1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
|
# Owner(s): ["module: fx"]
import math
import numbers
import operator
import pickle
import sys
import tempfile
import unittest
from typing import Callable, Dict, Union, List, Optional
from types import BuiltinFunctionType
import torch
import torch.fx.experimental.optimization as optimization
from torch.fx._symbolic_trace import symbolic_trace
from torch.fx.experimental import merge_matmul
from torch.fx.experimental.accelerator_partitioner import Partitioner
from torch.fx.experimental.normalize import NormalizeOperators, NormalizeArgs
from torch.fx.passes import graph_manipulation
from torch.fx.passes.param_fetch import lift_lowering_attrs_to_nodes
from torch.fx.experimental.partitioner_utils import (
NodeLatency,
get_partition_to_latency_mapping,
get_latency_of_partitioned_graph,
Device,
PartitionerConfig,
PartitionMode,
)
from torch.fx.experimental.rewriter import RewritingTracer
from torch.fx.experimental.schema_type_annotation import AnnotateTypesWithSchema
import torch.fx.experimental.meta_tracer
from torch.fx.graph_module import GraphModule
from torch.fx.node import Node
from torch.fx.operator_schemas import (
_torchscript_type_to_python_type,
normalize_function,
normalize_module,
type_matches,
create_type_hint,
)
from torch.fx.passes.shape_prop import ShapeProp
from torch.fx.passes.split_module import split_module
from torch.testing._internal.common_device_type import (
ops,
onlyCPU,
instantiate_device_type_tests,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_nn import module_tests, new_module_tests
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.jit_utils import JitTestCase
try:
import torchvision.models
from torchvision.models import resnet18
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
skipIfNoMkldnn = unittest.skipIf(
not (torch.backends.mkldnn.enabled and torch.backends.mkldnn.is_available()),
"no MKLDNN",
)
def symbolic_trace_with_rewrite(root: Union[torch.nn.Module, Callable]) -> GraphModule:
return GraphModule(
root if isinstance(root, torch.nn.Module) else torch.nn.Module(),
RewritingTracer().trace(root),
)
class TestFXExperimental(JitTestCase):
def test_find_single_partition(self):
class TestModule(torch.nn.Module):
def forward(self, a, b):
return a + b
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(1)
b = torch.rand(1)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [
Device("dev_0", 125, 0),
Device("dev_1", 150, 1),
Device("dev_2", 125, 2),
]
partitioner_config = PartitionerConfig(devices)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a, b), module_with_submodules(a, b))
assert dag.nodes[0].logical_device_ids == [1]
def test_lack_of_devices(self):
class TestModule(torch.nn.Module):
def forward(self, a, b):
return a + b
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
b = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [Device("dev_0", 4, 0), Device("dev_1", 4, 1)]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
catch_runtime_error = False
try:
ret = partitioner.partition_graph(traced, m, partitioner_config)
except RuntimeError:
catch_runtime_error = True
assert catch_runtime_error
def test_large_node_error(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
linear = self.linear(a)
add = linear + a
return add
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
partitioner = Partitioner()
devices = [
Device("dev_0", 40, 0),
Device("dev_1", 40, 0),
Device("dev_2", 40, 0),
Device("dev_3", 40, 0),
Device("dev_4", 40, 0),
]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
catch_runtime_error = False
try:
ret = partitioner.partition_graph(traced, m, partitioner_config)
except RuntimeError:
catch_runtime_error = True
assert catch_runtime_error
def test_partition_node_manipulation(self):
class TestModule(torch.nn.Module):
def forward(self, a, b):
add_1 = a + b
add_2 = add_1 + torch.rand(4)
add_3 = add_2 + torch.rand(4)
return add_3
m = TestModule()
traced = symbolic_trace(m)
a, b = torch.rand(4), torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [Device("dev_0", 1000, 0)]
partitioner_config = PartitionerConfig(devices)
ret = partitioner.partition_graph(traced, m, partitioner_config)
partition = partitioner.partitions[0]
assert partition.used_mem_bytes == 112
# Select add_2 node to remove
selected_node = None
for node in partition.nodes:
if node.name == "add_2":
selected_node = node
partition.remove_node(selected_node)
assert partition.used_mem_bytes == 80
def test_size_based_partition(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
self.c = torch.rand(4)
def forward(self, a, b):
add_1 = a + b
linear = self.linear(add_1)
add_2 = linear + self.c
return add_2
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
b = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a, b])
partitioner = Partitioner()
devices = [
Device("dev_0", 125, 0),
Device("dev_1", 125, 1),
Device("dev_2", 125, 2),
]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a, b), module_with_submodules(a, b))
for i, node in enumerate(dag.nodes):
assert node.logical_device_ids == [i]
def test_partition_device_mapping(self):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
b = torch.rand(4)
add_1 = a + b
linear_1 = self.linear(add_1)
add_2 = torch.rand(4) + a
add_3 = add_2 + linear_1
return add_3
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
partitioner = Partitioner()
devices = [Device("dev_0", 120, 0), Device("dev_1", 160, 1)]
partitioner_config = PartitionerConfig(devices, PartitionMode.size_based)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a), module_with_submodules(a))
for i, node in enumerate(dag.nodes):
if i == 1:
assert node.logical_device_ids == [1]
else:
assert node.logical_device_ids == [0]
def test_sparse_nn_partition(self):
class MyRecommendationModule(torch.nn.Module):
def create_mlp(self, num_of_layers: int, input_size: int, output_size: int):
