1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
|
# Owner(s): ["module: masked operators"]
import torch
from torch.testing._internal.common_utils import (
TestCase,
run_tests,
make_tensor,
parametrize,
instantiate_parametrized_tests,
)
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
ops,
)
from torch.testing._internal.common_methods_invocations import (
SampleInput,
binary_ufuncs,
reduction_ops,
unary_ufuncs,
)
from torch.masked import as_masked_tensor, masked_tensor, _combine_input_and_mask
from torch.masked.maskedtensor.core import _masks_match, _tensors_match
from torch.masked.maskedtensor.unary import NATIVE_INPLACE_UNARY_FNS, NATIVE_UNARY_FNS, UNARY_NAMES
from torch.masked.maskedtensor.binary import NATIVE_BINARY_FNS, NATIVE_INPLACE_BINARY_FNS, BINARY_NAMES
from torch.masked.maskedtensor.reductions import REDUCE_NAMES
def _compare_mt_t(mt_result, t_result, rtol=1e-05, atol=1e-05):
mask = mt_result.get_mask()
mt_result_data = mt_result.get_data()
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
mask = mask.to_dense()
if mt_result_data.layout in {torch.sparse_coo, torch.sparse_csr}:
mt_result_data = mt_result_data.to_dense()
a = mt_result_data.detach().masked_fill_(~mask, 0)
b = t_result.detach().masked_fill_(~mask, 0)
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
raise ValueError("The data in MaskedTensor a and Tensor b do not match")
def _compare_mts(mt1, mt2, rtol=1e-05, atol=1e-08):
mt_data1 = mt1.get_data()
mt_data2 = mt2.get_data()
if mt_data1.layout != mt_data2.layout:
raise ValueError("mt1's data and mt2's data do not have the same layout. "
f"mt1.get_data().layout = {mt_data1.layout} while mt2.get_data().layout = {mt_data2.layout}")
mask = mt1.get_mask()
mask2 = mt2.get_mask()
if not _masks_match(mt1, mt2):
raise ValueError("mt1 and mt2 must have matching masks")
if mask.layout != mask2.layout:
raise ValueError("mt1's mask and mt2's mask do not have the same layout. "
f"mt1.get_mask().layout = {mask.layout} while mt2.get_mask().layout = {mask2.layout}")
if mask.layout in {torch.sparse_coo, torch.sparse_csr}:
mask = mask.to_dense()
if mt_data1.layout in {torch.sparse_coo, torch.sparse_csr}:
mt_data1 = mt_data1.to_dense()
mt_data2 = mt_data2.to_dense()
a = mt_data1.detach().masked_fill_(~mask, 0)
b = mt_data2.detach().masked_fill_(~mask, 0)
if not _tensors_match(a, b, exact=False, rtol=rtol, atol=atol):
raise ValueError("The data in MaskedTensor mt1 and MaskedTensor mt2 do not match")
def _make_tensor_mask(shape, device):
return make_tensor(
shape, device=device, dtype=torch.bool, low=0, high=1, requires_grad=False
)
def _create_random_mask(shape, device):
return torch.randint(0, 2, shape, device=device).bool()
def _generate_sample_data(
device="cpu", dtype=torch.float, requires_grad=True, layout=torch.strided
):
assert layout in {
torch.strided,
torch.sparse_coo,
torch.sparse_csr,
}, "Layout must be strided/sparse_coo/sparse_csr"
shapes = [
[],
[2],
[3, 5],
[3, 2, 1, 2],
]
inputs = []
for s in shapes:
data = make_tensor(s, device=device, dtype=dtype, requires_grad=requires_grad) # type: ignore[arg-type]
mask = _make_tensor_mask(s, device)
if layout == torch.sparse_coo:
mask = mask.to_sparse_coo().coalesce()
data = data.sparse_mask(mask).requires_grad_(requires_grad)
elif layout == torch.sparse_csr:
if data.ndim != 2 and mask.ndim != 2:
continue
mask = mask.to_sparse_csr()
data = data.sparse_mask(mask)
inputs.append(SampleInput(data, kwargs={"mask": mask}))
