1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
# Owner(s): ["module: dispatch"]
import torch._C as C
from torch.testing._internal.common_utils import TestCase, run_tests
from torch._python_dispatcher import PythonDispatcher
from collections import namedtuple
import itertools
import os
import re
import torch.utils.cpp_extension
# TODO: Expand the dispatcher API to be a generic API for interfacing with
# the dispatcher from Python!
#
# These are exhaustive tests for commutativity of dispatch behavior. If you're
# looking for more usage-info style tests, check op_registration_test.cpp
#
# Things not tested here:
# - Listeners
# - Top level namespace registrations
# - Fallback
# - Exotic overloads of CppFunction/schema
#
# Things not directly tested here:
# - Internal state of Dispatcher makes sense. This is indirectly
# tested by the invariant testing
Result = namedtuple('Result', 'state table provenance')
dispatch_keys_to_check = (
'Undefined',
'CPU',
'CUDA',
'XLA',
'AutogradOther',
'AutogradCPU',
'AutogradCUDA',
'AutogradXLA')
def extract_dispatch_table_with_keys(table, dispatch_keys):
extracted = ''
table_entries = table.split('\n')
regex = re.compile(r"registered at .*FallbackKernel\.cpp.*(\[)")
for k in dispatch_keys:
for t in table_entries:
if t.startswith(k):
# mask out file:line info for in-tree backend fallback
entry = regex.sub('registered in pytorch framework [', t)
extracted += (entry + '\n')
return extracted
class TestDispatch(TestCase):
namespace_index = 0
def test_all_invariants(self):
# Check that the regular stuff is OK!
C._dispatch_check_all_invariants()
# You probably don't want to call this directly; if your constructors
# don't commute, you can still run commute with a fixed ctor_order
# so that you can test that the destructors still commute
def run_ops(self, name, ops, ctor_order=None, dtor_order=None,
results=None, expect_raises=False):
"""
Given a list of operator registrations, run the registrations in the
order specified by ctor_order, and then run the deregistrations in
dtor_order.
If results is specified, intermediate results are checked for consistency
with results stored in results (and stored in results if this is the
first time we've seen them). Results are expected to be equivalent
modulo commutativity and inverses (thus, results is keyed on a frozenset
of in effect registrations from ops). Results stores namedtuple
Result[state, table, provenance], where state is a string that contains
non-derived kernel registered or error message if it doesn't pass;
table is a string that contains computed dispatch table entries;
provenance is a string that describes how exactly we got this string.
If expect_raises is True, it is not an error to raise an exception. Instead,
we'll store the exception string (instead of the dispatcher state)
in results. In principle we should flag these differently, but it's
very obvious when you get an error in one case but not another.
"""
# By allocating every test into a fresh namespace, this makes it less
# likely that a bug in the testing framework will result in tests
# interfering with each other
self.__class__.namespace_index += 1
if results is None:
results = {}
if ctor_order is None:
ctor_order = list(range(len(ops)))
if dtor_order is None:
dtor_order = list(reversed(ctor_order))
# Refs which retain the c10::Module object so we can explicitly control
# when each deregistration happens (deregistration occurs when the
# object gets deallocated).
refs = [None] * len(ops)
# Keep track of the set "in effect" registrations
active_ops = set()
# double underscore to make it less likely we conflict with something
# else
test_namespace = "__test{}__".format(self.namespace_index)
def check_invariants(actual_provenance):
C._dispatch_check_invariants(name)
# Normalize the test namespace so that expected outputs are stable
actual_state = C._dispatch_dump(
"{}::{}".format(test_namespace, name)).replace(test_namespace, "test")
actual_table = C._dispatch_dump_table(
"{}::{}".format(test_namespace, name)).replace(test_namespace, "test")
expected_state, expected_table, expected_provenance = results.setdefault(
frozenset(active_ops),
Result(actual_state, actual_table, actual_provenance)
)
self.assertMultiLineEqual(
expected_state, actual_state,
"expected from {}; actual from {}"
.format(expected_provenance, actual_provenance)
)
self.assertMultiLineEqual(
expected_table, actual_table,
"expected from {}; actual from {}"
.format(expected_provenance, actual_provenance)
)
results.setdefault(frozenset(), Result("", "", "hardcoded initial state"))
check_invariants("initial state")
# In the order specified by ctor_order, run registrations
set_to_report = frozenset(range(len(ops)))
for i, op_ix in enumerate(ctor_order):
