1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
# -*- coding: utf-8 -*-
# Owner(s): ["oncall: jit"]
from torch._C import _disabled_torch_function_impl
import torch.fx
import torch.nn.functional as F
from torch.testing._internal.common_utils import run_tests, TestCase, skipIfTorchDynamo
import unittest
import torch
import operator
import itertools
from torch.utils._pytree import tree_map
from torch.fx.experimental.symbolic_shapes import ShapeEnv, PySymInt, sym_float
from torch.utils._python_dispatch import TorchDispatchMode
aten = torch.ops.aten
try:
import sympy
HAS_SYMPY = True
except ImportError:
HAS_SYMPY = False
skipIfNoSympy = unittest.skipIf(not HAS_SYMPY, "no sympy")
meta_funcs = {}
def register_meta(op):
def decorator(f):
def add_func(op):
meta_funcs[op] = f
tree_map(add_func, op)
return f
return decorator
@register_meta([aten.add.Tensor, aten.sub.Tensor])
def binary_meta(a, b):
return a.new_empty(a.shape)
@register_meta(aten.cat.default)
def cat_meta(tensors, dim=0):
concat_length = 0
shape = tensors[0].shape
for tensor in tensors:
for idx, (common_length, length) in enumerate(zip(shape, tensor.shape)):
if idx == dim:
concat_length = concat_length + length
else:
assert length == common_length
new_shape = list(shape)
new_shape[dim] = concat_length
return tensors[0].new_empty(new_shape)
@register_meta([aten.narrow_copy.default])
def narrow_copy_symint_meta(a, dim, start, length, **kwargs):
shape = []
for i, x in enumerate(a.shape):
if i == dim:
shape.append(length)
else:
shape.append(x)
return a.new_empty(tuple(shape))
@register_meta([aten.expand.default])
def expand_symint_meta(a, size, implicit=False):
return a.new_empty(size)
def create_contiguous(shape):
strides = [1]
for dim in reversed(shape[:-1]):
strides.append(dim * strides[-1])
return list(reversed(strides))
class FakeSymbolicTensor(torch.Tensor):
@staticmethod
def __new__(cls, sym_shape, sym_strides, dtype, layout, requires_grad, device, storage_offset=0):
# TODO: this is wrong in general
sym_stride = create_contiguous(sym_shape)
r = torch.Tensor._make_wrapper_subclass(
cls, sym_shape,
sym_stride, storage_offset,
dtype=dtype, layout=layout, requires_grad=requires_grad,
device=device,
)
return r
__torch_function__ = _disabled_torch_function_impl
def new_empty(self, shape):
return FakeSymbolicTensor(shape, None, self.dtype, self.layout, self.requires_grad, self.device)
@classmethod
def __torch_dispatch__(cls, func_overload, types, args=(), kwargs=None):
if func_overload in meta_funcs:
return meta_funcs[func_overload](*args, **kwargs)
if func_overload == torch.ops.aten.new_empty.default:
self = args[0]
shape = args[1]
return FakeSymbolicTensor(shape, self.stride(), self.dtype, self.layout, self.requires_grad, self.device)
raise RuntimeError(f"operator {func_overload} not supported")
def create_symbolic_tensor(name, arg, shape_env, storage_offset=0):
sym_shapes = tuple([shape_env.create_symint(f"{name}_{idx}", val) for idx, val in enumerate(arg.size())])
sym_strides = tuple([shape_env.create_symint(f"{name}_{idx}_stride", val) for idx, val in enumerate(arg.stride())])
return FakeSymbolicTensor(sym_shapes, sym_strides, arg.dtype, arg.layout, arg.requires_grad, arg.device, storage_offset)
CPP_SYMINT_CLASS = type(torch.SymIntNode.new_symint(1))
@skipIfTorchDynamo("Creating ShapeEnv fails for confusing reasons (also we never expect dynamo to see code like this)")
class TestPySymInt(TestCase):
@skipIfNoSympy
def test_arith_ops(self):
shape_env = ShapeEnv()
symints = []
for i in range(5):
symints.append((i, shape_env.create_symint(f"s{i}", i)))
ops = [operator.add, operator.sub, operator.floordiv, operator.mul, operator.mod]
for op in ops:
for args in itertools.permutations(symints, 2):
if not isinstance(args[0][1], int) and ((op != operator.mod or op != operator.floordiv) and args[1][0] != 0):
self.assertTrue(op(args[0][1], args[1][1]) == op(args[0][0], args[1][0]))
@skipIfNoSympy
def test_reverse_arith_ops(self):
shape_env = ShapeEnv()
a = shape_env.create_symint("s1", 2)
self.assertTrue(5 // a == 5 // 2)
a = shape_env.create_symint("s1", 2)
self.assertTrue(5 * a == 5 * 2)
@skipIfNoSympy
def test_roundtrip(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env)
self.assertTrue(not isinstance(x.shape[0], PySymInt))
self.assertTrue(isinstance(x.shape[0], CPP_SYMINT_CLASS))
self.assertTrue(x.shape[0] == 5)
self.assertTrue(x.shape[1] == 4)
self.assertTrue(x.shape[2], 3)
self.assertTrue(x.size()[0], 5)
self.assertTrue(x.size()[1], 4)
self.assertTrue(isinstance(x.size()[1], CPP_SYMINT_CLASS))
self.assertTrue(x.size()[2] == 3)
self.assertTrue(x.size(0) == 5)
self.assertTrue(x.size(1) == 4)
self.assertTrue(x.size(2) == 3)
self.assertTrue(isinstance(x.size(2), CPP_SYMINT_CLASS))
offset = shape_env.create_symint("offset", 2)
y = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env, offset)
