1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
# Owner(s): ["module: nn"]
from itertools import product
from inspect import signature, isgenerator
from copy import deepcopy
import tempfile
from operator import methodcaller
import torch
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, onlyCUDA, toleranceOverride, tol, skipMeta)
from torch.testing._internal.common_modules import module_db, modules, TrainEvalMode
from torch.testing._internal.common_utils import (
TestCase, run_tests, freeze_rng_state, mock_wrapper, get_tensors_from, gradcheck, gradgradcheck, skipIfMps)
from unittest.mock import patch, call
class TestModule(TestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
precision = 1e-5
rel_tol = 1e-5
def _assert_module_parameters_and_buffer_are(self, module, device, dtype):
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg or methods
# such as `float()` applies to.
if not isinstance(device, torch.device):
device = torch.device(device)
def _check_module(items, name, device=device, dtype=dtype):
for item_name, item in items:
self.assertEqual(
item.device, device,
f'{name} {item_name} is on device {item.device} instead of the expected device {device}')
if item.dtype.is_floating_point:
self.assertEqual(
item.dtype, dtype,
f'{name} {item_name} is of dtype {item.dtype} instead of the expected dtype {dtype}')
_check_module(module.named_parameters(), "Parameter")
_check_module(module.named_buffers(), "Buffer")
@skipIfMps # the test doesn't work on MPS as double types are not supported
@modules(module_db)
def test_forward(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
dtype_to_method_caller = {
torch.float32: methodcaller("float"),
torch.float64: methodcaller("double"),
}
for module_input in module_inputs:
if module_input.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to a reference if one is specified. ===
# TODO: Handle precision
reference_fn = module_input.reference_fn
if reference_fn is not None:
ref_outputs = reference_fn(m, *args, **kwargs)
self.assertEqual(outputs, ref_outputs)
# === Use the method call and verify the parameters and buffers ===
if dtype in dtype_to_method_caller:
dtype_to_method_caller[dtype](m)
m(*args, **kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# Tests passing factory kwargs (e.g. device / dtype) during module instantiation.
# They should be applied to any created parameters and buffers.
@modules(module_db)
def test_factory_kwargs(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
# Check if this module creates parameters or registers buffers.
# The mock magic here passes through to the real Parameter / register_buffer
# logic and is only used to check call inputs.
module_creates_params_or_buffers = False
parameter_new = mock_wrapper(torch.nn.Parameter.__new__)
with patch.object(torch.nn.Parameter, '__new__', parameter_new):
register_buffer = mock_wrapper(torch.nn.Module.register_buffer)
with patch.object(torch.nn.Module, 'register_buffer', register_buffer):
m = module_cls(*args, **kwargs)
m.train(training)
# Check if a parameter or buffer was created with a tensor not passed to the constructor.
constructor_tensors = get_tensors_from(args, kwargs)
for mock in [parameter_new.mock, register_buffer.mock]:
for call_args, call_kwargs in mock.call_args_list:
call_tensors = get_tensors_from(call_args, call_kwargs)
if len(call_tensors) > 0 and not constructor_tensors.intersection(call_tensors):
module_creates_params_or_buffers = True
break
if not module_creates_params_or_buffers:
continue
# Instantiate module with the factory kwargs.
kwargs.update({
'device': device,
'dtype': dtype,
})
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
# Ensure device and dtype are passed to all UninitializedParameters and UninitializedBuffers.
uninit_param_new = mock_wrapper(torch.nn.UninitializedParameter.__new__)
with patch.object(torch.nn.UninitializedParameter, '__new__', uninit_param_new):
uninit_buffer_new = mock_wrapper(torch.nn.UninitializedBuffer.__new__)
with patch.object(torch.nn.UninitializedBuffer, '__new__', uninit_buffer_new):
m = module_cls(*args, **kwargs)
m.train(training)
uninit_param_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_param_new.mock.mock_calls])
uninit_buffer_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_buffer_new.mock.mock_calls])
else:
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg applies to.
