1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
# Owner(s): ["module: mta"]
import itertools
from numbers import Number
import random
import re
import torch
import unittest
from torch.testing import make_tensor
from torch.testing._comparison import default_tolerances
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW, skipIfTorchDynamo
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta, ops)
from torch.testing._internal.common_methods_invocations import (
foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db, foreach_minmax_op_db,
foreach_reduce_op_db)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, all_types_and, integral_types, complex_types,
floating_types_and, floating_types, integral_types_and,
)
# Includes some values such that N * N won't be a multiple of 4,
# which should ensure we test the vectorized and non-vectorized
# kernel code paths.
N_values = [20, 23] if not TEST_WITH_SLOW else [23, 30, 300]
Scalars = (
random.randint(1, 10),
1.0 - random.random(),
True,
complex(1.0 - random.random(), 1.0 - random.random()),
)
def getScalarLists(N):
return (
("int", [random.randint(0, 9) + 1 for _ in range(N)]),
("float", [1.0 - random.random() for _ in range(N)]),
("complex", [complex(1.0 - random.random(), 1.0 - random.random()) for _ in range(N)]),
("bool", [True for _ in range(N)]),
("mixed", [1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(N - 3)]),
("mixed", [True, 1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(N - 4)]),
)
_BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator"
class RegularFuncWrapper:
def __init__(self, func):
self.func = func
def __call__(self, inputs, values=None, **kwargs):
if values is not None:
assert len(inputs) == 3
if isinstance(values, Number):
values = [values for _ in range(len(inputs[0]))]
return [self.func(*i, value=values[idx], **kwargs) for idx, i in enumerate(zip(*inputs))]
if len(inputs) == 2 and isinstance(inputs[1], Number):
# binary op with tensorlist and scalar.
inputs[1] = [inputs[1] for _ in range(len(inputs[0]))]
return [self.func(*i, **kwargs) for i in zip(*inputs)]
class ForeachFuncWrapper:
def __init__(self, func, n_expected_cudaLaunchKernels):
self.func = func
self.n_expected_cudaLaunchKernels = n_expected_cudaLaunchKernels
# Some foreach functions don't have in-place implementations.
self._is_inplace = False if func is None else func.__name__.endswith('_')
def __call__(self, inputs, is_cuda, is_fastpath, **kwargs):
actual = None
if (
is_cuda and
torch.autograd.kineto_available() and
torch.profiler.ProfilerActivity.CUDA in torch.profiler.supported_activities()
):
with torch.profiler.profile(activities=(torch.profiler.ProfilerActivity.CPU,)) as p:
actual = self.func(*inputs, **kwargs)
for e in p.key_averages():
if e.key == 'cudaLaunchKernel':
if is_fastpath:
assert e.count == self.n_expected_cudaLaunchKernels
else:
assert e.count > self.n_expected_cudaLaunchKernels
else:
actual = self.func(*inputs, **kwargs)
# note(mkozuki): inplace foreach functions are void functions.
return inputs[0] if self._is_inplace else actual
class TestForeach(TestCase):
@property
def is_cuda(self):
return self.device_type == 'cuda'
# note(mkozuki): It might be the case that the expected number of `cudaLaunchKernel`s
# is greater than 1 once foreach functions internally separate their input `TensorList`s by
# devices & dtypes into vectors of tensors.
def _get_funcs(self, op, n_expected_cudaLaunchKernels: int):
return (
ForeachFuncWrapper(op.method_variant, n_expected_cudaLaunchKernels),
RegularFuncWrapper(op.ref),
ForeachFuncWrapper(op.inplace_variant, n_expected_cudaLaunchKernels),
RegularFuncWrapper(op.ref_inplace),
)
def _binary_test(self, dtype, op, ref, inputs, is_fastpath, is_inplace, *, alpha=None):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1]] if is_inplace else inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs)
else:
expected = ref(ref_inputs)
self.assertEqual(actual, expected)
if alpha is not None:
kwargs = {'alpha': alpha}
ref_inputs = inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(expected, actual, atol=1.e-3, rtol=default_tolerances(dtype)[0])
else:
self.assertEqual(expected, actual)
def _test_binary_op_tensorlists(self, device, dtype, opinfo, N, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
if opinfo.supports_alpha_param:
alpha = None
if dtype in integral_types():
alpha = 3
elif dtype.is_complex:
alpha = complex(3, 3)
else:
alpha = 3.14
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False, alpha=alpha)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True, alpha=alpha)