# It would be better to DEF here, but because we manage
# lifetime of multiple registrations with multiple Library
# references (refs), we can't deal with the strict checking
# from DEF.
refs[op_ix] = C._dispatch_library("FRAGMENT", test_namespace, "")
active_ops.add(op_ix)
try:
ops[op_ix](refs[op_ix])
check_invariants("running ctors {}".format(ctor_order[:i + 1]))
except RuntimeError as e:
if not expect_raises:
raise
actual = str(e).replace(test_namespace, "test")
actual = actual.split("\nException raised from ")[0]
expected, _, expected_provenance = results.setdefault(
frozenset(active_ops),
Result(actual, "", "error after running ctors {}".format(ctor_order[:i + 1]))
)
self.assertMultiLineEqual(expected, actual, expected_provenance)
set_to_report = frozenset(active_ops)
active_ops.remove(op_ix)
# NB: this finally test asserts that if a registrations fails,
# the dispatcher is left in the same state *that it was before*!
check_invariants(
"running ctors {} and then failing to run ctor {} "
"(did this failure leave the dispatcher in a wedged state? "
"it shouldn't!)"
.format(ctor_order[:i], op_ix))
break
last_ctor = i
if expect_raises and len(active_ops) == len(ops):
# Destroy references first, as some test frameworks (like pytest)
# will retain references in the exception raised by assertTrue! EW!
refs = None
self.assertTrue(
False,
"expected exception to be raised, but nothing was raised "
"(after running ctors {})".format(ctor_order))
# In the order specified by dtor_order, run deregistrations
for i, op_ix in enumerate(dtor_order):
# Trigger a destruction
refs[op_ix] = None
# discard not remove, since we may not have actually deregistered
# anything if there was an error raised
if expect_raises:
active_ops.discard(op_ix)
else:
active_ops.remove(op_ix)
check_invariants(
"running ctors {}, then running dtors {}"
.format(ctor_order[:last_ctor + 1], dtor_order[:i + 1])
)
return results[set_to_report][0]
# Operator registrations are commutative (as static initializers can
# run in any order) and invertible (by deregistration). (Subject
# to some caveats: some legacy behavior in the system are not commutative--
# we want to get rid of these!)
#
# So while in principle we could simply test a set of operations
# by just running them one by one in the order specified by the user,
# we can get more assurance about these extra properties by doing
# more work:
#
# 1. Don't run the registrations once in a fixed order: run every possible
# permutation. Similarly, run every permutation of deregistration order.
#
# 2. Don't just check the end state of the dispatcher: for every
# subset of operator registrations, ensure that the computed
# intermediate state is path independent. One thing to note:
# in this function, we assume each operation is unique. In general,
# there may be duplicated registrations, but these are usually
# idempotent or legacy. We test for behavior here separately.
#
# NB: checking all permutations means this function is exponential in
# the length of ops! So don't pass too many ops to this function!
def commute(self, name, ops, ctor_order=None, expect_raises=False):
results = {}
def go(ctor_order):
for dtor_order in itertools.permutations(range(len(ops))):
self.run_ops(
name, ops, ctor_order, dtor_order,
results=results, expect_raises=expect_raises)
if ctor_order is not None:
go(ctor_order)
else:
for ctor_order in itertools.permutations(range(len(ops))):
go(ctor_order)
# Return the "full" Result namedtuple after all operations are run.
# If this KeyErrors, that means that there did not exist any
# ordering of ctors which got us to the "end". That's an
# error in test construction: it means you could have
# factored the test into two smaller ones.
return results[frozenset(range(len(ops)))]
def test_def(self):
state = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("test_def", [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo"),
# m.impl("test_def", kCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", dispatch="CPU"),
# m.impl("test_def", kAutograd, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", dispatch="Autograd"),
# m.impl("test_def", kAutogradCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", dispatch="AutogradCPU")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
def test_def_impl_schema_mismatch(self):
# NB: an impl-impl mismatch is not reported eagerly; you'll find out
# about it because one of them won't match with def
state = self.commute("foo", [
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
# m.impl("foo", [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo"),
], expect_raises=True).state
self.assertExpectedInline(state, '''\
Inferred operator schema for a C++ kernel function doesn't match the expected function schema.
operator: test::foo
expected schema: test::foo(Tensor x, Tensor y) -> Tensor
registered at /dev/null:0
inferred schema: (Tensor _0) -> Tensor _0
impl_t_t
reason: The number of arguments is different. 2 vs 1.''')