layers = torch.nn.ModuleList()
for _ in range(num_of_layers):
ll = torch.nn.Linear(input_size, output_size)
layers.append(ll)
layers.append(torch.nn.ReLU())
return layers
def __init__(self):
super(MyRecommendationModule, self).__init__()
layers = self.create_mlp(4, 4, 4)
self.bottom_layers = torch.nn.Sequential(*layers)
layers = self.create_mlp(3, 24, 24)
self.top_layers = torch.nn.Sequential(*layers)
self.embedding_layers = torch.nn.ModuleList()
el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True)
self.embedding_layers.append(el)
for i in range(3):
el = torch.nn.EmbeddingBag(1000000, 4, mode="sum", sparse=True)
self.embedding_layers.append(el)
el = torch.nn.EmbeddingBag(500000, 4, mode="sum", sparse=True)
self.embedding_layers.append(el)
def forward(self, a, b, offset):
x = self.bottom_layers(a)
y = []
c = []
for i in range(len(self.embedding_layers)):
temp = torch.randint(10, (8,))
c.append(temp + b)
for i in range(len(self.embedding_layers)):
if i % 2 == 0:
y.append(self.embedding_layers[i](c[i], offset))
else:
y.append(
self.embedding_layers[i](torch.randint(10, (8,)), offset)
)
z = torch.cat([x] + y, dim=1)
p = self.top_layers(z)
return p
m = MyRecommendationModule()
a = torch.rand(2, 4)
b = torch.randint(10, (8,))
offset = torch.randint(1, (2,))
traced = symbolic_trace(m)
graph_manipulation.get_size_of_all_nodes(traced, [a, b, offset])
devices = [
Device("dev_0", 33000000, 0),
Device("dev_1", 33000000, 1),
Device("dev_2", 33000000, 2),
]
partitioner_config = PartitionerConfig(devices, PartitionMode.sparse_nn)
partitioner = Partitioner()
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a, b, offset), module_with_submodules(a, b, offset))
assert len(module_with_submodules.graph.nodes) == 24
def test_partition_latency(self):
class TestModule(torch.nn.Module):
def __init__(self):
super(TestModule, self).__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
add_1 = a + torch.rand(4)
add_2 = add_1 + torch.rand(4)
linear_1 = self.linear(add_1)
add_3 = add_2 + linear_1
add_4 = add_2 + add_3
return add_4
def get_node_to_latency_mapping(fx_module: GraphModule):
"""Given a fx module, generate node latency for each node
based on the size of each node
"""
node_to_latency_mapping: Dict[Node, NodeLatency] = {}
for node in fx_module.graph.nodes:
if node.op not in {"output", "placeholder", "get_attr"}:
if node.size_bytes.total_size == node.size_bytes.output_size:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, 2.0 * node.size_bytes.total_size
)
else:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, node.size_bytes.output_size
)
return node_to_latency_mapping
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
node_to_latency_mapping = get_node_to_latency_mapping(traced)
devices = [Device("dev_0", 200, 0), Device("dev_1", 200, 1)]
partitioner = Partitioner()
partitioner_config = PartitionerConfig(devices)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
self.assertEqual(traced(a), module_with_submodules(a))
partitions = partitioner.partitions
partition_to_latency_mapping = get_partition_to_latency_mapping(
partitions, node_to_latency_mapping
)
for p in partition_to_latency_mapping:
if p.partition_id == 0:
assert partition_to_latency_mapping[p] == (128.0, 80.0, 160.0)
else:
assert partition_to_latency_mapping[p] == (16.0, 32.0, 32.0)
transfer_rate_bytes_per_sec = 2
critical_path_latency_sec = get_latency_of_partitioned_graph(
partitions, partition_to_latency_mapping, transfer_rate_bytes_per_sec
)
assert critical_path_latency_sec == 208.0
def test_cost_aware_partition(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
add_1 = a + torch.rand(4)
add_2 = add_1 + torch.rand(4)
linear_1 = self.linear(add_1)
add_3 = add_2 + torch.rand(4)
add_4 = add_2 + linear_1
add_5 = add_3 + add_4
return add_5
def get_node_to_latency_mapping(fx_module: GraphModule):
node_to_latency_mapping: Dict[Node, NodeLatency] = {}
for node in fx_module.graph.nodes:
if node.op not in {"output", "placeholder", "get_attr"}:
if node.size_bytes.total_size == node.size_bytes.output_size:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, 1
)
else:
node_to_latency_mapping[node] = NodeLatency(
node.size_bytes.total_size, node.size_bytes.output_size
)
return node_to_latency_mapping
m = MyModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
devices = [
Device("dev_0", 125, 0),
Device("dev_1", 125, 1),
Device("dev_2", 125, 2),
Device("dev_3", 125, 3),
]
node_to_latency_mapping = get_node_to_latency_mapping(traced)
partitioner_config = PartitionerConfig(
devices,
mode=PartitionMode.cost_aware,
transfer_rate_bytes_per_sec=2,
node_to_latency_mapping=node_to_latency_mapping,
)
partitioner = Partitioner()
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(traced(a), module_with_submodules(a))
partitions = partitioner.partitions
partition_to_latency_mapping = get_partition_to_latency_mapping(
partitions, node_to_latency_mapping
)
critical_path_latency_sec = get_latency_of_partitioned_graph(
partitions,
partition_to_latency_mapping,
partitioner_config.transfer_rate_bytes_per_sec,
)
assert critical_path_latency_sec == 160.0
def test_aot_based_partition(self):
class TestModule(torch.nn.Module):
def __init__(self):
super(TestModule, self).__init__()
self.b = torch.rand(4)
self.c = torch.rand(4)
def forward(self, a):
add_1 = a + self.b
add_2 = self.c + add_1
return add_2
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
node_to_partition_id = {}
partition_to_logical_devices = {}
count = 0
graph_manipulation.get_size_of_all_nodes(traced, [a])
for node in traced.graph.nodes:
if node.op not in {"placeholder", "get_attr", "output"}:
node_to_partition_id[node] = count
partition_to_logical_devices[count] = [0]
count += 1
devices = [Device("dev_0", 200, 0)]
partitioner_config = PartitionerConfig(
devices=devices,
mode=PartitionMode.aot_based,
node_to_partition_mapping=node_to_partition_id,
partition_to_logical_device_mapping=partition_to_logical_devices,
