1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
# Owner(s): ["module: mkldnn"]
import itertools
import unittest
import torch
from torch import nn
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.jit_utils import JitTestCase
from test_tensorexpr import warmup_and_run_forward
FUSION_GROUP = 'prim::TensorExprGroup'
@unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled")
class TestMkldnnFusion(JitTestCase):
def assertFused(self, graph, fused_patterns):
for pat in fused_patterns:
self.assertGraphContainsExactly(graph, pat, 0)
def _check_model(self, m, x, trace=False):
old_fusion_inlining = torch._C._debug_get_fusion_group_inlining()
torch._C._debug_set_fusion_group_inlining(False)
old_cpu_fuser_state = torch._C._jit_can_fuse_on_cpu()
torch._C._jit_override_can_fuse_on_cpu(True)
old_te_must_use_llvm_cpu = torch._C._jit_get_te_must_use_llvm_cpu()
torch._C._jit_set_te_must_use_llvm_cpu(False)
m.eval()
with torch.no_grad():
if trace:
script = torch.jit.trace(m, x)
else:
script = torch.jit.script(m)
script = torch.jit.freeze(script)
with torch.no_grad():
y = warmup_and_run_forward(script, x)
y = script(x)
y_ref = m(x)
graph = script.graph_for(*x)
self.assertEqual(y, y_ref)
torch._C._debug_set_fusion_group_inlining(old_fusion_inlining)
torch._C._jit_override_can_fuse_on_cpu(old_cpu_fuser_state)
torch._C._jit_set_te_must_use_llvm_cpu(old_te_must_use_llvm_cpu)
return graph
def test_single_conv(self):
class M(nn.Module):
def __init__(self, in_channels, out_channels, bias, **kwargs):
super(M, self).__init__()
self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=bias, **kwargs)
def forward(self, x):
res = self.conv(x)
return res
for memory_format, enabled in [
[torch.contiguous_format, False],
[torch.channels_last, True],
]:
for trace in [True, False]:
input_size = 224
batch_size = 1
kernel_size = 3
options = itertools.product([True, False], [1, 2], [1, 4])
for bias, dilation, groups in options:
iC = 3 * groups
oC = 10 * groups
m = M(iC,
oC,
bias,
kernel_size=(kernel_size, kernel_size),
stride=2,
padding=1,
dilation=dilation,
groups=groups).to(memory_format=memory_format)
x = torch.randn(batch_size, iC, input_size, input_size).to(memory_format=memory_format)
graph = self._check_model(m, x, trace)
conv_node_name = 'aten::_convolution' if trace else 'aten::conv2d'
if enabled:
self.assertFused(graph, [conv_node_name])
self.assertGraphContainsExactly(graph, FUSION_GROUP, 1)
else:
self.assertGraphContains(graph, kind=conv_node_name)
def test_conv_eltwise(self):
class M(nn.Module):
def __init__(self, eltwise_fn, in_channels, out_channels, bias, **kwargs):
super(M, self).__init__()
self.conv = torch.nn.Conv2d(in_channels, out_channels, bias=bias, **kwargs)
self.eltwise = eltwise_fn
def forward(self, x):
x = self.conv(x)
x = self.eltwise(x)
return x
for memory_format, enabled in [
[torch.contiguous_format, False],
[torch.channels_last, True],
]:
for eltwise_fn in [torch.relu]:
for bias in [True, False]:
for oC in [1, 10]:
m = M(eltwise_fn, 3, oC, bias, kernel_size=(3, 3)).to(memory_format=memory_format)
x = torch.randn(1, 3, 224, 224).to(memory_format=memory_format)
graph = self._check_model(m, x)
if enabled:
self.assertFused(graph, ['aten::conv2d', 'aten::' + eltwise_fn.__name__])
self.assertGraphContainsExactly(graph, FUSION_GROUP, 1)
else:
self.assertGraphContains(graph, kind='aten::conv2d')
def test_unsupported_conv(self):
class M(nn.Module):
def __init__(self, m, in_channels, out_channels, bias, **kwargs):
super(M, self).__init__()
self.conv = m(in_channels, out_channels, bias=bias, **kwargs)
def forward(self, x):
res = self.conv(x)
return res
for module, dim, memory_format in [
[nn.Conv3d, 3, torch.contiguous_format],
[nn.Conv3d, 3, torch.channels_last_3d],
[nn.ConvTranspose2d, 2, torch.contiguous_format],
[nn.ConvTranspose2d, 2, torch.channels_last],
]:
trace = True
input_size = 224
batch_size = 1
kernel_size = 3
groups = 2
bias = True
iC = 3 * groups
oC = 10 * groups
dilation = 2
m = M(module,
iC,
oC,
bias,
kernel_size=kernel_size,
stride=2,
padding=1,
dilation=dilation,
groups=groups).to(memory_format=memory_format)
input_sizes = [batch_size, iC, input_size, input_size]
if dim == 3:
input_sizes.append(input_size)
x = torch.randn(input_sizes).to(memory_format=memory_format)
graph = self._check_model(m, x, trace)
self.assertGraphContains(graph, kind='aten::_convolution')
if __name__ == "__main__":
run_tests()
|