def test_def_with_inference(self):
state = self.commute("foo", [
# m.def("foo", [](const Tensor & x) { return x })
lambda m: m.def_name_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd"),
# m.impl("foo", torch::kAutogradCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "AutogradCPU")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor _0) -> Tensor _0
debug: registered at /dev/null:0
alias analysis kind: CONSERVATIVE
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: default_def_name_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
def test_def_only(self):
state = self.commute("foo", [
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x, Tensor y) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
''')
def test_impl_only(self):
state = self.commute("foo", [
# m.impl("foo", [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", "CPU"),
# m.impl("foo", torch::kAutograd, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", "Autograd"),
# m.impl("foo", torch::kAutogradCPU, [](const Tensor& x) { return x })
lambda m: m.impl_t_t("foo", "AutogradCPU")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: (none)
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
def test_computed_table(self):
result = self.commute("foo", [
# m.def("foo", [](const Tensor & x) { return x })
lambda m: m.def_name_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kCUDA, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "XLA", debug="fn_xla"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kAutogradCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "AutogradCPU", debug="fn_autogradcpu")
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor _0) -> Tensor _0
debug: registered at /dev/null:0
alias analysis kind: CONSERVATIVE
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
XLA: fn_xla :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
AutogradCPU: fn_autogradcpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: default_def_name_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: default_def_name_t_t [math kernel]
CPU: fn_cpu [kernel]
CUDA: default_def_name_t_t [math kernel]
XLA: fn_xla [kernel]
AutogradOther: default_def_name_t_t [math kernel]
AutogradCPU: fn_autogradcpu [kernel]
AutogradCUDA: default_def_name_t_t [math kernel]
AutogradXLA: fn_autograd [autograd kernel]
''')
def test_computed_table_with_cpu_math_autogradcpu_fallthrough(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo", [](const Tensor & x) { return x })
lambda m: m.def_name_t_t("foo"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor _0) -> Tensor _0
debug: registered at /dev/null:0
alias analysis kind: CONSERVATIVE
CPU: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: default_def_name_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: default_def_name_t_t [math kernel]
CPU: impl_t_t [kernel]
CUDA: default_def_name_t_t [math kernel]
XLA: default_def_name_t_t [math kernel]
AutogradOther: default_def_name_t_t [math kernel]
AutogradCPU: fallthrough registered in pytorch framework [backend fallback]
AutogradCUDA: default_def_name_t_t [math kernel]
AutogradXLA: default_def_name_t_t [math kernel]
''')
def test_computed_table_with_math(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CompositeImplicitAutograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: impl_t_t [math kernel]
CPU: impl_t_t [math kernel]
CUDA: impl_t_t [math kernel]
XLA: impl_t_t [math kernel]
AutogradOther: impl_t_t [math kernel]
AutogradCPU: impl_t_t [math kernel]
AutogradCUDA: impl_t_t [math kernel]
AutogradXLA: impl_t_t [math kernel]
''')
def test_computed_table_with_cpu_math(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_math [math kernel]
CPU: fn_cpu [kernel]
CUDA: fn_math [math kernel]
XLA: fn_math [math kernel]
AutogradOther: fn_math [math kernel]
AutogradCPU: fallthrough registered in pytorch framework [backend fallback]
AutogradCUDA: fn_math [math kernel]
AutogradXLA: fn_math [math kernel]
''')
def test_computed_table_with_autograd(self):
global_m = C._dispatch_library("IMPL", "_", "AutogradCPU")
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
Autograd[alias]: impl_t_t :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
AutogradOther: impl_t_t [autograd kernel]
AutogradCPU: impl_t_t [autograd kernel]
AutogradCUDA: impl_t_t [autograd kernel]
AutogradXLA: impl_t_t [autograd kernel]
''')