# Tests of implicit broadcasting
# When sizes of tensors don't match, foreach functions are supposed to choose slow path
# even if this methods's argument `is_fastpath` is True.
# `cudaLaunchKernel` will be equal to `N`. For assert in `ForeachFuncWrapper` to pass,
# we pass `is_fastpath and disable_fastpath` to `_binary_test`'s argument of is_fastpath.
# as n_expected_cudaLaunchKernels is N if disable_fastpath.
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
[
make_tensor((N - i , 1), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
]
self._binary_test(dtype, op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False)
self._binary_test(
dtype, inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath, is_inplace=True)
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_tensorlists_fastpath(self, device, dtype, op):
for N in N_values:
disable_fastpath = op.ref == torch.div and dtype in integral_types_and(torch.bool)
if op.ref == torch.add and dtype == torch.bool:
disable_fastpath = True
self._test_binary_op_tensorlists(device, dtype, op, N, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_tensorlists_slowpath(self, device, dtype, op):
for N in N_values:
self._test_binary_op_tensorlists(device, dtype, op, N, False, False)
def _test_binary_op_scalar(self, device, dtype, opinfo, N, scalar, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath), scalar]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_scalar_fastpath(self, device, dtype, op):
for N, scalar in itertools.product(N_values, Scalars):
disable_fastpath = op.ref == torch.div and dtype in integral_types_and(torch.bool)
if isinstance(scalar, int):
disable_fastpath |= dtype == torch.bool
if isinstance(scalar, float):
disable_fastpath |= dtype in integral_types_and(torch.bool)
if isinstance(scalar, bool):
disable_fastpath |= dtype == torch.bool
if op.ref in (torch.add, torch.mul):
disable_fastpath = False
if isinstance(scalar, complex):
disable_fastpath |= dtype not in complex_types()
self._test_binary_op_scalar(device, dtype, op, N, scalar, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_scalar_slowpath(self, device, dtype, op):
for N, scalar in itertools.product(N_values, Scalars):
self._test_binary_op_scalar(device, dtype, op, N, scalar, False, False)
def _test_binary_op_scalarlist(self, device, dtype, opinfo, N, scalarlist, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath), scalarlist]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