)
partitioner = Partitioner()
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
dag = ret.dag
self.assertEqual(module_with_submodules(a), traced(a))
for node in dag.nodes:
assert node.size_bytes == 48
assert node.logical_device_ids == [0]
def test_replace_target_nodes_with(self):
class testModule(torch.nn.Module):
def forward(self, a, b):
return a + b
m = testModule()
traced = symbolic_trace(m)
input1 = torch.randn(1)
input2 = torch.randn(1)
assert (input1 + input2) == traced(input1, input2)
graph_manipulation.replace_target_nodes_with(
fx_module=traced,
old_op="call_function",
old_target=operator.add,
new_op="call_function",
new_target=operator.mul,
)
assert (input1 * input2) == traced(input1, input2)
def test_saturate_host(self):
class TestModule(torch.nn.Module):
def __init__(self):
super(TestModule, self).__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a):
add_1 = a + torch.rand(4)
add_2 = add_1 + torch.rand(4)
linear_1 = self.linear(add_1)
add_3 = add_2 + linear_1
add_4 = add_2 + add_3
return add_4
m = TestModule()
traced = symbolic_trace(m)
a = torch.rand(4)
graph_manipulation.get_size_of_all_nodes(traced, [a])
devices = [
Device("dev_0", 200, 0),
Device("dev_1", 200, 1),
Device("dev_2", 100, 2),
Device("dev_3", 100, 3),
Device("dev_4", 200, 4),
Device("dev_5", 100, 5),
]
partitioner = Partitioner()
# Without host saturation, the model will be split into two partitions.
# dev_0 holds partition 0 of 192 bytes and dev_1 holds partition 1 of 48 bytes.
partitioner_config = PartitionerConfig(devices, saturate_host=True)
ret = partitioner.partition_graph(traced, m, partitioner_config)
module_with_submodules = ret.module_with_submodules
self.assertEqual(traced(a), module_with_submodules(a))
partitions = partitioner.partitions
self.assertEqual(len(partitions), 2)
# With host saturation, partition 1 will be replicated to dev_4, and partition 2
# will be replicated to dev_2.
self.assertEqual(partitions[0].logical_device_ids, [0, 4])
self.assertEqual(partitions[1].logical_device_ids, [1, 2])
@skipIfNoTorchVision
def test_conv_bn_fusion(self):
rn18 = resnet18().eval()
traced = symbolic_trace(rn18)
fused = optimization.fuse(traced)
self.assertTrue(
all(not isinstance(m, torch.nn.BatchNorm2d) for m in fused.modules())
)
N, C, H, W = 20, 3, 224, 224
inp = torch.randn(N, C, H, W)
self.assertEqual(fused(inp), rn18(inp))
def test_conv_bn_fusion_not_running_state(self):
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
self.conv = torch.nn.Conv2d(32, 64, 3, stride=2)
self.bn = torch.nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
model = M().eval()
traced = symbolic_trace(model)
fused = optimization.fuse(traced)
inp = torch.randn([1, 32, 50, 50])
# bn need not be folded in conv
self.assertTrue(
any(isinstance(m, torch.nn.BatchNorm2d) for m in fused.modules())
)
self.assertEqual(fused(inp), model(inp))
def test_call_to_assert_no_msg(self):
class M(torch.nn.Module):
def forward(self, a, b):
assert a == b
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
traced(3, 3)
with self.assertRaisesRegex(AssertionError, ""):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_meta_tracer(self):
class MetaTracerTestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.emb = torch.nn.Embedding(num_embeddings=42, embedding_dim=16)
self.layernorm = torch.nn.LayerNorm(16)
def forward(self, x):
emb = self.emb(x)
emb = emb + torch.arange(emb.shape[-1], dtype=torch.float, device=emb.device)
lol = self.layernorm(emb)
return torch.relu(lol) if lol.shape[0] < 30 else torch.sigmoid(lol)
mttm = MetaTracerTestModule()
for BS in [15, 35]:
x = torch.zeros(BS, dtype=torch.long).random_(42)
meta_args = {'x' : x.to(device='meta')}
gm = torch.fx.experimental.meta_tracer.symbolic_trace(mttm, meta_args=meta_args)
torch.testing.assert_close(gm(x), mttm(x))
# Test serialization/deserialization
with tempfile.TemporaryDirectory() as tmp_dir:
with open(f'{tmp_dir}/meta_module.pkl', 'wb') as f:
pickle.dump(gm, f)
with open(f'{tmp_dir}/meta_module.pkl', 'rb') as f:
loaded = pickle.load(f)
torch.testing.assert_close(loaded(x), mttm(x))
def test_call_to_assert_with_msg(self):
class M(torch.nn.Module):
def forward(self, a, b):
assert a == b, "test message"
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
traced(3, 3)
with self.assertRaisesRegex(AssertionError, "test message"):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_call_to_assert_with_empty_msg(self):
class M(torch.nn.Module):
def forward(self, a, b):
assert a == b, ""
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
traced(3, 3)
with self.assertRaisesRegex(AssertionError, ""):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_call_to_assert_with_multiline_message(self):
class M(torch.nn.Module):
def forward(self, a, b):
error_msg = """
An error message with
terrible spacing
"""
assert a == b, error_msg
return a + b
m = M()
traced = symbolic_trace_with_rewrite(m)
# Make sure the graph is well-formed
traced.graph.lint()
# Check the IR to make sure there's a call_function node with target == "Assert"
self.assertTrue(
any(
node.op == "call_function" and node.target == torch._assert
for node in traced.graph.nodes
)
)
# Ensure that the assert throws when it's supposed to and doesn't throw when it's not supposed to
error_msg = """
An error message with
terrible spacing
"""
traced(3, 3)
with self.assertRaisesRegex(AssertionError, error_msg):
traced(3, 5)
# Confirm that the output is correct
self.assertEqual(traced(3, 3), m(3, 3))
def test_subgraph_creation(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.param = torch.nn.Parameter(torch.rand(3, 4))
self.linear = torch.nn.Linear(4, 5)
def forward(self, x, y):
z = self.linear(x + self.param).clamp(min=0.0, max=1.0)
w = self.linear(y).clamp(min=0.0, max=1.0)
return z + w
# symbolically trace model
my_module = MyModule()
my_module_traced = symbolic_trace(my_module)