self.assertTrue(isinstance(y.storage_offset(), CPP_SYMINT_CLASS))
self.assertTrue(y.storage_offset() == 2)
offset = 2
z = create_symbolic_tensor("z", torch.randn(5, 4, 3), shape_env, offset)
self.assertTrue(isinstance(z.storage_offset(), int))
self.assertTrue(z.storage_offset() == 2)
@skipIfNoSympy
def test_binary(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env)
y = create_symbolic_tensor("y", torch.randn(5, 4, 3), shape_env)
z = x + y
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
# broadcasting
y = create_symbolic_tensor("y", torch.randn(1, 4, 1), shape_env)
z = x + y
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
@skipIfNoSympy
def test_symint_args(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env)
y = create_symbolic_tensor("y", torch.randn(5, 4, 1), shape_env)
LAST_DIM = 2
z = x.narrow_copy(LAST_DIM, 0, y.shape[LAST_DIM])
self.assertTrue(z.shape[2] == int(y.shape[2]))
# arithmetic expr with two symints
z = x.narrow_copy(LAST_DIM, 0, x.shape[LAST_DIM] - y.shape[LAST_DIM])
self.assertTrue(z.shape[2] == 2)
# arithmetic expr with a symint and python int
z = x.narrow_copy(LAST_DIM, 0, x.shape[LAST_DIM] - 1)
self.assertTrue(z.shape[2] == 2)
@skipIfNoSympy
def test_symint_vargs(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env)
y = create_symbolic_tensor("y", torch.randn(1, 4, 1), shape_env)
# varargs
z = y.expand(x.shape[0], y.shape[1], x.shape[2])
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
# shape list
z = y.expand((x.shape[0], y.shape[1], x.shape[2]))
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
# mixed python symints and ints
z = y.expand(x.shape[0], y.shape[1], 3)
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
# mixed python symints and ints in a list
z = y.expand((x.shape[0], y.shape[1], 3))
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
# mixed python symints and ints
z = y.expand(5, y.shape[1], x.shape[2])
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
# mixed python ints and symints in a list
z = y.expand((5, y.shape[1], x.shape[2]))
self.assertTrue(z.shape[0] == 5)
self.assertTrue(z.shape[1] == 4)
self.assertTrue(z.shape[2] == 3)
z = y.expand((y.shape[1],))
z = y.expand(y.shape[1])
@skipIfNoSympy
def test_stride(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5, 5), shape_env)
self.assertIsInstance(x.stride()[0], CPP_SYMINT_CLASS)
@skipIfNoSympy
def test_size_expressions(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5), shape_env)
expand_x = x.expand(x.shape[0], x.shape[0])
if expand_x.shape[0] > 3:
result = expand_x + expand_x
else:
result = expand_x + expand_x
gt_op = shape_env.guards[0][0]
self.assertTrue(isinstance(gt_op, sympy.core.relational.StrictGreaterThan))
self.assertTrue(str(x.shape[0]), str(gt_op.args[0]))
self.assertTrue(str(expand_x.shape[1]), str(x.shape[0]))
self.assertTrue(str(expand_x.shape[1]), str(result.shape[0]))
@skipIfNoSympy
def test_int_to_float(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5), shape_env)
r = sym_float(x.shape[0])
self.assertTrue(isinstance(r, torch.SymFloatNode))
@skipIfNoSympy
def test_aten_ops(self):
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5), shape_env)
torch.ops.aten.narrow_copy.default(x, 0, 0, x.shape[0])
shape_env = ShapeEnv()
x = create_symbolic_tensor("x", torch.randn(5, 4, 3), shape_env)
torch.ops.aten.expand.default(x, [x.shape[0], x.shape[1], x.shape[2]])
def test_fx_trace_intlist(self):
class CustomModule(torch.nn.Module):
def forward(self, x):
bs, c, h, w = x.shape
return F.pad(x, (0, w % 2, 0, h % 2, 0, 0))
m = CustomModule()
x = torch.rand(1, 3, 4, 4)
# should not TypeError: pad(): argument 'pad' (position 2) must be
# tuple of ints, not tuple
torch.fx.symbolic_trace(m)
@skipIfNoSympy
def test_meta_symint(self):
shape_env = ShapeEnv()
a0 = shape_env.create_symint("a0", 2)
r = torch.empty(a0, device='meta')
self.assertIsInstance(r.shape[0], CPP_SYMINT_CLASS)
@skipIfNoSympy
def test_guard_int(self):
shape_env = ShapeEnv()
a0 = shape_env.create_symint("a0", 2)
self.assertEqual(a0.guard_int(), 2)
self.assertEqual(str(shape_env.guards[0][0]), "a0")
self.assertEqual(shape_env.guards[0][1], 2)
@skipIfNoSympy
def test_int_conversion(self):
shape_env = ShapeEnv()
a0 = shape_env.create_symint("a0", 2)
self.assertRaisesRegex(RuntimeError, "Trying to extract", lambda: int(a0))
@skipIfNoSympy
def test_symint_as_scalar(self):
shape_env = ShapeEnv()
a0 = shape_env.create_symint("a0", 2)
sym_int_encountered = False
class TestSymInt(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
assert func == torch.ops.aten.add.Tensor
nonlocal sym_int_encountered
sym_int_encountered = kwargs["alpha"] is a0
kwargs["alpha"] = 0
return func(*args)
x = torch.rand([4, 4])
with TestSymInt():
y = torch.add(x, x, alpha=a0)
self.assertTrue(sym_int_encountered)
if __name__ == '__main__':
run_tests()
|