File: test_namedtuple_return_api.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (173 lines) | stat: -rw-r--r-- 9,438 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Owner(s): ["module: unknown"]

import os
import re
import yaml
import textwrap
import torch

from torch.testing._internal.common_utils import TestCase, run_tests
from collections import namedtuple


path = os.path.dirname(os.path.realpath(__file__))
aten_native_yaml = os.path.join(path, '../aten/src/ATen/native/native_functions.yaml')
all_operators_with_namedtuple_return = {
    'max', 'min', 'aminmax', 'median', 'nanmedian', 'mode', 'kthvalue', 'svd', 'symeig',
    'qr', 'geqrf', 'slogdet', 'sort', 'topk', 'linalg_inv_ex',
    'triangular_solve', 'cummax', 'cummin', 'linalg_eigh', "_linalg_eigh", "_unpack_dual", 'linalg_qr',
    'linalg_svd', '_linalg_svd', 'linalg_slogdet', '_linalg_slogdet', 'fake_quantize_per_tensor_affine_cachemask',
    'fake_quantize_per_channel_affine_cachemask', 'linalg_lstsq', 'linalg_eig', 'linalg_cholesky_ex',
    'frexp', 'lu_unpack', 'histogram', 'histogramdd',
    '_fake_quantize_per_tensor_affine_cachemask_tensor_qparams',
    '_fused_moving_avg_obs_fq_helper', 'linalg_lu_factor', 'linalg_lu_factor_ex', 'linalg_lu',
    '_linalg_det', '_lu_with_info', 'linalg_ldl_factor_ex', 'linalg_ldl_factor', 'linalg_solve_ex', '_linalg_solve_ex'
}


class TestNamedTupleAPI(TestCase):

    def test_import_return_types(self):
        import torch.return_types  # noqa: F401
        exec('from torch.return_types import *')

    def test_native_functions_yaml(self):
        operators_found = set()
        regex = re.compile(r"^(\w*)(\(|\.)")
        with open(aten_native_yaml, 'r') as file:
            for f in yaml.safe_load(file.read()):
                f = f['func']
                ret = f.split('->')[1].strip()
                name = regex.findall(f)[0][0]
                if name in all_operators_with_namedtuple_return:
                    operators_found.add(name)
                    continue
                if '_backward' in name or name.endswith('_forward'):
                    continue
                if not ret.startswith('('):
                    continue
                if ret == '()':
                    continue
                ret = ret[1:-1].split(',')
                for r in ret:
                    r = r.strip()
                    self.assertEqual(len(r.split()), 1, 'only allowlisted '
                                     'operators are allowed to have named '
                                     'return type, got ' + name)
        self.assertEqual(all_operators_with_namedtuple_return, operators_found, textwrap.dedent("""
        Some elements in the `all_operators_with_namedtuple_return` of test_namedtuple_return_api.py
        could not be found. Do you forget to update test_namedtuple_return_api.py after renaming some
        operator?
        """))

    def test_namedtuple_return(self):
        a = torch.randn(5, 5)
        per_channel_scale = torch.randn(5)
        per_channel_zp = torch.zeros(5, dtype=torch.int64)