# Now that catchAll maps to CompositeImplicitAutograd, registering to both
# catchAll and CompositeImplicitAutograd breaks commutativity.
def test_computed_table_with_cpu_autograd_math(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_math [math kernel]
CPU: fn_cpu [kernel]
CUDA: fn_math [math kernel]
XLA: fn_math [math kernel]
AutogradOther: fn_math [math kernel]
AutogradCPU: fn_autograd [autograd kernel]
AutogradCUDA: fn_math [math kernel]
AutogradXLA: fn_math [math kernel]
''')
def test_computed_table_with_ambiguous_autogradother(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
# m.impl("foo", torch::kFPGA, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "FPGA", debug="fn_fpga"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
FPGA: fn_fpga :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check + ('FPGA',))
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_math [math kernel]
CPU: fn_math [math kernel]
CUDA: fn_math [math kernel]
XLA: fn_math [math kernel]
AutogradOther: ambiguous_autogradother [ambiguous autogradother]
AutogradCPU: fn_math [math kernel]
AutogradCUDA: fn_math [math kernel]
AutogradXLA: fn_math [math kernel]
FPGA: fn_fpga [kernel]
''')
def test_computed_table_with_cpu_defaultbackend(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kCompositeExplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeExplicitAutograd", debug="fn_defaultbackend"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeExplicitAutograd[alias]: fn_defaultbackend :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_defaultbackend [default backend kernel]
CPU: fn_cpu [kernel]
CUDA: fn_defaultbackend [default backend kernel]
XLA: fn_defaultbackend [default backend kernel]
AutogradOther: fallthrough registered in pytorch framework [backend fallback]
AutogradCPU: fallthrough registered in pytorch framework [backend fallback]
AutogradCUDA: fallthrough registered in pytorch framework [backend fallback]
AutogradXLA: fallthrough registered in pytorch framework [backend fallback]
''')
def test_computed_table_with_cpu_autograd_defaultbackend(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kCompositeExplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeExplicitAutograd", debug="fn_defaultbackend"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeExplicitAutograd[alias]: fn_defaultbackend :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check + ('FPGA',))
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_defaultbackend [default backend kernel]
CPU: fn_cpu [kernel]
CUDA: fn_defaultbackend [default backend kernel]
XLA: fn_defaultbackend [default backend kernel]
AutogradOther: fn_autograd [autograd kernel]
AutogradCPU: fn_autograd [autograd kernel]
AutogradCUDA: fn_autograd [autograd kernel]
AutogradXLA: fn_autograd [autograd kernel]
FPGA: fn_defaultbackend [default backend kernel]
''')
def test_computed_table_with_cpu_autograd_math_defaultbackend(self):
result = self.commute("foo", [
# m.def("foo(Tensor x) -> Tensor")
lambda m: m.def_("foo(Tensor x) -> Tensor"),
# m.impl("foo", torch::kCPU, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CPU", debug="fn_cpu"),
# m.impl("foo", torch::kAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "Autograd", debug="fn_autograd"),
# m.impl("foo", torch::kCompositeImplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeImplicitAutograd", debug="fn_math"),
# m.impl("foo", torch::kCompositeExplicitAutograd, [](const Tensor & x) { return x })
lambda m: m.impl_t_t("foo", "CompositeExplicitAutograd", debug="fn_defaultbackend"),
])
state, table = result.state, result.table
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: FROM_SCHEMA
CPU: fn_cpu :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
Autograd[alias]: fn_autograd :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias]: fn_math :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeExplicitAutograd[alias]: fn_defaultbackend :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
''')