m = module_cls(*args, **kwargs)
m.train(training)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
@onlyCUDA
@modules(module_db)
def test_multiple_device_transfer(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs_device = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=False, training=training)
for module_input_device, module_input_cpu in zip(module_inputs_device, module_inputs_cpu):
if module_input_device.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input_device.constructor_input.args, module_input_device.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass on GPU ===
input_device_args = module_input_device.forward_input.args
input_device_kwargs = module_input_device.forward_input.kwargs
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# === Move to CPU ===
input_cpu_args = module_input_cpu.forward_input.args
input_cpu_kwargs = module_input_cpu.forward_input.kwargs
m.cpu()
m(*input_cpu_args, **input_cpu_kwargs)
self._assert_module_parameters_and_buffer_are(m, "cpu", dtype)
# === Move back to GPU and forward pass ===
m.cuda()
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
if torch.cuda.device_count() >= 2:
# === test cross-GPU transfer works
def _to_device1(objs):
if isinstance(objs, (tuple, list)):
return type(objs)(_to_device1(item) for item in objs)
elif isinstance(objs, dict):
return {name: _to_device1(item) for name, item in objs.items()}
elif isinstance(objs, torch.Tensor):
return objs.cuda(1)
else:
return objs
input_device_1_args = _to_device1(input_device_args)
input_device_1_kwargs = _to_device1(input_device_kwargs)
m.cuda(1)
with torch.cuda.device(1):
m(*input_device_1_args, **input_device_1_kwargs)
self._assert_module_parameters_and_buffer_are(m, torch.device("cuda:1"), dtype)
@modules(module_db)
def test_repr(self, device, dtype, module_info, training):
# Test module can be represented with repr and str without errors.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Check that these methods do not raise errors
m.__repr__()
str(m)
@skipIfMps
@modules(module_db)
def test_pickle(self, device, dtype, module_info, training):
# Test that module can be pickled and unpickled.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
output = m(*args, **kwargs)
# === Check unpickled module gives the same output. ===
with tempfile.TemporaryFile() as f:
torch.save(m, f)
f.seek(0)
m_copy = torch.load(f)
output_from_copy = m_copy(*args, **kwargs)
self.assertEqual(output, output_from_copy)
@skipMeta
@modules([module_info for module_info in module_db
if 'inplace' in signature(module_info.module_cls).parameters])
def test_check_inplace(self, device, dtype, module_info, training):
# Check if the inplace variant of the module gives the same result as the out of place
# variant.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m_op = module_cls(*args, **kwargs, inplace=False)
m_op.to(device).to(dtype)
m_op.train(training)
m_inplace = module_cls(*args, **kwargs, inplace=True)
m_inplace.to(device).to(dtype)
m_inplace.train(training)
# === Inplace modules only supports inplace operations on the first argument ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
# === Do not allow the first input to be in input_kwargs ===
forward_sig = signature(m_op).parameters
self.assertGreaterEqual(len(forward_sig), 1)
first_param_name = next(iter(forward_sig.items()))
self.assertNotIn(first_param_name, input_kwargs)
# === Out of place operation does not write to original tensor ===
self.assertGreaterEqual(len(input_args), 1)
input_version = input_args[0]._version
with freeze_rng_state():
output_op = m_op(*input_args, **input_kwargs)
self.assertEqual(input_args[0]._version, input_version)
# === Check that the inplace operation gives the same result ===
input_arg_copy = deepcopy(input_args)
input_arg_clone = tuple(i.clone() for i in input_arg_copy)
input_clone_version = input_arg_clone[0]._version
with freeze_rng_state():
output_ip = m_inplace(*input_arg_clone, **input_kwargs)
self.assertGreater(input_arg_clone[0]._version, input_clone_version)
self.assertEqual(output_op, output_ip)
# === Check that the gradients are the same ===
grad = output_op.data.clone().normal_()
output_op.backward(grad)
output_ip.backward(grad)
self.assertEqual(input_args[0].grad, input_arg_copy[0].grad)
def _traverse_obj(self, obj, func):
if isinstance(obj, (tuple, list)):
return type(obj)(self._traverse_obj(o, func) for o in obj)
elif isgenerator(obj):
return tuple(self._traverse_obj(o, func) for o in obj)
elif isinstance(obj, dict):
return {name: self._traverse_obj(o, func) for name, o in obj.items()}
elif isinstance(obj, (torch.Tensor, torch.nn.Parameter)):
return func(obj)
def _retain_grad(self, obj):