# random mod partitioning
partition_counter = 0
NPARTITIONS = 3
# Add some random meta info to make sure it is kept around.
for node in my_module_traced.graph.nodes:
if node.op != "output":
node.meta["test_meta_info"] = True
def mod_partition(node: Node):
nonlocal partition_counter
partition = partition_counter % NPARTITIONS
partition_counter = (partition_counter + 1) % NPARTITIONS
return partition
# split module in module with submodules
module_with_submodules = split_module(
my_module_traced, my_module, mod_partition
)
# Check that test_meta_info was still on all nodes.
submodules = dict(module_with_submodules.named_modules())
for node in module_with_submodules.graph.nodes:
if node.op == "call_module":
submod = submodules[node.target]
self.assertTrue(isinstance(submod, torch.fx.GraphModule))
for submod_node in submod.graph.nodes:
if submod_node.op != "output":
stored_op = submod_node.meta.get("test_meta_info")
self.assertTrue(stored_op is not None and stored_op)
x = torch.rand(3, 4)
y = torch.rand(3, 4)
orig_out = my_module_traced(x, y)
submodules_out = module_with_submodules(x, y)
self.assertEqual(orig_out, submodules_out)
def test_split_module_kwargs_expansion(self):
class ModuleWithKwargsExpansion(torch.nn.Module):
def forward(self, x, **kwargs):
return x + kwargs['foo']
mod = ModuleWithKwargsExpansion()
traced = torch.fx.symbolic_trace(mod)
seen_getitem = False
def split_callback(n):
nonlocal seen_getitem
split_idx = int(seen_getitem)
if n.target == operator.getitem:
seen_getitem = True
return split_idx
split = split_module(traced, mod, split_callback)
x = torch.randn(5, 3)
foo = torch.randn(5, 3)
torch.testing.assert_allclose(split(x, foo=foo), traced(x, foo=foo))
@skipIfNoTorchVision
def test_subgraph_trivial_resnet(self):
# Smoke test trivially splitting resnet into 1 partition works
# There was an issue before causing submodule names to be aliased
m = resnet18()
traced = symbolic_trace(m)
a = torch.rand(64, 3, 7, 7)
module_with_submodules = split_module(traced, m, lambda node: 0)
module_with_submodules(a)
def test_split_module_default_arg(self):
class ModelToTrace(torch.nn.Module):
def __init__(self):
super().__init__()
self.lin = torch.nn.Linear(512, 512)
def forward(self, x, targets=None):
x = self.lin(x)
if targets is not None:
x = x + targets
return x
mtt = ModelToTrace()
traced = torch.fx.symbolic_trace(mtt, concrete_args={'targets': None})
split = split_module(traced, mtt, lambda node: 0)
x = torch.randn(50, 512)
torch.testing.assert_allclose(split(x), traced(x))
def test_normalize_binary_operators(self):
ops_to_test = {
torch.add,
torch.mul,
torch.sub,
torch.div,
torch.floor_divide,
torch.remainder,
torch.eq,
torch.ne,
torch.lt,
torch.le,
torch.gt,
torch.ge,
}
# Test Tensor/Tensor callsite
for op in ops_to_test:
class WrapperMod(torch.nn.Module):
def forward(self, x, y):
return op(x, y)
traced = symbolic_trace(WrapperMod())
normalized = NormalizeOperators(traced).transform()
x, y = torch.randn(3, 4), torch.randn(3, 4)
torch.testing.assert_close(traced(x, y), normalized(x, y))
self.assertFalse(
any(n.target in ops_to_test for n in normalized.graph.nodes)
)
# Test Tensor/scalar callsite
for op in ops_to_test:
class WrapperMod(torch.nn.Module):
def forward(self, x):
return op(x, 42)
traced = symbolic_trace(WrapperMod())
normalized = NormalizeOperators(traced).transform()
x = torch.randn(3, 4)
torch.testing.assert_close(traced(x), normalized(x))
self.assertFalse(
any(n.target in ops_to_test for n in normalized.graph.nodes)
)
@skipIfNoTorchVision
def test_normalize_args(self):
m = resnet18()
class FunctionalTracer(torch.fx.Tracer):
def is_leaf_module(
self, m: torch.nn.Module, module_qualified_name: str
) -> bool:
# `leaves` contains the set of standard `nn.Modules` that are not
# currently symbolically traceable. Ideally this set would be empty
leaves = set([torch.nn.BatchNorm2d])
return type(m) in leaves
traced = torch.fx.GraphModule(m, FunctionalTracer().trace(m))
input = torch.randn(5, 3, 224, 224)
ref_outs = traced(input)
ShapeProp(traced).propagate(input)
traced = NormalizeArgs(traced).transform()
modules = dict(traced.named_modules())
for node in traced.graph.nodes:
if node.op == "call_function" and node.target != operator.add:
self.assertEqual(len(node.args), 0)
elif node.op == "call_module":
submod_class = modules[node.target].__class__
nn_class = getattr(torch.nn, submod_class.__name__)
if submod_class == nn_class:
self.assertEqual(len(node.args), 0)
traced(input)
self.assertEqual(traced(input), ref_outs)
def test_normalize_modules_exhaustive(self):