# computed dispatch table is too big, so we only check on a few entries we're interested in.
extracted_table = extract_dispatch_table_with_keys(table, dispatch_keys_to_check)
self.assertExpectedInline(extracted_table, '''\
Undefined: fn_defaultbackend [default backend kernel]
CPU: fn_cpu [kernel]
CUDA: fn_defaultbackend [default backend kernel]
XLA: fn_defaultbackend [default backend kernel]
AutogradOther: fn_autograd [autograd kernel]
AutogradCPU: fn_autograd [autograd kernel]
AutogradCUDA: fn_autograd [autograd kernel]
AutogradXLA: fn_autograd [autograd kernel]
''')
def test_multiple_def_error(self):
ops = [
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
# m.def("foo(Tensor x, Tensor y) -> Tensor")
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor"),
]
self.assertExpectedInline(
self.commute("foo", ops, expect_raises=True).state,
'''Tried to register an operator (test::foo(Tensor x, Tensor y) -> Tensor) with the same name and overload '''
'''name multiple times. Each overload's schema should only be registered with a single call to def(). '''
'''Duplicate registration: registered at /dev/null:0. Original registration: registered at /dev/null:0'''
)
def test_def_with_explicit_alias(self):
state = self.commute("foo", [
# m.def(torch::schema(
# "foo(Tensor x, Tensor y) -> Tensor",
# AliasAnalysisKind::PURE))
lambda m: m.def_("foo(Tensor x, Tensor y) -> Tensor",
alias="PURE_FUNCTION")
]).state
self.assertExpectedInline(state, '''\
name: test::foo
schema: test::foo(Tensor x, Tensor y) -> Tensor
debug: registered at /dev/null:0
alias analysis kind: PURE_FUNCTION
''')
def test_multiple_def_alias_defaulting(self):
ops = [
# m.def(torch::schema("foo(Tensor x) -> Tensor",
# c10::AliasAnalysisKind::PURE_FUNCTION))
lambda m: m.def_("foo(Tensor x) -> Tensor", alias="PURE_FUNCTION"),
# RegisterOperators().op("foo(Tensor x) -> Tensor")
lambda m: m.def_legacy("foo(Tensor x) -> Tensor"),
]
self.assertExpectedInline(
self.commute("foo", ops, expect_raises=True).state,
'''Tried to register an operator (test::foo(Tensor x) -> Tensor) with the same name and overload '''
'''name multiple times. Each overload's schema should only be registered with a single call to def(). '''
'''Duplicate registration: registered at /dev/null:0. Original registration: registered at /dev/null:0'''
)
def test_multiple_def_alias_mismatch(self):
ops = [
# m.def(torch::schema("foo(Tensor x) -> Tensor",
# c10::AliasAnalysisKind::PURE_FUNCTION))
lambda m: m.def_("foo(Tensor x) -> Tensor", alias="PURE_FUNCTION"),
# m.def(torch::schema("foo(Tensor x) -> Tensor",
# c10::AliasAnalysisKind::CONSERVATIVE))
lambda m: m.def_("foo(Tensor x) -> Tensor", alias="CONSERVATIVE"),
]
self.assertExpectedInline(
self.commute("foo", ops, expect_raises=True).state,
'''Tried to register an operator (test::foo(Tensor x) -> Tensor) with the same name and overload '''
'''name multiple times. Each overload's schema should only be registered with a single call to def(). '''
'''Duplicate registration: registered at /dev/null:0. Original registration: registered at /dev/null:0'''
)
def test_multiple_fallback(self):
global_m = C._dispatch_library("IMPL", "_", "XLA")
global_m.fallback_fallthrough(),
try:
global_m.fallback_fallthrough(),
except RuntimeError as e:
self.assertExpectedInline(
str(e),
'''Tried to register multiple backend fallbacks for the same dispatch key XLA; previous registration '''
'''registered at /dev/null:0, new registration registered at /dev/null:0'''
)
else:
self.assertTrue(False)
def test_overwrite_math(self):
ops = [
lambda m: m.impl_t_t("foo", debug="fn1"),
lambda m: m.impl_t_t("foo", debug="fn2"),
]
# Not commutative
self.assertExpectedInline(
self.commute("foo", ops, ctor_order=(0, 1)).state,
'''\
name: test::foo
schema: (none)
CompositeImplicitAutograd[alias]: fn2 :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
CompositeImplicitAutograd[alias] (inactive): fn1 :: (Tensor _0) -> Tensor _0 [ boxed unboxed ]
'''
)
# Definition: a dangling impl happens when someone does an impl() on a
# function but not a def() for it. This is usually a bug, e.g. someone
# misspelled an operator name, or someone registered an impl for an op that
# no longer exists
def test_find_dangling_impls(self):
dangling_impls = C._dispatch_find_dangling_impls()
self.assertEqual(
0,
len(dangling_impls),
msg=f"Expect zero dangling impls, but found: {dangling_impls}"
)
def test_find_dangling_impls_ext(self):
