# TODO: handle complex correctly
def upcast_tensor(x, dtype=torch.float32):
if isinstance(x, Tensor) and x.dtype.is_floating_point:
return x.to(dtype=dtype)
elif (isinstance(x, torch.dtype)
and x in [torch.float16, torch.bfloat16, torch.float]):
return dtype
else:
return x
def normalize_op_input_output(f, sample, requires_grad=True):
args = tuple([sample.input] + list(sample.args))
return normalize_op_input_output2(
f,
args,
sample.kwargs,
sample.output_process_fn_grad,
requires_grad=requires_grad,
)
CROSS_REF_EXCLUDE_SET = {
# CUBLAS_STATUS_NOT_SUPPORTED when calling
# `cublasGemmStridedBatchedExFix(handle, opa, opb, (int)m, (int)n, (int)k,
# (void*)&falpha, a, CUDA_R_16BF, (int)lda, stridea, b, CUDA_R_16BF,
# (int)ldb, strideb, (void*)&fbeta, c, CUDA_R_16BF, (int)ldc, stridec,
# (int)num_batches, CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)`
("cuda", torch.bfloat16, "nn.functional.bilinear"),
# randomness
("cuda", torch.float16, "nn.functional.dropout"),
("cuda", torch.bfloat16, "nn.functional.dropout"),
("cuda", torch.float64, "nn.functional.dropout"),
("cuda", torch.float32, "nn.functional.dropout"),
(None, None, "new_empty"),
(None, None, "empty_like"),
(None, None, "empty"),
# CompositeAutogradImplicit
# See https://github.com/pytorch/pytorch/issues/81669
(None, None, "nn.functional.relu6"),
(None, None, "meshgrid"),
}
CROSS_REF_BACKWARD_EXCLUDE_SET = {
# Backward formula is not as precise as the custom CUDA kernel
("cuda", torch.bfloat16, "nn.functional.embedding"),
}
all_decomposed = set()
all_called = defaultdict(int)
# Helpful snippet for testing coverage
"""
import atexit
def check_coverage():
print("missing coverage:")
print("\n".join(map(str, decomposition_table.keys() - all_decomposed)))
atexit.register(check_coverage)
"""
# Helpful snippet for Horace to create his google sheet :)
"""
import atexit
def dump_ops():
with open('run_ops.txt', 'w') as f, open('count_ops.txt', 'w') as g:
for op, count in sorted(all_called.items(), key=lambda x: x[0].__name__):
f.write(f'{op.__name__}\n')
g.write(f'{count}\n')
with open('run_decompositions.txt', 'w') as f:
for op in sorted([i.__name__ for i in all_decomposed]):
f.write(f'{op}\n')
atexit.register(dump_ops)
"""
def any_unsupported(args, kwargs):
def test_unsupported(t):
if type(t) is torch.Tensor or type(t) is torch.nn.Parameter:
# These are all things that we haven't coded decompositions
# to handle correctly. Maybe they should.
return any([
t.is_sparse_csr, t.is_sparse, t.is_mkldnn, t.is_quantized,
t.is_nested, torch._is_functional_tensor(t),
])
elif torch.overrides.is_tensor_like(t):
# Decompositions will generally change the behavior of Tensor-like
# subclasses, so bypass tests in this case too
return True
else:
return False
flat_args, _ = tree_flatten(args)
flat_kwargs, _ = tree_flatten(kwargs)
return any(test_unsupported(x) for x in itertools.chain(flat_args, flat_kwargs))
@skipIfSlowGradcheckEnv
class TestDecomp(TestCase):
longMessage = True
# NB: This actually overlaps with test_comprehensive, but it only
# runs on things that are definitely decomposed so it's a lot faster
# to run
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(_decomp_test_ops)
def test_quick(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=False)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_comprehensive(self, device, dtype, op):
self.do_cross_ref(device, dtype, op, run_all=True)
@skipIfTorchDynamo("Test does not work with TorchDynamo")
def do_cross_ref(self, device, dtype, op, *, run_all):
test_keys = [
(torch.device(device).type, dtype, op.name),
(None, dtype, op.name),
(None, None, op.name),
]
if any(key in CROSS_REF_EXCLUDE_SET for key in test_keys):
self.skipTest(f"{op.name} in {dtype} not supported")
skip_decomp_vjp = any(key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys)