"""
Exhaustively test `Node.normalized_arguments` on all standard
torch.nn Module classes
"""
for test_params in module_tests + new_module_tests:
if "constructor" not in test_params:
constructor = getattr(torch.nn, test_params["module_name"])
else:
constructor = test_params["constructor"]
if "constructor_args" not in test_params:
args = ()
else:
args = test_params["constructor_args"]
mod = constructor(*args)
# Skip modules that are not standard `torch.nn`
# instances, including functionals. (functionals
# are tested in test_normalize_args)
if mod.__class__.__name__ not in dir(torch.nn):
continue
if "input_fn" not in test_params:
inputs = torch.randn(test_params["input_size"])
else:
inputs = test_params["input_fn"]()
if not isinstance(inputs, (tuple, list)):
inputs = (inputs,)
params = ", ".join(f"v{i}" for i in range(len(inputs)))
# Generate a class to wrap this standard `nn.Module` instance
test_classname = f"Test{mod.__class__.__name__}"
test_mod_code = f"""
class {test_classname}(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
def forward(self, {params}):
return self.mod({params})
"""
gbls = {"torch": torch}
exec(test_mod_code, gbls)
test_instance = gbls[test_classname](mod)
traced = symbolic_trace(test_instance)
# Use `Node.normalized_arguments` to get a new set of arguments
# to feed to the Module. Then, rewrite the node to only take
# in those arguments as kwargs
modules = dict(traced.named_modules())
for node in traced.graph.nodes:
if node.op == "call_module":
submod_class = modules[node.target].__class__
nn_class = getattr(torch.nn, submod_class.__name__)
if submod_class == nn_class:
normalized_args = node.normalized_arguments(traced)
normalized_args2 = normalize_module(
traced, node.target, node.args, node.kwargs
)
assert normalized_args == normalized_args2
assert normalized_args
node.args = normalized_args.args
node.kwargs = normalized_args.kwargs
traced.recompile()
# These Modules have an RNG in their forward, so testing
# correctness by comparing outputs is not correct. Skip that
# check for these
stochastic_modules = {"FractionalMaxPool2d", "FractionalMaxPool3d", "RReLU"}
if mod.__class__.__name__ not in stochastic_modules:
self.assertEqual(traced(*inputs), mod(*inputs))
traced = NormalizeArgs(symbolic_trace(test_instance)).transform()
modules = dict(traced.named_modules())
for node in traced.graph.nodes:
if node.op == "call_module":
submod_class = modules[node.target].__class__
nn_class = getattr(torch.nn, submod_class.__name__)
if submod_class == nn_class:
self.assertEqual(len(node.args), 0)
def test_normalize_args_preserve_meta(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a):
return torch.add(a, 3)
m = MyModule()
traced = symbolic_trace(m)
for node in traced.graph.nodes:
if node.op == "call_function" and node.target == torch.add:
node.meta["my_key"] = 7
break
else:
self.fail("Didn't find call_function torch.add")
input = torch.randn(2, 3)
ShapeProp(traced).propagate(input)
traced = NormalizeArgs(traced).transform()
for node in traced.graph.nodes:
if node.op == "call_function" and node.target == torch.add:
self.assertTrue("my_key" in node.meta)
self.assertEqual(node.meta["my_key"], 7)
break
else:
self.fail("Didn't find call_function torch.add")
def test_normalize_args_perserve_type(self):
class MyModule(torch.nn.Module):
def forward(self, a: List[torch.Tensor]):
return torch.add(a[0], a[1])
m = MyModule()
traced = symbolic_trace(m)
traced = NormalizeArgs(traced).transform()
for node in traced.graph.nodes:
if node.op == "placeholder":
self.assertEqual(node.type, List[torch.Tensor])
@skipIfNoTorchVision
def test_annotate_returns_with_schema(self):
m = resnet18()
traced_modules = symbolic_trace(m)
traced_modules_annotated = AnnotateTypesWithSchema(traced_modules).transform()
for node in traced_modules_annotated.graph.nodes:
if node.type is None:
check = (node.op, node.target)
self.assertIn(
check,
{
("placeholder", "x"),
("call_module", "maxpool"),
("call_function", operator.add),
("call_function", torch.flatten),
("output", "output"),
}
)
# Smoke test torchscript compilation since now we're emitting type annotations
torch.jit.script(traced_modules_annotated)
class FunctionalTracer(torch.fx.Tracer):
def is_leaf_module(
self, m: torch.nn.Module, module_qualified_name: str
) -> bool:
# `leaves` contains the set of standard `nn.Modules` that are not
# currently symbolically traceable. Ideally this set would be empty
leaves = set([torch.nn.BatchNorm2d])
return type(m) in leaves
traced_functionals = torch.fx.GraphModule(m, FunctionalTracer().trace(m))