extension_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cpp_extensions', 'dangling_impl_extension.cpp')
module = torch.utils.cpp_extension.load(
name="dangling_impl_extension",
sources=[
extension_path,
],
extra_cflags=["-g"],
verbose=True,
)
impls = C._dispatch_find_dangling_impls()
self.assertEqual(1, len(impls))
self.assertEqual(
'''\
name: __test::foo
schema: (none)
CPU: registered at {}:5 :: () -> () [ boxed unboxed ]
'''.format(extension_path),
impls[0])
def test_dispatch_print_registrations_for_dispatch_key_invalid(self):
with self.assertRaisesRegex(
RuntimeError,
"could not parse dispatch key: invalid_key"):
C._dispatch_print_registrations_for_dispatch_key('invalid_key')
class TestPythonDispatcher(TestCase):
def test_basic(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "XLA", "Lazy", "CompositeImplicitAutograd"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_XLA [kernel]
Lazy fn_Lazy [kernel]
FPGA fn_CompositeImplicitAutograd [math kernel]
AutogradOther fn_CompositeImplicitAutograd [math kernel]
AutogradCPU fallthrough [backend fallback]
AutogradXLA fallthrough [backend fallback]
AutogradLazy fallthrough [backend fallback]
'''
)
def test_math_autogradcpu(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "XLA", "Lazy", "CompositeImplicitAutograd", "AutogradCPU"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_XLA [kernel]
Lazy fn_Lazy [kernel]
FPGA fn_CompositeImplicitAutograd [math kernel]
AutogradOther fn_CompositeImplicitAutograd [math kernel]
AutogradCPU fn_AutogradCPU [kernel]
AutogradXLA fallthrough [backend fallback]
AutogradLazy fallthrough [backend fallback]
'''
)
self.assertExpectedInline(
dispatcher.registrations(),
'''\
Registered Kernels
key kernel
---------------------------
CPU fn_CPU
XLA fn_XLA
Lazy fn_Lazy
AutogradCPU fn_AutogradCPU
CompositeImplicitAutograd[alias] fn_CompositeImplicitAutograd
'''
)
def test_defaultbackend_autogradcpu(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "XLA", "Lazy", "CompositeExplicitAutograd", "AutogradCPU"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_XLA [kernel]
Lazy fn_Lazy [kernel]
FPGA fn_CompositeExplicitAutograd [default backend kernel]
AutogradOther fallthrough [backend fallback]
AutogradCPU fn_AutogradCPU [kernel]
AutogradXLA fallthrough [backend fallback]
AutogradLazy fallthrough [backend fallback]
'''
)
self.assertExpectedInline(
dispatcher.registrations(),
'''\
Registered Kernels
key kernel
---------------------------
CPU fn_CPU
XLA fn_XLA
Lazy fn_Lazy
AutogradCPU fn_AutogradCPU
CompositeExplicitAutograd[alias] fn_CompositeExplicitAutograd
'''
)
def test_autogradother(self):
dispatcher = PythonDispatcher()
dispatcher.register(["CPU", "FPGA", "CompositeImplicitAutograd"])
self.assertExpectedInline(
dispatcher.dispatchTable(),
'''\
Computed Dispatch Table
key kernel
---------------------------
CPU fn_CPU [kernel]
XLA fn_CompositeImplicitAutograd [math kernel]
Lazy fn_CompositeImplicitAutograd [math kernel]
FPGA fn_FPGA [kernel]
AutogradOther ambiguous_autogradother [ambiguous autogradother]
AutogradCPU fallthrough [backend fallback]
AutogradXLA fn_CompositeImplicitAutograd [math kernel]
AutogradLazy fn_CompositeImplicitAutograd [math kernel]
'''
)
self.assertExpectedInline(
dispatcher.registrations(),
'''\
Registered Kernels
key kernel
---------------------------
FPGA fn_FPGA
CPU fn_CPU
CompositeImplicitAutograd[alias] fn_CompositeImplicitAutograd
'''
)
def test_duplicate_registrations(self):
dispatcher = PythonDispatcher()
with self.assertRaisesRegex(RuntimeError, r"Overriden is not allowed"):
dispatcher.register(["CPU", "CPU"])
def test_defaultbackend_math(self):
dispatcher = PythonDispatcher()
with self.assertRaisesRegex(
RuntimeError,
r"Registration to both CompositeImplicitAutograd and CompositeExplicitAutograd is not allowed"):
dispatcher.register(["CompositeExplicitAutograd", "CompositeImplicitAutograd"])
def test_quantized_structured_not_implemented(self):
x = torch.zeros([1, 1, 1])
y = torch.zeros([1, 1, 1])
scale, zero_point = 1.0, 0
dtype = torch.qint8
qx = torch.quantize_per_tensor(x, scale, zero_point, dtype)
qy = torch.quantize_per_tensor(y, scale, zero_point, dtype)
# If bmm gets quantized support you need to update this to something
# else that is not implemented
self.assertRaisesRegex(
NotImplementedError,
"Could not run 'aten::bmm.out' with arguments from the 'QuantizedCPU' backend.",
lambda: torch.bmm(qx, qy)
)
if __name__ == '__main__':
run_tests()
|