return inputs
def _fix_fn_name(fn_name):
if fn_name[-1] == "_":
fn_name = fn_name[:-1]
return fn_name
class TestBasics(TestCase):
def test_invalid_tensor_inputs(self, device):
data = torch.randn((3, 4), device=device)
mask = _create_random_mask((3, 4), device=device)
mt = masked_tensor(data, mask)
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
masked_tensor(mt, mask)
with self.assertRaisesRegex(TypeError, "data must be a Tensor"):
masked_tensor(0, mask)
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
masked_tensor(data, mt)
with self.assertRaisesRegex(TypeError, "mask must be a Tensor"):
masked_tensor(data, 0)
def test_diff_layouts(self, device):
data = torch.randn((3, 4), device=device).to_sparse_coo()
mask = _create_random_mask((3, 4), device=device)
with self.assertRaisesRegex(TypeError, "data and mask must have the same layout"):
masked_tensor(data, mask)
def test_diff_dim(self, device):
data = torch.randn((3, 4, 5), device=device)
mask = _create_random_mask((3, 4), device=device)
with self.assertRaisesRegex(ValueError, "data.dim\\(\\) must equal mask.dim\\(\\)"):
masked_tensor(data, mask)
def test_diff_sizes(self, device):
data = torch.randn((3, 4), device=device)
mask = _create_random_mask((3, 3), device=device)
with self.assertRaisesRegex(ValueError, "data.size\\(\\) must equal mask.size\\(\\)"):
masked_tensor(data, mask)
def test_grad_warning(self, device):
data = torch.randn((3, 4), device=device, requires_grad=True)
mask = _create_random_mask((3, 4), device=device)
msg = "It is not recommended to create a MaskedTensor with a tensor that requires_grad."
with self.assertWarnsRegex(UserWarning, msg):
mt = masked_tensor(data, mask)
def test_add(self, device):
data = torch.arange(5.0, device=device)
mask = torch.tensor([True, True, False, True, False], device=device)
m0 = masked_tensor(data, mask)
m1 = masked_tensor(data, ~mask)
with self.assertRaisesRegex(ValueError, "Input masks must match."):
m0 + m1
_compare_mts(m0 + m0, masked_tensor(torch.tensor([0., 2, 0, 6, 0], device=device), mask))
def test_softmax(self, device):
data = torch.randn((3, 4), device=device) * 0.1
mask = torch.tensor(
[
[True, True, True, False],
[False, True, False, True],
[True, True, False, False],
],
device=device
)
mt = masked_tensor(data, mask, requires_grad=True)
masked_res = torch.softmax(mt, -1)
masked_res.sum().backward()
xinf = data.masked_fill(~mask, float("-inf")).detach().clone().requires_grad_()
tensor_res = torch.softmax(xinf, -1)
tensor_res.sum().backward()
_compare_mt_t(masked_res, tensor_res)
_compare_mt_t(mt.grad, xinf.grad, atol=1e-06)
def test_where(self, device):
data = torch.tensor([-10.0, -5, 0, 5, 10, 50, 60, 70, 80, 90, 100], device=device)
mask = data < 0
mx = masked_tensor(data, mask, requires_grad=True)
my = masked_tensor(torch.ones_like(data), ~mask, requires_grad=True)
masked_res = torch.where(mask, torch.exp(mx), my)
masked_res.sum().backward()
x = data.detach().clone().requires_grad_()
y = torch.ones_like(x, device=device, requires_grad=True)
tensor_res = torch.where(mask, torch.exp(x), y)
tensor_res.sum().backward()
_compare_mt_t(masked_res, tensor_res)
_compare_mt_t(mx.grad, x.grad)
_compare_mt_t(my.grad, y.grad)
def test_to_sparse(self, device):
for sample in _generate_sample_data(device=device):
data = sample.input
mask = sample.kwargs["mask"]
mt = masked_tensor(data.clone().detach(), mask, requires_grad=True)
sparse_mt = mt.to_sparse()
data.to_sparse().to_dense().sum().backward()