traced_functionals_annotated = AnnotateTypesWithSchema(
traced_functionals
).transform()
for node in traced_functionals_annotated.graph.nodes:
if node.type is None:
check = (node.op, node.target)
excluded_nodes = {
("placeholder", "x"),
# Return type differs based on boolean dispatch :(
("call_function", torch.nn.functional.max_pool2d),
("output", "output"),
}
# AnnotateTypesWithSchema doesn't work with bound C++ functions
if not isinstance(node.target, BuiltinFunctionType):
self.assertIn(check, excluded_nodes)
# Smoke test torchscript compilation since now we're emitting type annotations
torch.jit.script(traced_functionals_annotated)
def test_subgraph_uniquename(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(4, 4)
def forward(self, a, b, c, d):
add_1 = a + b
add_2 = add_1 + c
linear_1 = self.linear(add_1)
add_3 = add_2 + d
add_4 = add_2 + linear_1
add_5 = add_3 + add_4
return add_5
a, b, c, d = torch.ones(4), torch.ones(4), torch.ones(4), torch.ones(4)
mm = MyModule()
traced = symbolic_trace(mm)
def split_cb(node: torch.fx.Node):
if node.name == "a" or node.name == "b" or node.name == "add":
return 0
else:
return 1
module_with_submodule = split_module(traced, mm, split_cb)
self.assertEqual(module_with_submodule(a, b, c, d), traced(a, b, c, d))
def test_split_qualname_mapping(self):
d_hid = 4
class ExampleCode(torch.nn.Module):
def __init__(self):
super().__init__()
self.mm_param = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.mm_param2 = torch.nn.Parameter(torch.randn(d_hid, d_hid))
self.lin = torch.nn.Linear(d_hid, d_hid)
def forward(self, x):
x = torch.mm(x, self.mm_param)
x = torch.relu(x)
x = torch.mm(x, self.mm_param)
x = self.lin(x)
x = torch.relu(x)
x = torch.mm(x, self.mm_param2)
x = self.lin(x)
return x
my_module = ExampleCode()
my_module_traced = symbolic_trace(my_module)
part_idx = 0
def split_callback(n : torch.fx.Node):
nonlocal part_idx
if (n.op, n.target) == ('call_module', 'lin'):
part_idx += 1
return part_idx
# split module in module with submodules
qualname_map : Dict[str, str] = {}
module_with_submodules = split_module(
my_module_traced, my_module, split_callback, qualname_map
)
expected_qualname_map = {
'submod_1.lin': 'lin', 'submod_2.lin': 'lin'
}
self.assertEqual(qualname_map, expected_qualname_map)
def test_traceable_function_with_nonstandard_name(self):
def foo(x):
return torch.relu(x)
traced = symbolic_trace_with_rewrite(foo)
def test_to_folder(self):
class Test(torch.nn.Module):
def __init__(self):
super(Test, self).__init__()
self.W = torch.nn.Parameter(torch.randn(2))
self.seq = torch.nn.Sequential(torch.nn.BatchNorm1d(2, 2))
self.linear = torch.nn.Linear(2, 2)
self.attr = torch.randn(2)
self.register_buffer("attr2", torch.randn(2))
self.register_buffer("attr3", torch.ones(2, dtype=torch.int32))
def forward(self, x):
return self.linear(self.seq(self.W + self.attr + self.attr2 + self.attr3 + x))
mod = symbolic_trace(Test())
module_name = "Foo"
import tempfile
from pathlib import Path
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_dir = Path(tmp_dir)
mod.to_folder(tmp_dir, module_name)
# Recipe taken from here:
# https://docs.python.org/3/library/importlib.html#importing-a-source-file-directly
import importlib.util
spec = importlib.util.spec_from_file_location(
module_name, tmp_dir / "__init__.py"
)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
t = torch.randn(2, 2)
self.assertEqual(module.Foo()(t), mod(t))
def test_fetch(self):
attrs_for_lowering: Dict[str, List[str]] = {
"torch.nn.modules.conv.Conv2d": [
"weight",
"bias",
"kernel_size",
"stride",
"padding",
"dilation",
"groups",
"padding_mode",
],
"torch.nn.modules.batchnorm.BatchNorm2d": [
"weight",
"bias",
"running_mean",
"running_var",
"eps",
],
}
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = torch.nn.Conv2d(3, 3, 2)
self.bn = torch.nn.BatchNorm2d(3)
def forward(self, a):
a = self.conv(a)
a += a
return self.bn(a)
mod = TestModule()
traced = symbolic_trace(mod)
lift_lowering_attrs_to_nodes(traced)
for node in traced.graph.nodes:
if node.op == "call_module":
assert hasattr(node, "attrs_for_lowering")
para_list = attrs_for_lowering[node.attrs_for_lowering["name"]]
# node.attrs_for_lowering has an addition field of class name
assert len(para_list) + 1 == len(node.attrs_for_lowering)
for p_name in para_list:
assert p_name in node.attrs_for_lowering
def test_merge_matmuls(self):
"""
A collection of test cases for torch.fx.experimental.merge_matmul,
a graph transformation that merges matrix multiplication operations.
