1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
# Owner(s): ["module: unknown"]
import os
import re
import yaml
import textwrap
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from collections import namedtuple
path = os.path.dirname(os.path.realpath(__file__))
aten_native_yaml = os.path.join(path, '../aten/src/ATen/native/native_functions.yaml')
all_operators_with_namedtuple_return = {
'max', 'min', 'aminmax', 'median', 'nanmedian', 'mode', 'kthvalue', 'svd', 'symeig',
'qr', 'geqrf', 'slogdet', 'sort', 'topk', 'linalg_inv_ex',
'triangular_solve', 'cummax', 'cummin', 'linalg_eigh', "_linalg_eigh", "_unpack_dual", 'linalg_qr',
'linalg_svd', '_linalg_svd', 'linalg_slogdet', '_linalg_slogdet', 'fake_quantize_per_tensor_affine_cachemask',
'fake_quantize_per_channel_affine_cachemask', 'linalg_lstsq', 'linalg_eig', 'linalg_cholesky_ex',
'frexp', 'lu_unpack', 'histogram', 'histogramdd',
'_fake_quantize_per_tensor_affine_cachemask_tensor_qparams',
'_fused_moving_avg_obs_fq_helper', 'linalg_lu_factor', 'linalg_lu_factor_ex', 'linalg_lu',
'_linalg_det', '_lu_with_info', 'linalg_ldl_factor_ex', 'linalg_ldl_factor', 'linalg_solve_ex', '_linalg_solve_ex'
}
class TestNamedTupleAPI(TestCase):
def test_import_return_types(self):
import torch.return_types # noqa: F401
exec('from torch.return_types import *')
def test_native_functions_yaml(self):
operators_found = set()
regex = re.compile(r"^(\w*)(\(|\.)")
with open(aten_native_yaml, 'r') as file:
for f in yaml.safe_load(file.read()):
f = f['func']
ret = f.split('->')[1].strip()
name = regex.findall(f)[0][0]
if name in all_operators_with_namedtuple_return:
operators_found.add(name)
continue
if '_backward' in name or name.endswith('_forward'):
continue
if not ret.startswith('('):
continue
if ret == '()':
continue
ret = ret[1:-1].split(',')
for r in ret:
r = r.strip()
self.assertEqual(len(r.split()), 1, 'only allowlisted '
'operators are allowed to have named '
'return type, got ' + name)
self.assertEqual(all_operators_with_namedtuple_return, operators_found, textwrap.dedent("""
Some elements in the `all_operators_with_namedtuple_return` of test_namedtuple_return_api.py
could not be found. Do you forget to update test_namedtuple_return_api.py after renaming some
operator?
"""))
def test_namedtuple_return(self):
a = torch.randn(5, 5)
per_channel_scale = torch.randn(5)
per_channel_zp = torch.zeros(5, dtype=torch.int64)
op = namedtuple('op', ['operators', 'input', 'names', 'hasout'])
operators = [
op(operators=['max', 'min', 'median', 'nanmedian', 'mode', 'sort', 'topk', 'cummax', 'cummin'], input=(0,),
names=('values', 'indices'), hasout=True),
op(operators=['kthvalue'], input=(1, 0),
names=('values', 'indices'), hasout=True),
op(operators=['svd'], input=(), names=('U', 'S', 'V'), hasout=True),
op(operators=['linalg_svd', '_linalg_svd'], input=(), names=('U', 'S', 'Vh'), hasout=True),
op(operators=['slogdet', 'linalg_slogdet'], input=(), names=('sign', 'logabsdet'), hasout=True),
op(operators=['_linalg_slogdet'], input=(), names=('sign', 'logabsdet', 'LU', 'pivots'), hasout=True),
op(operators=['qr', 'linalg_qr'], input=(), names=('Q', 'R'), hasout=True),
op(operators=['geqrf'], input=(), names=('a', 'tau'), hasout=True),
op(operators=['symeig'], input=(True,), names=('eigenvalues', 'eigenvectors'), hasout=True),
op(operators=['triangular_solve'], input=(a,), names=('solution', 'cloned_coefficient'), hasout=True),
op(operators=['linalg_eig'], input=(), names=('eigenvalues', 'eigenvectors'), hasout=True),
op(operators=['linalg_eigh'], input=("L",), names=('eigenvalues', 'eigenvectors'), hasout=True),
op(operators=['_linalg_eigh'], input=("L",), names=('eigenvalues', 'eigenvectors'), hasout=True),
op(operators=['linalg_cholesky_ex'], input=(), names=('L', 'info'), hasout=True),