sparse_mt.to_dense().sum().backward()
_compare_mt_t(sparse_mt, data)
_compare_mt_t(mt.grad, data.grad)
def test_to_dense(self, device):
samples = _generate_sample_data(
device=device,
layout=torch.sparse_coo
) + _generate_sample_data(device=device, layout=torch.sparse_csr)
for sample in samples:
data = sample.input
mask = sample.kwargs["mask"]
mt = masked_tensor(data, mask, requires_grad=True)
dense_data = data.to_dense().detach().clone().requires_grad_(True)
dense_mt = mt.to_dense()
dense_data.sum().backward()
dense_mt.sum().backward()
_compare_mt_t(dense_mt, dense_data)
_compare_mt_t(mt.grad.to_dense(), dense_data.grad)
def test_to_dense_and_sparse_coo(self, device):
for sample in _generate_sample_data(device=device, layout=torch.strided):
data = sample.input
mask = sample.kwargs["mask"]
ms = mask.to_sparse_coo().coalesce()
mt = masked_tensor(data, mask, requires_grad=True)
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
converted = mt.to_sparse().to_dense()
converted.sum().backward()
converted2 = mts.to_dense()
converted2.sum().backward()
_compare_mts(converted, converted2)
_compare_mts(mt.grad, mts.grad.to_dense())
def test_to_dense_and_sparse_csr(self, device):
for sample in _generate_sample_data(device=device, layout=torch.strided):
data = sample.input
mask = sample.kwargs["mask"]
if data.ndim != 2:
continue
ms = mask.to_sparse_csr()
mt = masked_tensor(data, mask, requires_grad=True)
mts = masked_tensor(data.sparse_mask(ms), ms, requires_grad=True)
converted = mt.to_sparse_csr().to_dense()
converted.sum().backward()
converted2 = mts.to_dense()
converted2.sum().backward()
_compare_mts(converted, converted2)
_compare_mts(mt.grad, mts.grad.to_dense())
def test_invalid_sparse_layout(self, device):
data = torch.randn((3, 4), device=device).to_sparse_csc()
mask = _create_random_mask((3, 4), device=device).to_sparse_csc()
with self.assertRaisesRegex(TypeError, "data layout of torch.sparse_csc is not supported"):
masked_tensor(data, mask)
def test_invalid_sparse_coo_values(self, device):
v = torch.tensor([3, 4, 5], dtype=torch.float32)
i1 = torch.tensor([[0, 1, 1], [2, 0, 2]])
i2 = torch.tensor([[0, 1, 1], [2, 1, 2]])
t = torch.sparse_coo_tensor(i1, v, (2, 4), device=device)
mask = torch.sparse_coo_tensor(i2, torch.tensor([True, True, True]), (2, 4), device=device)
msg = "data and mask are both sparse COO tensors but do not have the same indices."
with self.assertRaisesRegex(ValueError, msg):
masked_tensor(t, mask)
def test_invalid_sparse_csr_values(self, device):
crow_indices1 = [0, 2, 3]
crow_indices2 = [0, 1, 3]
col_indices1 = [0, 1, 2]
col_indices2 = [1, 2, 3]
values = [2, 3, 4]
mask_values = [True, True, True]
t1 = torch.sparse_csr_tensor(
torch.tensor(crow_indices1, dtype=torch.int64),
torch.tensor(col_indices1, dtype=torch.int64),
torch.tensor(values),
size=(2, 4)
)
mask1 = torch.sparse_csr_tensor(
torch.tensor(crow_indices2, dtype=torch.int64),
torch.tensor(col_indices1, dtype=torch.int64),
torch.tensor(mask_values),
dtype=torch.bool,
size=(2, 4),
)
t2 = torch.sparse_csr_tensor(
torch.tensor(crow_indices2, dtype=torch.int64),
torch.tensor(col_indices1, dtype=torch.int64),
torch.tensor(values),
size=(2, 4),
)
mask2 = torch.sparse_csr_tensor(
torch.tensor(crow_indices2, dtype=torch.int64),
torch.tensor(col_indices2, dtype=torch.int64),
torch.tensor(mask_values),
dtype=torch.bool,
size=(2, 4),
)
msg = "data and mask are both sparse CSR tensors but do not share either crow or col indices."