# gradients needs to be retained to check for grad. This is useful when
# non-leafs are present in the graph.
def inner_retain_grad(obj):
if obj.requires_grad:
obj.retain_grad()
self._traverse_obj(obj, inner_retain_grad)
def _get_grads(self, obj):
def inner_get_grad(obj):
if obj.requires_grad:
return obj.grad
return self._traverse_obj(obj, inner_get_grad)
def _zero_grad(self, obj):
def inner_zero_grad(obj):
if obj.grad is not None:
obj.grad = None
self._traverse_obj(obj, inner_zero_grad)
@skipIfMps
@modules(module_db)
def test_non_contiguous_tensors(self, device, dtype, module_info, training):
# Check modules work with non-contiguous tensors
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
def _make_non_contiguous(obj):
def inner_make_non_contiguous(obj):
# Scalar tensors can not be made non-contiguous
if not isinstance(obj, torch.Tensor) or obj.dim() == 0:
return obj
out = torch.repeat_interleave(obj, 2, dim=-1)
out = out[..., ::2].detach()
out.requires_grad = obj.requires_grad
return out
return self._traverse_obj(obj, inner_make_non_contiguous)
def _can_be_noncontiguous(obj):
if isinstance(obj, (tuple, list)):
return any(_can_be_noncontiguous(o) for o in obj)
elif isinstance(obj, dict):
return any(_can_be_noncontiguous(o) for o in obj.values())
# scalar tensors can not be non-contiguous
if not isinstance(obj, torch.Tensor) or obj.dim() == 0:
return False
return True
for module_input in module_inputs:
if module_input.forward_input is None:
continue
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if not (_can_be_noncontiguous(input_args) or _can_be_noncontiguous(input_kwargs)):
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
self._retain_grad((input_args, input_kwargs))
# === Forward with default input
with freeze_rng_state():
default_output = m(*input_args, **input_kwargs)
if isinstance(default_output, torch.Tensor):
grad_output = default_output.clone().detach_().normal_()
default_output.backward(grad_output, retain_graph=True)
else:
grad_output = tuple(self._traverse_obj(o, lambda o: o.clone().detach_().normal_())
for o in default_output)
flattened_default_output, _ = torch.utils._pytree.tree_flatten(default_output)
flattened_grad_output, _ = torch.utils._pytree.tree_flatten(grad_output)
for o, g_o in zip(flattened_default_output, flattened_grad_output):
o.backward(g_o, retain_graph=True)
default_input_args_grad, default_input_kwargs_grad = deepcopy(self._get_grads((input_args, input_kwargs)))
default_param_grad = deepcopy([p.grad for p in m.parameters()])
# === Construct non-contiguous tensors ===
nc_input_args, nc_input_kwargs = _make_non_contiguous((input_args, input_kwargs))
nc_grad_output = _make_non_contiguous(grad_output)
# === Compare results with non-contiguous and contiguous tensors ===
inputs = [(input_args, input_kwargs), (nc_input_args, nc_input_kwargs)]
grads = [grad_output, nc_grad_output]
for (in_args, in_kwargs), g_out in product(inputs, grads):
g_out_copy = deepcopy(g_out)
self._zero_grad((in_args, in_kwargs))
self._zero_grad(m.parameters())
with freeze_rng_state():
out = m(*in_args, **in_kwargs)
if isinstance(out, torch.Tensor):
out.backward(g_out_copy, retain_graph=True)
else:
flattened_out, _ = torch.utils._pytree.tree_flatten(out)
flattened_g_out_copy, _ = torch.utils._pytree.tree_flatten(g_out_copy)
for o, g_o in zip(flattened_out, flattened_g_out_copy):
o.backward(g_o, retain_graph=True)
input_args_grad, input_kwargs_grad = self._get_grads((in_args, in_kwargs))
self.assertEqual(out, default_output)
self.assertEqual(input_args_grad, default_input_args_grad, atol=1e-4, rtol=0)
self.assertEqual(input_kwargs_grad, default_input_kwargs_grad, atol=1e-4, rtol=0)
param_grad = [p.grad for p in m.parameters()]
self.assertEqual(param_grad, default_param_grad)
def _test_gradients_helper(self, device, dtype, module_info, training, check):
# Check gradients
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
# === Set nondet tol for gradcheck to user-defined value if on CUDA and cudNN is enabled
gradcheck_nondet_tol = 0.0
if (torch.device(device).type == 'cuda' and torch.backends.cudnn.enabled):
gradcheck_nondet_tol = module_info.gradcheck_nondet_tol
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
params = tuple(m.parameters())
# === Lazy modules need to see an input to initialize params before gradcheck is run. ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
m(*input_args, **input_kwargs)