"""
# Utility function for counting matmuls for test assertions.
def _count_matmuls(mod):
gm = torch.fx.symbolic_trace(mod)
num_matmuls = 0
for node in gm.graph.nodes:
if node.target == torch.matmul:
num_matmuls += 1
return num_matmuls
# Simple test case in which there are two matmuls of the same size to merge.
class SimpleMergeMatmulModule(torch.nn.Module):
def __init__(self, rhs):
super().__init__()
self.rhs = rhs
def forward(self, x, y):
a = torch.matmul(x, self.rhs)
b = torch.matmul(y, self.rhs)
return a + b
# Initialize inputs.
a = torch.randn(3, 3)
b = torch.randn(3, 3)
# Initialize RHS for matmuls.
rhs = torch.randn(3, 4)
# Construct SimpleMergeMatmulModule and call merge_matmul on it.
module = SimpleMergeMatmulModule(rhs)
opt_module = merge_matmul.merge_matmul(module)
# Numerical correctness check.
before = module(a, b)
after = opt_module(a, b)
before.allclose(after)
# Basic graph structure check; original module should have 2 matmuls
# and optimized module should have 1.
self.assertEqual(_count_matmuls(module), 2)
self.assertEqual(_count_matmuls(opt_module), 1)
# Test case in which there are multiple matmuls of different sizes to merge.
class FiveMergeMatmulModule(torch.nn.Module):
def __init__(self, rhs):
super().__init__()
self.rhs = rhs
def forward(self, a, b, c, d, e):
s = torch.tensor([])
matmuls = []
# For some reason using a list comprehension or for-loop for this
# doesn't work.
matmuls.append(torch.matmul(a, self.rhs))
matmuls.append(torch.matmul(b, self.rhs))
matmuls.append(torch.matmul(c, self.rhs))
matmuls.append(torch.matmul(d, self.rhs))
matmuls.append(torch.matmul(e, self.rhs))
for m in matmuls:
s += torch.sum(m)
return s
# Initialize inputs.
inputs = [torch.randn(2 * i + 1, 5) for i in range(5)]
# Initialize RHS.
rhs = torch.randn(5, 4)
# Construct FiveMergeMatmulModule and call merge_matmul on it.
module = FiveMergeMatmulModule(rhs)
opt_module = merge_matmul.merge_matmul(module)
# Numerical correctness check.
before = module(*inputs)
after = opt_module(*inputs)
before.allclose(after)
# Basic graph structure check; original module should have len(inputs) matmuls
# and optimized module should have 1.
self.assertEqual(_count_matmuls(module), len(inputs))
self.assertEqual(_count_matmuls(opt_module), 1)
# Simple test case in which two matmuls cannot be merged due to a data dependency between
# the LHS operands.
class UnmergeableMatmulModule(torch.nn.Module):
def __init__(self, rhs):
super().__init__()
self.rhs = rhs
def forward(self, x):
a = torch.matmul(x, self.rhs)
a_abs = torch.abs(a)
b = torch.matmul(a_abs.transpose(1, 0), self.rhs)
return b
# Initialize inputs.
a = torch.randn(3, 3)
# Initialize RHS for matmuls.
rhs = torch.randn(3, 4)
# Construct UnmergeableMatmulModule and call merge_matmul on it.
module = UnmergeableMatmulModule(rhs)
opt_module = merge_matmul.merge_matmul(module)
# Numerical correctness check.
before = module(a)
after = opt_module(a)
before.allclose(after)
# Basic graph structure check; the number of matrix multiplcations should not have changed.
self.assertEqual(_count_matmuls(module), 2)
self.assertEqual(_count_matmuls(opt_module), 2)
def test_type_matches(self):
should_be_equal = [
(int, type(5)),
(numbers.Number, type(5)),
(numbers.Number, type(5.0)),
(int, type(torch.float)),
(Union[int, float], type(5)),
(Union[int, float], type(5.0)),
(List[int], type(5)),
(List[int], create_type_hint([int, int])),
(List[int], create_type_hint((int, int))),
(List[torch.Tensor], create_type_hint([torch.Tensor, torch.Tensor])),
(
List[torch.Tensor],
create_type_hint([torch.nn.Parameter, torch.nn.Parameter]),
),
(torch.Tensor, torch.nn.Parameter),
(List[torch.Tensor], create_type_hint([torch.nn.Parameter, torch.Tensor])),
(List[torch.Tensor], create_type_hint([torch.Tensor, torch.nn.Parameter])),
(List[torch.Tensor], create_type_hint((torch.Tensor, torch.Tensor))),
(
List[torch.Tensor],
create_type_hint((torch.nn.Parameter, torch.nn.Parameter)),
),
(torch.Tensor, torch.nn.Parameter),
(List[torch.Tensor], create_type_hint((torch.nn.Parameter, torch.Tensor))),
(List[torch.Tensor], create_type_hint((torch.Tensor, torch.nn.Parameter))),
(Optional[List[torch.Tensor]], List[torch.Tensor]),
(Optional[List[int]], List[int]),
]
for sig_type, arg_type in should_be_equal:
self.assertTrue(type_matches(sig_type, arg_type))
should_fail = [
(int, float),
(Union[int, float], str),
(List[torch.Tensor], List[int]),
]
for sig_type, arg_type in should_fail:
self.assertFalse(type_matches(sig_type, arg_type))
@skipIfNoMkldnn
def test_optimize_for_inference_cpu(self):
import torch.nn as nn
class Foo(nn.Module):
def __init__(self):
super().__init__()
layers = []
layers2 = []
for _ in range(10):
layers.append(nn.Conv2d(3, 3, 1))
layers.append(nn.BatchNorm2d(3))
layers.append(nn.ReLU())
layers2.append(nn.Conv2d(3, 3, 1))
layers2.append(nn.BatchNorm2d(3))
layers2.append(nn.ReLU())
self.model = nn.Sequential(*layers)
self.model2 = nn.Sequential(*layers2)
def forward(self, x):
return self.model(x) + self.model2(x)
N, C, H, W, = (
1,
3,
224,
224,
)
inp = torch.randn(N, C, H, W)
with torch.no_grad():
model = Foo().eval()