# note(mkozuki): Why two functions depending on with/without bool?
# `foreach_sub` & `foreach_sub_` do `sub_check(tensors[i], scalars[i])` from i=1...N.
# So, if scalarlist has one or more bool values, `foreach_sub` and `foreach_sub_`
# raise bool subtraction error before doing any math.
# While regular `sub` and `sub_` do some math until they encounter bool.
# So, foreach sub's throw bool sub error first. However, regular sub's throw different
# errors depending on the order of scalarlist. To keep actual unit test impl simple,
# separating mixed scalarlist tests. By setting the first element of scalarlist to bool,
# they are expected to throw bool sub error even in inplace test.
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_scalarlist_fastpath(self, device, dtype, op):
for N in N_values:
for type_str, scalarlist in getScalarLists(N):
bool_int_div = op.ref == torch.div and dtype in integral_types_and(torch.bool)
disable_fastpath = bool_int_div
if type_str == "int":
disable_fastpath |= dtype == torch.bool
if type_str == "float":
disable_fastpath |= dtype in integral_types_and(torch.bool)
if type_str == "complex":
disable_fastpath |= dtype not in complex_types()
if type_str == "mixed":
disable_fastpath |= True and dtype not in complex_types()
self._test_binary_op_scalarlist(device, dtype, op, N, scalarlist, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_scalarlist_slowpath(self, device, dtype, op):
for N in N_values:
for _, scalarlist in getScalarLists(N):
self._test_binary_op_scalarlist(device, dtype, op, N, scalarlist, False, False)
def _pointwise_test(self, dtype, op, ref, inputs, is_fastpath, is_inplace, *, values=None):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]] if is_inplace else inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs)
else:
expected = ref(ref_inputs)
self.assertEqual(expected, actual)
if values is not None:
try:
actual = op(inputs + [values], self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, values=values)
else:
expected = ref(ref_inputs, values=values)
self.assertEqual(expected, actual)
def _test_pointwise_op(self, device, dtype, opinfo, N, is_fastpath, disable_fastpath, *, values=None):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
]
self._pointwise_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False, values=values)
self._pointwise_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True, values=values)
# Tests of implicit broadcasting
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath, same_size=True),
[
make_tensor((N - i, 1), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
[
make_tensor((1, N - i), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
]
self._pointwise_test(dtype, op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False, values=values)
self._pointwise_test(
dtype, inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath, is_inplace=True, values=values)
@skipMeta
@ops(foreach_pointwise_op_db)
def test_pointwise_op_fastpath(self, device, dtype, op):
disable_fastpath = dtype in integral_types_and(torch.bool)
# for N, scalar in itertools.product(N_values, Scalars):
for N in N_values:
self._test_pointwise_op(device, dtype, op, N, True, disable_fastpath)
for scalar in Scalars:
self._test_pointwise_op(device, dtype, op, N, True, disable_fastpath, values=scalar)
for _, scalarlist in getScalarLists(N):
self._test_pointwise_op(
device, dtype, op, N, True, disable_fastpath, values=scalarlist)
@ops(foreach_pointwise_op_db)
def test_pointwise_op_slowpath(self, device, dtype, op):
# for N, scalar in itertools.product(N_values, Scalars):
for N in N_values:
self._test_pointwise_op(device, dtype, op, N, False, False)
for scalar in Scalars:
self._test_pointwise_op(device, dtype, op, N, False, False, values=scalar)
for _, scalarlist in getScalarLists(N):
self._test_pointwise_op(
device, dtype, op, N, False, False, values=scalarlist)
# note(mkozuki): fastpath test uses dtypes which fastpath implementation supports.
# To confirm the dtypes of `OpInfo` cover the dtypes that the function support,
# this test does not use `try-except` for fastpath.
def _regular_unary_test(self, dtype, op, ref, inputs, is_fastpath):
if is_fastpath:
self.assertEqual(ref(inputs), op(inputs, self.is_cuda, is_fastpath))
return
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(inputs)
else:
expected = ref(inputs)
self.assertEqual(actual, expected)
# note(mkozuki): why `try-except` for both fastpath?
# - inputs for fastpath can be integer tensors.
# - this is becase opinfo dtypes are configured for outpulace implementation
# - for integer inputs, trigonometric functions and exponential function returns float outputs,
# which causes "result type Float can't be case to the desired type" error.
# Thus, `try-except` is used even if `is_fastpath` is `True`.
def _inplace_unary_test(self, dtype, inplace, inplace_ref, inputs, is_fastpath):
copied_inputs = [[t.clone().detach() for t in tensors] for tensors in inputs]
try:
inplace(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
inplace_ref(copied_inputs)
else:
inplace_ref(copied_inputs),
self.assertEqual(copied_inputs, inputs)
def _test_unary(self, device, dtype, opinfo, N, is_fastpath):
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, 1)
inputs = opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
# note(mkozuki): Complex inputs for `_foreach_abs` go through slowpath.
if opinfo.name == "_foreach_abs" and dtype in complex_types():
is_fastpath = False
self._regular_unary_test(dtype, op, ref, inputs, is_fastpath)
self._inplace_unary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath)
@skipMeta
@ops(foreach_unary_op_db)
def test_unary_fastpath(self, device, dtype, op):
for N in N_values:
self._test_unary(device, dtype, op, N, is_fastpath=True)
@ops(foreach_unary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_unary_slowpath(self, device, dtype, op):
for N in N_values:
self._test_unary(device, dtype, op, N, is_fastpath=False)