op(operators=['linalg_inv_ex'], input=(), names=('inverse', 'info'), hasout=True),
op(operators=['linalg_solve_ex'], input=(a,), names=('result', 'info'), hasout=True),
op(operators=['_linalg_solve_ex'], input=(a,), names=('result', 'LU', 'pivots', 'info'), hasout=True),
op(operators=['linalg_lu_factor'], input=(), names=('LU', 'pivots'), hasout=True),
op(operators=['linalg_lu_factor_ex'], input=(), names=('LU', 'pivots', 'info'), hasout=True),
op(operators=['linalg_ldl_factor'], input=(), names=('LD', 'pivots'), hasout=True),
op(operators=['linalg_ldl_factor_ex'], input=(), names=('LD', 'pivots', 'info'), hasout=True),
op(operators=['linalg_lu'], input=(), names=('P', 'L', 'U'), hasout=True),
op(operators=['fake_quantize_per_tensor_affine_cachemask'],
input=(0.1, 0, 0, 255), names=('output', 'mask',), hasout=False),
op(operators=['fake_quantize_per_channel_affine_cachemask'],
input=(per_channel_scale, per_channel_zp, 1, 0, 255),
names=('output', 'mask',), hasout=False),
op(operators=['_unpack_dual'], input=(0,), names=('primal', 'tangent'), hasout=False),
op(operators=['linalg_lstsq'], input=(a,), names=('solution', 'residuals', 'rank', 'singular_values'), hasout=False),
op(operators=['frexp'], input=(), names=('mantissa', 'exponent'), hasout=True),
op(operators=['lu_unpack'],
input=(torch.tensor([3, 2, 1, 4, 5], dtype=torch.int32), True, True),
names=('P', 'L', 'U'), hasout=True),
op(operators=['histogram'], input=(1,), names=('hist', 'bin_edges'), hasout=True),
op(operators=['histogramdd'], input=(1,), names=('hist', 'bin_edges'), hasout=False),
op(operators=['_fake_quantize_per_tensor_affine_cachemask_tensor_qparams'],
input=(torch.tensor([1.0]), torch.tensor([0], dtype=torch.int), torch.tensor([1]), 0, 255),
names=('output', 'mask',), hasout=False),
op(operators=['_fused_moving_avg_obs_fq_helper'],
input=(torch.tensor([1]), torch.tensor([1]), torch.tensor([0.1]), torch.tensor([0.1]),
torch.tensor([0.1]), torch.tensor([1]), 0.01, 0, 255, 0), names=('output', 'mask',), hasout=False),
op(operators=['_linalg_det'],
input=(), names=('result', 'LU', 'pivots'), hasout=True),
op(operators=['aminmax'], input=(), names=('min', 'max'), hasout=True),
op(operators=['_lu_with_info'],
input=(), names=('LU', 'pivots', 'info'), hasout=False),
]
def get_func(f):
"Return either torch.f or torch.linalg.f, where 'f' is a string"
mod = torch
if f.startswith('linalg_'):
mod = torch.linalg
f = f[7:]
if f.startswith('_'):
mod = torch._VF
return getattr(mod, f, None)
def check_namedtuple(tup, names):
"Check that the namedtuple 'tup' has the given names"
for i, name in enumerate(names):
self.assertIs(getattr(tup, name), tup[i])
def check_torch_return_type(f, names):
"""
Check that the return_type exists in torch.return_types
and they can constructed.
"""
return_type = getattr(torch.return_types, f)
inputs = [torch.randn(()) for _ in names]
self.assertEqual(type(return_type(inputs)), return_type)
for op in operators:
for f in op.operators:
# 1. check the namedtuple returned by calling torch.f
func = get_func(f)
if func:
ret1 = func(a, *op.input)
check_namedtuple(ret1, op.names)
check_torch_return_type(f, op.names)
#
# 2. check the out= variant, if it exists
if func and op.hasout:
ret2 = func(a, *op.input, out=tuple(ret1))
check_namedtuple(ret2, op.names)
check_torch_return_type(f + "_out", op.names)
#
# 3. check the Tensor.f method, if it exists
meth = getattr(a, f, None)
if meth:
ret3 = meth(*op.input)
check_namedtuple(ret3, op.names)
all_covered_operators = set([x for y in operators for x in y.operators])
self.assertEqual(all_operators_with_namedtuple_return, all_covered_operators, textwrap.dedent('''
The set of covered operators does not match the `all_operators_with_namedtuple_return` of
test_namedtuple_return_api.py. Do you forget to add test for that operator?
'''))
if __name__ == '__main__':
run_tests()
|