with self.assertRaisesRegex(ValueError, msg):
masked_tensor(t1, mask1)
with self.assertRaisesRegex(ValueError, msg):
masked_tensor(t2, mask2)
def test_contiguous(self, device):
data = torch.randn((3, 3), device=device)
contiguous_data = data.clone()
mask1 = (contiguous_data > 0).bool()
not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2))
mask2 = (not_contiguous_data > 0).bool()
contiguous_mt = masked_tensor(contiguous_data, mask1)
not_contiguous_mt = masked_tensor(not_contiguous_data, mask2)
contiguous_mt_sparse = masked_tensor(
contiguous_data.to_sparse_coo(), mask1.to_sparse_coo()
)
not_contiguous_mt_sparse = masked_tensor(
not_contiguous_data.to_sparse_coo(), mask2.to_sparse_coo()
)
self.assertEqual(contiguous_data.is_contiguous(), True)
self.assertEqual(not_contiguous_data.is_contiguous(), False)
self.assertEqual(contiguous_mt.is_contiguous(), True)
self.assertEqual(not_contiguous_mt.is_contiguous(), False)
error_msg = "MaskedTensors with sparse data do not have is_contiguous"
for t in [contiguous_mt_sparse, not_contiguous_mt_sparse]:
with self.assertRaisesRegex(ValueError, error_msg):
t.is_contiguous()
with self.assertRaisesRegex(ValueError, error_msg):
t.contiguous()
now_contiguous_mt = not_contiguous_mt.contiguous()
_compare_mts(not_contiguous_mt, now_contiguous_mt)
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
self.assertEqual(now_contiguous_mt.get_data().is_contiguous(), True)
self.assertEqual(now_contiguous_mt.is_contiguous(), True)
class TestUnary(TestCase):
def _get_test_data(self, fn_name):
data = torch.randn(10, 10)
mask = torch.rand(10, 10) > 0.5
fn_name = _fix_fn_name(fn_name)
if fn_name in ["log", "log10", "log1p", "log2", "sqrt"]:
data = data.mul(0.5).abs()
if fn_name in ["rsqrt"]:
data = data.abs() + 1 # Void division by zero
if fn_name in ["acos", "arccos", "asin", "arcsin", "logit"]:
data = data.abs().mul(0.5).clamp(0, 1)
if fn_name in ["atanh", "arctanh", "erfinv"]:
data = data.mul(0.5).clamp(-1, 1)
if fn_name in ["acosh", "arccosh"]:
data = data.abs() + 1
if fn_name in ["bitwise_not"]:
data = data.mul(128).to(torch.int8)
return data, mask
def _get_sample_kwargs(self, fn_name):
fn_name = _fix_fn_name(fn_name)
kwargs = {}
if fn_name in ["clamp", "clip"]:
kwargs["min"] = -0.5
kwargs["max"] = 0.5
return kwargs
def _get_sample_args(self, fn_name, data, mask):
fn_name = _fix_fn_name(fn_name)
mt = masked_tensor(data, mask)
t_args = [data]
mt_args = [mt]
if fn_name in ["pow"]:
t_args += [2.0]
mt_args += [2.0]
return t_args, mt_args
@parametrize("fn", NATIVE_UNARY_FNS)
def test_unary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
@parametrize("fn", NATIVE_INPLACE_UNARY_FNS)
def test_inplace_unary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
t_args, mt_args = self._get_sample_args(fn_name, data, mask)
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
class TestBinary(TestCase):
def _get_test_data(self, fn_name):
fn_name = _fix_fn_name(fn_name)
data0 = torch.randn(10, 10)
data1 = torch.randn(10, 10)
mask = torch.rand(10, 10) > 0.5
if fn_name in ["bitwise_and", "bitwise_or", "bitwise_xor"]:
data0 = data0.mul(128).to(torch.int8)
data1 = data1.mul(128).to(torch.int8)
if fn_name in ["bitwise_left_shift", "bitwise_right_shift"]:
data0 = data0.abs().to(torch.int64)
data1 = data1.abs().to(torch.int64)
return data0, data1, mask
def _get_sample_kwargs(self, fn_name):
fn_name = _fix_fn_name(fn_name)
kwargs = {}
return kwargs
def _yield_sample_args(self, fn_name, data0, data1, mask):
""" Returns two sets of Tensor and MaskedTensor args for a binary function to compute.