# note(crcrpar): `torch.maximum` and `torch.minimum` support `out` arg but there seem to be no inplace versions.
# So, compare `inplace_op` results with `ref`'s outputs.
def _minmax_test(self, opinfo, inputs, is_fastpath, n_expected_cudaLaunchKernels):
op, ref, inplace_op, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
expected = ref(inputs)
self.assertEqual(expected, op(inputs, self.is_cuda, is_fastpath))
inplace_inputs = [[t.clone() for t in inputs[0]], inputs[1]]
inplace_op(inplace_inputs, self.is_cuda, is_fastpath)
self.assertEqual(expected, inplace_inputs[0])
@ops(foreach_minmax_op_db)
def test_minmax_fastpath(self, device, dtype, op):
for N in N_values:
inputs = tuple(op.sample_inputs(device, dtype, N) for _ in range(2))
self._minmax_test(op, inputs, True, N if dtype == torch.bool else 1)
@ops(foreach_minmax_op_db,
dtypes=all_types_and(torch.half, torch.bfloat16, torch.bool))
def test_minmax_slowpath(self, device, dtype, op):
for N in N_values:
inputs = tuple(op.sample_inputs(device, dtype, N, noncontiguous=True) for _ in range(2))
self._minmax_test(op, inputs, False, 1)
# note(mkozuki): ForeachFuncInfo's of both `_foreach_maximum` and `_foreach_minimum` include integer types.
# so, manually limit dtypes to fp types for inf&nan tests.
@ops(foreach_minmax_op_db, dtypes=floating_types_and(torch.half, torch.bfloat16))
def test_minmax_float_inf_nan(self, device, dtype, op):
inputs = (
[
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
],
[
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
],
)
self._minmax_test(op, inputs, True, 1)
def _reduce_test(self, opinfo, inputs, ord, is_fastpath, n_expected_cudaLaunchKernels):
op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
self.assertEqual(ref(inputs, ord=ord), op(inputs, self.is_cuda, is_fastpath, ord=ord))
@ops(foreach_reduce_op_db)
def test_reduce_fastpath(self, device, dtype, op):
for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16):
n_expected_cudaLaunchKernels = 3
else:
n_expected_cudaLaunchKernels = N
inputs = op.sample_inputs(device, dtype, N, noncontiguous=False),
self._reduce_test(op, inputs, ord, True, n_expected_cudaLaunchKernels)
@ops(foreach_reduce_op_db)
def test_reduce_slowpath(self, device, dtype, op):
for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
inputs = op.sample_inputs(device, dtype, N, noncontiguous=True),
self._reduce_test(op, inputs, ord, False, 1)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op):
foreach_op, ref = op.method_variant, op.ref
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
if ref == torch.sub and dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
[ref(t, 1) for t in tensors]
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op(tensors, 1)
return
expected = [ref(t, 1) for t in tensors]
res = foreach_op(tensors, 1)
self.assertEqual(res, expected)
# note(mkozuki): this test case fails with Meta at least in my local environment.
# The message was
# `AssertionError: NotImplementedError("Could not run 'aten::_foreach_add.Scalar' with arguments from the 'Meta' backend.`
@skipMeta
@ops(foreach_binary_op_db, allowed_dtypes=[torch.float])
def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op):
foreach_op = op.method_variant
tensors = [torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device)]
runtime_error = None
try:
foreach_op(tensors, 1)
except RuntimeError as e:
runtime_error = e
self.assertIsNone(runtime_error)
@skipIfTorchDynamo("Different error msgs, TODO")
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_list_error_cases(self, device, dtype, op):
foreach_op, foreach_op_, ref, ref_ = op.method_variant, op.inplace_variant, op.ref, op.ref_inplace
tensors1 = []
tensors2 = []
# Empty lists
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
foreach_op_(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device, dtype=dtype))
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
foreach_op_(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
foreach_op_(tensors1, tensors2)