optimized_model = optimization.optimize_for_inference(model)
torch.testing.assert_close(model(inp), optimized_model(inp))
optimized_model2 = optimization.optimize_for_inference(
model, pass_config={"remove_dropout": False}
)
torch.testing.assert_close(model(inp), optimized_model2(inp))
@skipIfNoTorchVision
@skipIfNoMkldnn
def test_optimize_for_inference_cpu_torchvision(self):
models = [
torchvision.models.resnet18,
torchvision.models.resnet50,
torchvision.models.densenet121,
torchvision.models.shufflenet_v2_x1_0,
torchvision.models.vgg16,
torchvision.models.mobilenet_v2,
torchvision.models.mnasnet1_0,
torchvision.models.resnext50_32x4d,
]
with torch.no_grad():
for model_type in models:
model = model_type()
C, H, W, = (
3,
224,
224,
)
inp = torch.randn(3, C, H, W)
model(inp)
model.eval()
inp = torch.randn(1, C, H, W)
heuristic = optimization.gen_mkl_autotuner(inp, iters=0, warmup=0)
optimized_model = optimization.optimize_for_inference(model)
orig_out = model(inp)
new_out = optimized_model(inp)
torch.testing.assert_close(orig_out, new_out)
class TestNormalizeOperators(JitTestCase):
@onlyCPU
@ops(op_db, allowed_dtypes=(torch.float,))
def test_normalize_operator_exhaustive(self, device, dtype, op):
# These ops currently don't trace in FX for various reasons (i.e. they take a list of tensors)
fx_fail = {"cat", "stack", "hstack", "vstack", "dstack", "linalg.multi_dot"}
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
if isinstance(op.op, torch._ops.OpOverload):
self.skipTest("normalize operator doesn't work on torch.ops")
for sample_input in sample_inputs_itr:
unsupported_arg_type = False
arg_values = [sample_input.input] + list(sample_input.args)
kwarg_values = sample_input.kwargs
arg_types = []
kwarg_types = {}
def jit_infer_type(v):
inferred_arg_type = torch._C._jit_try_infer_type(v)
assert inferred_arg_type.success()
t = _torchscript_type_to_python_type(inferred_arg_type.type())
return t
for v in arg_values:
if isinstance(v, torch.Tensor):
arg_types.append(type(v))
else:
if isinstance(v, complex):
# Complex type not supported in FX
unsupported_arg_type = True
arg_types.append(jit_infer_type(v))
for k, v in kwarg_values.items():
if isinstance(v, torch.Tensor):
kwarg_types[k] = type(v)
else:
if isinstance(v, complex):
# Complex type not supported in FX
unsupported_arg_type = True
kwarg_types[k] = jit_infer_type(v)
if unsupported_arg_type:
continue
# Test normalize_function by itself
ref_out = op.op(*arg_values, **kwarg_values)
norm_args_and_kwargs = normalize_function(
op.op, arg_values, kwarg_values, arg_types, kwarg_types
)
if norm_args_and_kwargs is None:
raise RuntimeError(
"""
FX failed to normalize op - add the op to the op_skip list.
A common reason is if your OpInfo was implemented with a lambda
- otherwise, file an issue
"""
)
test_out = op.op(*norm_args_and_kwargs.args, **norm_args_and_kwargs.kwargs)
self.assertEqual(test_out, ref_out)
# Test normalized_arguments as part of FX
if op.name in fx_fail:
continue
param_names = []
param_values = []
fx_args = []
for idx, v in enumerate(arg_values):
if isinstance(v, torch.Tensor):
param_names.append(f"arg_{idx}")
param_values.append(v)
fx_args.append(param_names[-1])
else:
fx_args.append(f"{repr(v)}")
for k, v in kwarg_values.items():
if isinstance(v, torch.Tensor):
param_names.append(k)
param_values.append(v)
fx_args.append(f"{k} = {k}")
else:
fx_args.append(f"{k} = {repr(v)}")
code = f"""
class TestModule(torch.nn.Module):
def forward(self, {', '.join(param_names)}):
return torch.{op.name}({', '.join(fx_args)})
"""
g = {"torch": torch, "inf": math.inf}
exec(code, g)
TestModule = g["TestModule"]
m = TestModule()
traced = torch.fx.symbolic_trace(m)
ref_out = traced(*param_values)
for node in traced.graph.nodes:
if node.op == "call_function":
normalized_args = node.normalized_arguments(
traced, arg_types, kwarg_types
)
assert normalized_args
node.args = normalized_args.args
node.kwargs = normalized_args.kwargs
traced.recompile()
test_out = traced(*param_values)
self.assertEqual(test_out, ref_out)
def test_normalize_quantized_eb(self):
target = torch.ops.quantized.embedding_bag_byte_rowwise_offsets
args = (
torch.empty((2, 3), dtype=torch.uint8),
torch.empty((2,), dtype=torch.int64),
torch.empty((2,), dtype=torch.int64),
)
norm_args_and_kwargs = normalize_function(
target, args, normalize_to_only_use_kwargs=True
)
self.assertTrue(norm_args_and_kwargs is not None)
self.assertEqual(
set(norm_args_and_kwargs.kwargs.keys()),
{
"weight",
"indices",
"offsets",
"scale_grad_by_freq",
"mode",
"pruned_weights",
"per_sample_weights",
"compressed_indices_mapping",
"include_last_offset",
},
)
self.assertEqual(norm_args_and_kwargs.args, tuple())
def test_normalize_args_op_overload(self):
for target in [torch.ops.aten.resize_as_.default, torch.ops.aten.resize_as_]:
inp1 = torch.rand([1])
inp2 = torch.rand([4])
args, kwargs = normalize_function(target, (inp1,), {"the_template": inp2}, normalize_to_only_use_kwargs=True)
self.assertIs(kwargs["input"], inp1)
self.assertIs(kwargs["the_template"], inp2)
instantiate_device_type_tests(TestNormalizeOperators, globals())
if __name__ == "__main__":
run_tests()
|