1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
# Owner(s): ["oncall: mobile"]
import torch
from torch.nn import functional as F
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing import FileCheck
import io
class TestMetalRewritePass(TestCase):
@staticmethod
def validate_transformed_module(
# To please flake
self,
pattern_count_map,
data_shape,
prepack_removal=False,
fuse_clamping_ops=False):
module_instance = self
scripted_model = torch.jit.script(module_instance)
scripted_model.eval()
input_data = torch.normal(1, 20, size=data_shape)
ref_result = scripted_model(input_data)
torch._C._jit_pass_metal_insert_prepacked_ops(scripted_model._c)
if fuse_clamping_ops or prepack_removal:
scripted_model._c = torch._C._freeze_module(scripted_model._c)
if fuse_clamping_ops:
torch._C._jit_pass_metal_fuse_clamp_w_prepacked_conv(scripted_model._c)
if prepack_removal:
torch._C._jit_pass_metal_fold_prepacking_ops(scripted_model._c)
buffer = io.BytesIO()
torch.jit.save(scripted_model, buffer)
buffer.seek(0)
deserialized_scripted_model = torch.jit.load(buffer)
for pattern, v in pattern_count_map.items():
if (v == 0):
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
elif (v == -1):
FileCheck().check_not(pattern).run(deserialized_scripted_model.graph)
else:
FileCheck().check_count(pattern, v, exactly=True).run(deserialized_scripted_model.graph)
def test_conv(self):
# Conv params
batch_size = 2
input_channels_per_group = 6
height = 16
width = 16
output_channels_per_group = 6
groups = 4
kernel_h = kernel_w = 3
stride_h = stride_w = 1
pad_h = pad_w = 1
dilation = 1
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
conv_bias_shape = (output_channels)
class Conv2D(torch.nn.Module):
def __init__(self):
super(Conv2D, self).__init__()
self.weight = torch.nn.Parameter(torch.rand(conv_weight_shape), requires_grad=False)
self.bias = torch.nn.Parameter(torch.rand(conv_bias_shape), requires_grad=False)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
return F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"metal_prepack::conv2d_prepack": 1,
"metal_prepack::conv2d_run": 1}
TestMetalRewritePass.validate_transformed_module(Conv2D(), pattern_count_map, data_shape)
class Conv2DRelu(torch.nn.Module):
def __init__(self):
super(Conv2DRelu, self).__init__()
self.weight = torch.nn.Parameter(torch.rand(conv_weight_shape), requires_grad=False)
self.bias = torch.nn.Parameter(torch.rand(conv_bias_shape), requires_grad=False)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
o = F.relu(o)
return o
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"metal_prepack::conv2d_prepack": 1,
"metal_prepack::conv2d_run": 1}
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(), pattern_count_map, data_shape)
pattern_count_map["aten::relu"] = 1
pattern_count_map["metal_prepack::conv2d_prepack"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(),
pattern_count_map,
data_shape,
prepack_removal=True)
pattern_count_map["aten::relu"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True)
class Conv2DHardtanh(torch.nn.Module):
def __init__(self):
super(Conv2DHardtanh, self).__init__()
self.weight = torch.nn.Parameter(torch.rand(conv_weight_shape), requires_grad=False)
self.bias = torch.nn.Parameter(torch.rand(conv_bias_shape), requires_grad=False)
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(x, self.weight, self.bias,
self.strides, self.paddings, self.dilations, self.groups)
o = F.hardtanh(o)
return o
data_shape = (batch_size, input_channels, height, width)
pattern_count_map = {"Tensor = aten::conv2d": -1,
"metal_prepack::conv2d_prepack": 1,
"metal_prepack::conv2d_run": 1}
TestMetalRewritePass.validate_transformed_module(Conv2DHardtanh(), pattern_count_map, data_shape)
pattern_count_map["aten::hardtanh"] = 1
pattern_count_map["metal_prepack::conv2d_prepack"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DHardtanh(),
pattern_count_map,
data_shape,
prepack_removal=True)
pattern_count_map["aten::hardtanh"] = -1
TestMetalRewritePass.validate_transformed_module(
Conv2DRelu(),
pattern_count_map,
data_shape,
prepack_removal=True,
fuse_clamping_ops=True)
if __name__ == "__main__":
run_tests()
|