# === Perform gradient check on the input_args ===
other_kwargs = {}
kwarg_tensors = []
for name, obj in input_kwargs.items():
if isinstance(obj, torch.Tensor):
kwarg_tensors.append((name, obj))
else:
other_kwargs[name] = obj
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
def fn_to_gradcheck(*flat_input_and_params):
input_and_params = torch.utils._pytree.tree_unflatten(flat_input_and_params, flat_spec)
new_input_args = input_and_params[:len(input_args)]
kwarg_args = input_and_params[-len(kwarg_tensors):]
new_kwargs = {name: obj for (name, _), obj in zip(kwarg_tensors, kwarg_args)}
with freeze_rng_state():
output = m(*new_input_args, **new_kwargs, **other_kwargs)
output_flattened, _ = torch.utils._pytree.tree_flatten(output)
return output_flattened
self.assertTrue(check(fn_to_gradcheck, flat_input, nondet_tol=gradcheck_nondet_tol))
@modules(module_db, allowed_dtypes=[torch.double])
def test_grad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradcheck)
@modules([m for m in module_db if m.supports_gradgrad],
allowed_dtypes=[torch.double])
def test_gradgrad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradgradcheck)
@onlyCUDA
@toleranceOverride({torch.float32: tol(5e-2, 0),
torch.float64: tol(4e-4, 0)})
@modules(module_db)
def test_cpu_gpu_parity(self, device, dtype, module_info, training):
# TODO: RNN / GRU / LSTM don't support backwards on eval mode for cuDNN; skip this in a
# nicer way for eval mode only.
# See https://github.com/pytorch/pytorch/issues/79161
rnn_modules = set([torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM])
if (module_info.module_cls in rnn_modules
and not training
and 'cuda' in device
and torch.backends.cudnn.enabled):
return
# Test cpu and gpu results are the same
module_cls = module_info.module_cls
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=True, training=training)
def _to_device(obj):
if isinstance(obj, torch.Tensor):
res = obj.detach().to(device=device)
res.requires_grad = obj.requires_grad
return res
elif isinstance(obj, tuple):
return tuple(_to_device(o) for o in obj)
elif isinstance(obj, dict):
return {key: _to_device(o) for key, o in obj.items()}
else:
return deepcopy(obj)
for module_input in module_inputs_cpu:
# === Move input from cpu to device ===
cpu_forward_args = module_input.forward_input.args
cpu_forward_kwargs = module_input.forward_input.kwargs
gpu_forward_args, gpu_forward_kwargs = _to_device((cpu_forward_args, cpu_forward_kwargs))
self._retain_grad((cpu_forward_args, cpu_forward_kwargs, gpu_forward_args, gpu_forward_kwargs))
# === Construct module on cpu and gpu ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
cpu_module = module_cls(*args, **kwargs).to(dtype).to("cpu")
cpu_module.train(training)
gpu_module = module_cls(*args, **kwargs).to(dtype).to(device)
gpu_module.train(training)
# === Lazy modules need to see an input to initialize params ===
if issubclass(module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
gpu_p.data.copy_(cpu_p)
# === Compare forward output between cpu and gpu ===
cpu_outputs = cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_outputs = gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
self.assertEqual(cpu_outputs, gpu_outputs)
# === Run backwards on CPU and GPU and compare results ===
def check_backward(cpu_output, gpu_output):
cpu_grad_output = cpu_output.clone().normal_()
gpu_grad_output = cpu_grad_output.type_as(gpu_output)
cpu_output.backward(cpu_grad_output, retain_graph=True)
gpu_output.backward(gpu_grad_output, retain_graph=True)
cpu_grad_input = self._get_grads(cpu_forward_args)
gpu_grad_input = self._get_grads(gpu_forward_args)
self.assertEqual(cpu_grad_input, gpu_grad_input)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
self.assertEqual(cpu_p.grad, gpu_p.grad)
cpu_grad_kwarg_input = self._get_grads(cpu_forward_kwargs)
gpu_grad_kwarg_input = self._get_grads(gpu_forward_kwargs)
self.assertEqual(cpu_grad_kwarg_input, gpu_grad_kwarg_input)
for _ in range(5):
if isinstance(cpu_outputs, torch.Tensor):
check_backward(cpu_outputs, gpu_outputs)
else:
flatten_cpu_outputs, _ = torch.utils._pytree.tree_flatten(cpu_outputs)
flatten_gpu_outputs, _ = torch.utils._pytree.tree_flatten(gpu_outputs)
for cpu_output, gpu_output in zip(flatten_cpu_outputs, flatten_gpu_outputs):