test_dtype = dtype
# We check the correctness of each decomposition right after running it.
# So, when we encounter a decomposition, we run the function normally, and
# then run the decomposition, and ensure they're identical.
called = set()
decomposed = set()
saved_precision = self.precision
saved_rel_tol = self.rel_tol
test_case = self
class DecompCrossRefMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
with no_dispatch():
return self._torch_dispatch(func, types, args, kwargs)
def _torch_dispatch(self, func, types, args=(), kwargs=None):
test_case.precision = saved_precision
test_case.rel_tol = saved_rel_tol
called.add(func)
all_called[func] += 1
# Stuff we shouldn't bother testing
# (TODO: remove detach from the decomp table?)
if func not in decomposition_table or func in [
torch.ops.aten.detach.default,
# non-deterministic ops
torch.ops.aten.empty.memory_format,
torch.ops.aten.empty_like.default,
torch.ops.aten.new_empty.default
] or any_unsupported(args, kwargs):
return func(*args, **kwargs)
decomposed.add(func)
all_decomposed.add(func)
# We take 2 main strategies for verifying correctness/numerical stability of decompositions
# The first one is simply tolerance checking between decomp_out and pytorch_out
# However, for fp16/bf16 and reductions, this becomes very
# finicky, as there are not many guarantees we can make.
# So, for fp16/bf16, we instead compare the difference of
# {decomp_out, pytorch_out_64} and {pytorch_out,
# pytorch_out_64}. In other words, we compare how far the
# decomposition and pytorch are from the "ground truth" (i.e.
# fp64). If the decomposition results in more error, we error
decomposition = decomposition_table[func]
do_relative_check = test_dtype in [torch.float16, torch.bfloat16]
real_out_unflat = func(*args, **kwargs)
real_out, _ = tree_flatten(real_out_unflat)
decomp_out, _ = tree_flatten(decomposition(*args, **kwargs))
assert len(real_out) == len(decomp_out)
if do_relative_check:
upcast = partial(upcast_tensor, dtype=torch.float64)
real_out_double, _ = tree_flatten(
func(*tree_map(upcast, args), **tree_map(upcast, kwargs))
)
for i, orig, decomp, ref in zip(range(len(real_out)), real_out, decomp_out, real_out_double):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_ref(test_case, func, test_dtype, i, orig, decomp, ref, args, kwargs)
else:
for orig, decomp in zip(real_out, decomp_out):
if not isinstance(orig, torch.Tensor):
assert type(orig) == type(decomp)
assert orig == decomp
continue
op_assert_equal(test_case, func, test_dtype, orig, decomp, args, kwargs)
return real_out_unflat
requires_grad = (
op.supports_autograd
and dtype in op.supported_backward_dtypes(torch.device(device).type)
# TODO: OpInfo really ought to error out for this case, but it's
# not exercised in test_ops_gradients atm. The problem is not
# complex32 per-se (which is supported by data movement only ops)
# but that when we do backwards we expect other ops like add to work
and not dtype == torch.complex32
)
samples = op.sample_inputs(device, test_dtype, requires_grad=requires_grad)
def check_decomposed(aten_name):
self.assertTrue(
any(overload_to_aten_name(c) == aten_name for c in decomposed),
msg=(f"aten.{aten_name} was not decomposed, saw calls for: "
f"{', '.join(map(str, list(called)))}. If your op is "
f"CompositeImplicitAutograd you should skip this test "
"by updating CROSS_REF_EXCLUDE_SET.")
)
aten_name = op.decomp_aten_name or op.aten_name
func = op.get_op()
for sample_input in samples:
if requires_grad:
fn, primals = normalize_op_input_output(func, sample_input)
primals = tree_map(
lambda x: x if isinstance(x, torch.Tensor) else x, primals
)
# Once https://github.com/pytorch/pytorch/pull/75965/ I can
# store the called list on the mode object instance and no
# explicit clearing is necessary as I will create a fresh mode
# for each region
decomposed.clear()
with DecompCrossRefMode(), enable_python_dispatcher():
decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals)
if aten_name in decomposition_names:
check_decomposed(aten_name)
if not skip_decomp_vjp and (op.aten_backward_name in decomposition_names or run_all):
cotangents = tree_map(lambda x: torch.randn_like(x), decomp_out)
decomposed.clear()
with DecompCrossRefMode(), enable_python_dispatcher():
decomp_vjp_fn(cotangents)
if not run_all:
check_decomposed(op.aten_backward_name)
elif aten_name in decomposition_names or run_all:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
decomposed.clear()
with DecompCrossRefMode(), enable_python_dispatcher():
func(*args, **kwargs)
if not run_all:
check_decomposed(aten_name)
else:
assert op.supports_autograd
self.skipTest(
"only backwards is decomposed, but dtype doesn't support AD"
)
instantiate_device_type_tests(TestDecomp, globals())
class DecompContiguousTests(TestCase):
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._softmax(x, -1, False)
res = torch._decomp.decompositions._softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@skipIfCrossRef
def test_contiguous_log_softmax(self, device):
size = (2, 4, 3, 3)
stride = (9, 18, 3, 1)
dtype = torch.float32
x = torch.randn(size, dtype=dtype, device=device)
x = torch.as_strided(x, size, stride)
ref = torch.ops.aten._log_softmax(x, -1, False)
res = torch._decomp.decompositions._log_softmax(x, -1, False)
self.assertEqual(ref.stride(), res.stride())
instantiate_device_type_tests(DecompContiguousTests, globals())
if __name__ == "__main__":
run_tests()
|