Tensor args are all the same (just the two provided data tensors),
while the MaskedTensor args tests both (MaskedTensor, MaskedTensor) and (MaskedTensor, Tensor)
"""
fn_name = _fix_fn_name(fn_name)
mt0 = masked_tensor(data0, mask)
mt1 = masked_tensor(data1, mask)
t_args = [data0, data1]
mt_args = [mt0, mt1]
yield t_args, mt_args
t_args = [data0, data1]
mt_args = [mt0, data1]
yield t_args, mt_args
@parametrize("fn", NATIVE_BINARY_FNS)
def test_binary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data0, data1, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
@parametrize("fn", NATIVE_INPLACE_BINARY_FNS)
def test_inplace_binary(self, fn):
torch.random.manual_seed(0)
fn_name = fn.__name__
data0, data1, mask = self._get_test_data(fn_name)
kwargs = self._get_sample_kwargs(fn_name)
for (t_args, mt_args) in self._yield_sample_args(fn_name, data0, data1, mask):
mt_result = fn(*mt_args, **kwargs)
t_result = fn(*t_args, **kwargs)
_compare_mt_t(mt_result, t_result)
@parametrize("fn_name", ["add", "add_"])
def test_masks_match(self, fn_name):
torch.random.manual_seed(0)
fn = getattr(torch.ops.aten, fn_name)
data0, data1, mask = self._get_test_data(fn_name)
mask0 = mask
mask1 = torch.rand(mask.size()) > 0.5
mt0 = masked_tensor(data0, mask0)
mt1 = masked_tensor(data1, mask1)
try:
fn(mt0, mt1)
raise AssertionError()
except ValueError as e:
assert (
"Input masks must match. If you need support for this, please open an issue on Github."
== str(e)
)
class TestReductions(TestCase):
def test_max_not_implemented(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m)
with self.assertRaisesRegex(TypeError, "no implementation found for 'torch._ops.aten.max.default'"):
mt.max()
def test_sum(self):
d = torch.tensor([[0, 1, 2, 6], [3, 4, 5.0, 7]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(17.0), torch.tensor(True)), mt.sum())
_compare_mts(
masked_tensor(
torch.tensor([0.0, 4.0, 1.0, 13]),
torch.tensor([True, True, False, True]),
),
mt.sum(dim=0),
)
def test_sum_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.sum().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor(1.0).expand_as(m), m))
def test_mean(self):
d = torch.tensor([[0, 1, 3, 2], [3, 4, 1.0, 4]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(2.5), torch.tensor(True)), mt.mean())
_compare_mts(
masked_tensor(
torch.tensor([0.0, 4.0, 1.0, 3]),
torch.tensor([True, True, False, True]),
),
mt.mean(dim=0),
)
"""
The following block of tests "test_mean_grad_case_1[a through e] are used to test the functionality of
the two different ways of constructing MaskedTensors:
masked_tensor(data, mask, requires_grad=True/False) -- NO differentiable constructor and always a leaf
as_masked_tensor(data, mask) -- differentiable constructor
Like torch.tensor(data), masked_tensor(data, mask) will provide a UserWarning if data.requires_grad=True
as_masked_tensor does not take in requires_grad -- it just takes on the requires_grad from data
Therefore, there are 6 cases to test and we use `mean` as a proxy to test the different combinations
Assuming mt.mean().backward() is run after each constructor:
Case 1a:
values.requires_grad = True
mt = masked_tensor(values, mask, requires_grad=True)
yields
- Provide a UserWarning because values.requires_grad=True
- values.grad = None
- mt.grad is a MaskedTensor with the correct gradient
Case 1b:
values.requires_grad = False
mt = masked_tensor(values, mask, requires_grad=True)
yields
- values.grad = None
- mt.grad is a MaskedTensor with the correct gradient
Case 2a/2b:
values.requires_grad = True/False
mt = masked_tensor(values, mask, requires_grad=False)
will both yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
as expected. When values.requires_grad=True, we will also get a UserWarning
Case 3a:
values.requires_grad = True
mt = as_masked_tensor(values, mask)
yields
- values.grad is a MaskedTensor with the correct gradient
- mt.grad is None and gives a UserWarning that
"The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
Case 3b:
values.requires_grad = False
mt = as_masked_tensor(values, mask)
will yield a RuntimeError of "element 0 of tensors does not require grad and does not have a grad_fn"
as expected.