check_backward(cpu_output, gpu_output)
@skipIfMps
@modules(module_db)
def test_memory_format(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
module_memformat_affects_out = module_info.module_memformat_affects_out
def _get_mem_formats(channels_last=False, channels_last_3d=False):
if channels_last:
return ([torch.contiguous_format, torch.channels_last],
[torch.preserve_format, torch.contiguous_format, torch.channels_last])
elif channels_last_3d:
return ([torch.contiguous_format, torch.channels_last_3d],
[torch.preserve_format, torch.contiguous_format, torch.channels_last_3d])
else:
return ([torch.contiguous_format],
[torch.preserve_format, torch.contiguous_format])
# Check that at least one Tensor input has dim == n
def _check_dims(obj, n):
if isinstance(obj, torch.Tensor):
return obj.dim() == n
elif isinstance(obj, (tuple, list)):
return any(_check_dims(o, n) for o in obj)
else:
return False
# Called after _check_dims, when we know that >= 1 tensor can be converted to mem_format
def _to_mem_format(mem_format, obj):
def inner_to_mem_format(obj):
d = obj.dim()
if ((mem_format == torch.channels_last and d != 4)
or (mem_format == torch.channels_last_3d and d != 5)):
return obj
return obj.to(memory_format=mem_format)
return self._traverse_obj(obj, inner_to_mem_format)
def _check_out_mem_format(output, input_mem_format, module_mem_format):
def inner_check_out_mem_format(output):
d = output.dim()
if (d == 4 and ((input_mem_format == torch.channels_last)
or (module_mem_format == torch.channels_last and module_memformat_affects_out))):
self.assertTrue(output.is_contiguous(memory_format=torch.channels_last))
elif (d == 5 and ((input_mem_format == torch.channels_last_3d)
or (module_mem_format == torch.channels_last_3d and module_memformat_affects_out))):
self.assertTrue(output.is_contiguous(memory_format=torch.channels_last_3d))
else:
self.assertTrue(output.is_contiguous())
return self._traverse_obj(output, inner_check_out_mem_format)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
supports_channels_last = _check_dims(module_input.forward_input.args, 4)
supports_channels_last_3d = _check_dims(module_input.forward_input.args, 5)
input_mem_formats, module_mem_formats = _get_mem_formats(supports_channels_last, supports_channels_last_3d)
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Get output in (contiguous, contiguous) configuration. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
desired_outputs = m(*args, **kwargs)
for input_mem_format in input_mem_formats:
# === Change memformat of input. ===
module_input.forward_input.args = _to_mem_format(input_mem_format,
module_input.forward_input.args)
module_input.forward_input.kwargs = _to_mem_format(input_mem_format,
module_input.forward_input.kwargs)
for module_mem_format in module_mem_formats:
# === Change memformat of module ===
m.to(memory_format=module_mem_format)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to (contiguous, contiguous) output. ===
if input_mem_format != torch.contiguous_format or module_mem_formats != torch.contiguous_format:
self.assertEqual(outputs, desired_outputs)
# === Check mem format of output. ===
_check_out_mem_format(outputs, input_mem_format, module_mem_format)
# Test whether train and eval modes differ for each module. Use to verify
# that the ModuleInfo entry flag is correct.
@skipIfMps # the test doesn't work on MPS as double types are not supported
@modules(module_db, train_eval_mode=TrainEvalMode.train_only)
def test_if_train_and_eval_modes_differ(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
# Run forward inputs through to see if the training flag is accessed during forward.
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Remove training attribute and see if forward still works.
delattr(m, 'training')
# === Do forward pass. ===
try:
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
m(*args, **kwargs)
except AttributeError as e:
if "'training'" in str(e):
self.assertTrue(module_info.train_and_eval_differ,
f"The ModuleInfo entry for {module_info.name} has "
"train_and_eval_differ=False, but the training mode was found to "
"affect the forward pass. Consider setting train_and_eval_differ=True "
"for this ModuleInfo entry.")
else:
raise e
instantiate_device_type_tests(TestModule, globals())
if __name__ == '__main__':
run_tests()
|