# Corresponding tensors with different sizes that aren't compatible with broadcast
# If sizes are different then foreach chooses slow path, thus error messages are expected
# to be the same as torch regular function.
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)]
try:
foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
# different devices
if self.device_type == "cuda" and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
if dtype == torch.bool and foreach_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op([tensor1], [tensor2])
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op_([tensor1], [tensor2])
return
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op([tensor1], [tensor2])
if dtype in integral_types_and(torch.bool) and foreach_op == torch._foreach_div:
with self.assertRaisesRegex(RuntimeError, "result type"):
foreach_op_([tensor1], [tensor2])
else:
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op_([tensor1], [tensor2])
@skipMeta
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_list_slow_path(self, device, dtype, op):
# note(mkozuki): why `n_expected_cudaLaunchKernels=0`?
# In this test, foreach functions don't go through fast path,
# but as there is only one tensor in each list of tensors,
# `cudaLaunchKernel` is 1 so ForeachFuncWrapper internal assert fails.
foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op, n_expected_cudaLaunchKernels=0)
# 0-strides
tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1)
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
inputs = ([tensor1], [tensor2.t()])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# non contiguous
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
tensor2 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# sliced tensor
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[:, :, :, ::7]
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# note: Below three tests (postfixed with `_tensors_on_different_devices`)
# checks whether foreach works with lists of tensors on different devices
# but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
@onlyCUDA
@ops(foreach_unary_op_db)
def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
method, ref, inplace_method, ref_inplace = self._get_funcs(op, 1)
# tensors: ['cuda', 'cpu]
tensors = op.sample_inputs(device, dtype, 2)
tensors[1] = tensors[1].to('cpu')
try:
actual = method((tensors,), False, False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref((tensors,))
else:
expected = ref((tensors,))
self.assertEqual(expected, actual)
try:
inplace_method((tensors,), False, False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref_inplace((tensors,))
else:
self.assertEqual(expected, tensors)
@onlyCUDA
@ops(foreach_binary_op_db)
def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
# `tensors1`: ['cuda', 'cpu']
# `tensors2`: ['cuda', 'cpu']
_cuda_tensors = op.sample_inputs(device, dtype, 2, same_size=True)
_cpu_tensors = op.sample_inputs('cpu', dtype, 2, same_size=True)
tensors1, tensors2 = list(tensors for tensors in zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
native_op, native_op_ = op.ref, op.ref_inplace
try:
actual = foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
self.assertEqual(expected, actual)
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
self.assertEqual(actual, tensors1)
@onlyCUDA
@ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op):
# tensors1: ['cuda', 'cpu]
# tensors2: ['cuda', 'cpu]
# tensors3: ['cuda', 'cpu]
_cuda_tensors = op.sample_inputs(device, dtype, 3, same_size=True)
_cpu_tensors = op.sample_inputs('cpu', dtype, 3, same_size=True)
tensors1, tensors2, tensors3 = list(tensors for tensors in zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_, native_op = op.method_variant, op.inplace_variant, op.ref
actual = foreach_op(tensors1, tensors2, tensors3)
expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
self.assertEqual(expected, actual)
# note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
foreach_op_(tensors1, tensors2, tensors3)
self.assertEqual(expected, tensors1)
# note: BFloat16 has the same number of exponent bits as FP32
# so if squared L2 norm overflows in BF16, then it also overflows in FP32.
@onlyCUDA
@ops(foreach_reduce_op_db, allowed_dtypes=(torch.half, torch.bfloat16))
def test_foreach_l2_large_value_input(self, device, dtype, op):
ord, N = 2, 10
max_value = torch.finfo(dtype).max
scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype)
inputs = [t * scaler for t in op.sample_inputs(device, dtype, N, noncontiguous=False, low=1)],
# make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
self.assertTrue(scaler * scaler * N > max_value)
fn, ref_fn, *_ = self._get_funcs(op, 3)
actual = fn(inputs, is_cuda=True, is_fastpath=True, ord=ord)
expect = ref_fn(inputs, ord=ord)
if dtype == torch.float16:
# making sure the reference L2 norm values are in the range of FP16.
self.assertFalse(any(torch.isinf(e) for e in expect))
else:
self.assertTrue(all(torch.isinf(e) for e in expect))
self.assertEqual(expect, actual, equal_nan=False)
instantiate_device_type_tests(TestForeach, globals())
if __name__ == '__main__':
run_tests()
|