"""
def test_mean_grad_case_1a(self):
""" values.requires_grad = True
mt = masked_tensor(values, mask, requires_grad=True)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
m = torch.tensor([[True, False, False], [False, True, False]])
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
mt = masked_tensor(d, m, requires_grad=True)
mt.mean().backward()
self.assertIsNone(d.grad)
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
def test_mean_grad_case_1b(self):
""" values.requires_grad = False
mt = masked_tensor(values, mask, requires_grad=True)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.mean().backward()
self.assertIsNone(d.grad)
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
def test_mean_grad_case_1c(self):
""" values.requires_grad = True
mt = masked_tensor(values, mask, requires_grad=False)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
m = torch.tensor([[True, False, False], [False, True, False]])
with self.assertWarnsRegex(UserWarning, "It is not recommended to create a MaskedTensor"):
mt = masked_tensor(d, m, requires_grad=False)
result = mt.mean()
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
with self.assertRaisesRegex(RuntimeError, msg):
result.backward()
def test_mean_grad_case_1d(self):
""" values.requires_grad = False
mt = masked_tensor(values, mask, requires_grad=False)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=False)
result = mt.mean()
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
with self.assertRaisesRegex(RuntimeError, msg):
result.backward()
def test_mean_grad_case_1e(self):
""" values.requires_grad = True
mt = as_masked_tensor(values, mask)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]], requires_grad=True)
m = torch.tensor([[True, False, False], [False, True, False]])
mt = as_masked_tensor(d, m)
mt.mean().backward()
_compare_mts(d.grad, masked_tensor(torch.tensor([[0.5, 0, 0], [0, 0.5, 0]]), m))
msg = "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad"
with self.assertWarnsRegex(UserWarning, msg):
self.assertIsNone(mt.grad)
def test_mean_grad_case_1f(self):
""" values.requires_grad = False
mt = as_masked_tensor(values, mask)
"""
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = as_masked_tensor(d, m)
result = mt.mean()
msg = "element 0 of tensors does not require grad and does not have a grad_fn"
with self.assertRaisesRegex(RuntimeError, msg):
result.backward()
def test_mean_dim_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, True, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.mean(1).sum().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.5, 0.5, 0], [0, 1, 0]]), m))
def test_amax(self):
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(3.0), torch.tensor(True)), mt.amax())
_compare_mts(
masked_tensor(
torch.tensor([0.0, -4.0, 1.0, 3]),
torch.tensor([True, True, False, True]),
),
mt.amax(dim=0),
)
def test_amax_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.amax().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[0.0, 0, 0], [0, 1, 0]]), m))
def test_amin(self):
d = torch.tensor([[0, 1, 3, -3], [3, -4, 1.0, 3]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(-4.0), torch.tensor(True)), mt.amin())
_compare_mts(
masked_tensor(
torch.tensor([0.0, -4.0, 1.0, -3]),
torch.tensor([True, True, False, True]),
),
mt.amin(dim=0),
)
def test_amin_grad(self):
d = torch.tensor([[0, 1, 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.amin().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[1.0, 0, 0], [0, 0, 0]]), m))
def test_prod(self):
d = torch.tensor([[0, 1, 3, 0.0], [float("nan"), 4, 1.0, 5.0]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(0.0), torch.tensor(True)), mt.prod())
_compare_mts(
masked_tensor(
torch.tensor([0.0, 4.0, 1.0, 0.0]),
torch.tensor([True, True, False, True]),
),
mt.prod(dim=0),
)
def test_prod_grad(self):
d = torch.tensor([[2, float("nan"), 2], [3, 4, 5.0]])
m = torch.tensor([[True, False, False], [False, True, False]])
mt = masked_tensor(d, m, requires_grad=True)
mt.prod().backward()
_compare_mts(mt.grad, masked_tensor(torch.tensor([[4.0, 0, 0], [0, 2, 0]]), m))
def test_all(self):
d = torch.tensor([[True, True, False, False], [False, True, True, True]])
m = torch.tensor([[True, False, False, True], [False, True, False, True]])
mt = masked_tensor(d, m)
_compare_mts(masked_tensor(torch.tensor(False), torch.tensor(True)), mt.all())
_compare_mts(
masked_tensor(
torch.tensor([True, True, True, False]),
torch.tensor([True, True, False, True]),
),
mt.all(dim=0),
)
m = torch.tensor([[True, False, True, False], [False, True, False, False]])
mt = masked_tensor(d, m)
_compare_mts(
masked_tensor(
torch.tensor([True, True, False, True]),
torch.tensor([True, True, True, False]),
),
mt.all(dim=0),
)
def test_grad_dtype(self):
d = torch.tensor([[True, True, False], [False, True, True]])
m = torch.tensor([[True, False, False], [False, True, False]])
msg = "Only Tensors of floating point and complex dtype can require gradients"
with self.assertRaisesRegex(RuntimeError, msg):
masked_tensor(d, m, requires_grad=True)
def is_unary(op):
return op.name in UNARY_NAMES
def is_binary(op):
return op.name in BINARY_NAMES
def is_reduction(op):
return op.name in REDUCE_NAMES and op.name not in {"all", "mean", "std", "var"}
mt_unary_ufuncs = [op for op in unary_ufuncs if is_unary(op)]
mt_binary_ufuncs = [op for op in binary_ufuncs if is_binary(op)]
mt_reduction_ufuncs = [op for op in reduction_ops if is_reduction(op)]
MASKEDTENSOR_FLOAT_TYPES = {
torch.float16,
torch.float32,
torch.float64,
}
class TestOperators(TestCase):
def _convert_mt_args(self, args, mask, layout):
return [
masked_tensor(
arg.sparse_mask(mask) if layout != torch.strided else arg, mask
)
if torch.is_tensor(arg)
else arg
for arg in args
]
def _test_unary_binary_equality(self, device, dtype, op, layout=torch.strided):
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
input = sample.input
sample_args, sample_kwargs = sample.args, sample.kwargs
mask = (
_make_tensor_mask(input.shape, device)
if "mask" not in sample_kwargs
else sample_kwargs.pop("mask")
)
if layout == torch.sparse_coo:
mask = mask.to_sparse_coo().coalesce()
input = input.sparse_mask(mask)
elif layout == torch.sparse_csr:
if input.ndim != 2 or mask.ndim != 2:
continue
mask = mask.to_sparse_csr()
input = input.sparse_mask(mask)
# Binary operations currently only support same size masks
if is_binary(op):
if input.shape != sample_args[0].shape:
continue
# Binary operations also don't support kwargs right now
else:
sample_kwargs = {}
mt = masked_tensor(input, mask)
mt_args = self._convert_mt_args(sample_args, mask, layout)
mt_result = op(mt, *mt_args, **sample_kwargs)
t_result = op(sample.input, *sample_args, **sample_kwargs)
_compare_mt_t(mt_result, t_result)
# If the operation is binary, check that lhs = masked, rhs = regular tensor also works
if is_binary(op) and layout == torch.strided:
mt_result2 = op(mt, *sample_args, **sample_kwargs)
_compare_mt_t(mt_result2, t_result)
def _test_reduction_equality(self, device, dtype, op, layout=torch.strided):
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
input = sample.input
# Reduction operations don't support more advanced args/kwargs right now
sample_args, sample_kwargs = (), {}
if input.dim() == 0 or input.numel() == 0:
continue
mask = _make_tensor_mask(input.shape, device)
if torch.count_nonzero(mask) == 0:
continue
tensor_input = _combine_input_and_mask(op.op, input, mask)
if layout == torch.sparse_coo:
mask = mask.to_sparse_coo().coalesce()
input = input.sparse_mask(mask)
elif layout == torch.sparse_csr:
if input.ndim != 2 or mask.ndim != 2:
continue
mask = mask.to_sparse_csr()
input = input.sparse_mask(mask)
mt = masked_tensor(input, mask)
mt_args = self._convert_mt_args(sample_args, mask, layout)
mt_result = op(mt, *mt_args, **sample_kwargs)
t_result = op(tensor_input, *sample_args, **sample_kwargs)
_compare_mt_t(mt_result, t_result)
@ops(mt_unary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
def test_unary_core(self, device, dtype, op, layout):
# Skip tests that don't have len(kwargs) == 0
skip_variants = {
"decimals_0",
"decimals_3",
"decimals_neg_3",
}
if op.name == "round" and op.variant_test_name in skip_variants:
return
self._test_unary_binary_equality(device, dtype, op)
@ops(mt_binary_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
def test_binary_core(self, device, dtype, op, layout):
self._test_unary_binary_equality(device, dtype, op, layout)
@ops(mt_reduction_ufuncs, allowed_dtypes=MASKEDTENSOR_FLOAT_TYPES) # type: ignore[arg-type]
@parametrize("layout", [torch.strided, torch.sparse_coo, torch.sparse_csr])
def test_reduction_all(self, device, dtype, op, layout):
# argmin and argmax are not currently supported for torch.sparse_csr
if op.name in {"argmin", "argmax"} and layout == torch.sparse_csr:
return
self._test_reduction_equality(device, dtype, op, layout)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestOperators, globals(), only_for=only_for)
instantiate_device_type_tests(TestBasics, globals(), only_for=only_for)
instantiate_parametrized_tests(TestUnary)
instantiate_parametrized_tests(TestBinary)
instantiate_parametrized_tests(TestReductions)
if __name__ == '__main__':
run_tests()
|