        op = namedtuple('op', ['operators', 'input', 'names', 'hasout'])
        operators = [
            op(operators=['max', 'min', 'median', 'nanmedian', 'mode', 'sort', 'topk', 'cummax', 'cummin'], input=(0,),
               names=('values', 'indices'), hasout=True),
            op(operators=['kthvalue'], input=(1, 0),
               names=('values', 'indices'), hasout=True),
            op(operators=['svd'], input=(), names=('U', 'S', 'V'), hasout=True),
            op(operators=['linalg_svd', '_linalg_svd'], input=(), names=('U', 'S', 'Vh'), hasout=True),
            op(operators=['slogdet', 'linalg_slogdet'], input=(), names=('sign', 'logabsdet'), hasout=True),
            op(operators=['_linalg_slogdet'], input=(), names=('sign', 'logabsdet', 'LU', 'pivots'), hasout=True),
            op(operators=['qr', 'linalg_qr'], input=(), names=('Q', 'R'), hasout=True),
            op(operators=['geqrf'], input=(), names=('a', 'tau'), hasout=True),
            op(operators=['symeig'], input=(True,), names=('eigenvalues', 'eigenvectors'), hasout=True),
            op(operators=['triangular_solve'], input=(a,), names=('solution', 'cloned_coefficient'), hasout=True),
            op(operators=['linalg_eig'], input=(), names=('eigenvalues', 'eigenvectors'), hasout=True),
            op(operators=['linalg_eigh'], input=("L",), names=('eigenvalues', 'eigenvectors'), hasout=True),
            op(operators=['_linalg_eigh'], input=("L",), names=('eigenvalues', 'eigenvectors'), hasout=True),
            op(operators=['linalg_cholesky_ex'], input=(), names=('L', 'info'), hasout=True),
            op(operators=['linalg_inv_ex'], input=(), names=('inverse', 'info'), hasout=True),
            op(operators=['linalg_solve_ex'], input=(a,), names=('result', 'info'), hasout=True),
            op(operators=['_linalg_solve_ex'], input=(a,), names=('result', 'LU', 'pivots', 'info'), hasout=True),
            op(operators=['linalg_lu_factor'], input=(), names=('LU', 'pivots'), hasout=True),
            op(operators=['linalg_lu_factor_ex'], input=(), names=('LU', 'pivots', 'info'), hasout=True),
            op(operators=['linalg_ldl_factor'], input=(), names=('LD', 'pivots'), hasout=True),
            op(operators=['linalg_ldl_factor_ex'], input=(), names=('LD', 'pivots', 'info'), hasout=True),
            op(operators=['linalg_lu'], input=(), names=('P', 'L', 'U'), hasout=True),
            op(operators=['fake_quantize_per_tensor_affine_cachemask'],
               input=(0.1, 0, 0, 255), names=('output', 'mask',), hasout=False),
            op(operators=['fake_quantize_per_channel_affine_cachemask'],
               input=(per_channel_scale, per_channel_zp, 1, 0, 255),
               names=('output', 'mask',), hasout=False),
            op(operators=['_unpack_dual'], input=(0,), names=('primal', 'tangent'), hasout=False),
            op(operators=['linalg_lstsq'], input=(a,), names=('solution', 'residuals', 'rank', 'singular_values'), hasout=False),
            op(operators=['frexp'], input=(), names=('mantissa', 'exponent'), hasout=True),
            op(operators=['lu_unpack'],
               input=(torch.tensor([3, 2, 1, 4, 5], dtype=torch.int32), True, True),
               names=('P', 'L', 'U'), hasout=True),
            op(operators=['histogram'], input=(1,), names=('hist', 'bin_edges'), hasout=True),
            op(operators=['histogramdd'], input=(1,), names=('hist', 'bin_edges'), hasout=False),
            op(operators=['_fake_quantize_per_tensor_affine_cachemask_tensor_qparams'],
               input=(torch.tensor([1.0]), torch.tensor([0], dtype=torch.int), torch.tensor([1]), 0, 255),
               names=('output', 'mask',), hasout=False),
            op(operators=['_fused_moving_avg_obs_fq_helper'],
               input=(torch.tensor([1]), torch.tensor([1]), torch.tensor([0.1]), torch.tensor([0.1]),
               torch.tensor([0.1]), torch.tensor([1]), 0.01, 0, 255, 0), names=('output', 'mask',), hasout=False),
            op(operators=['_linalg_det'],
               input=(), names=('result', 'LU', 'pivots'), hasout=True),
            op(operators=['aminmax'], input=(), names=('min', 'max'), hasout=True),
            op(operators=['_lu_with_info'],
               input=(), names=('LU', 'pivots', 'info'), hasout=False),
        ]

        def get_func(f):
            "Return either torch.f or torch.linalg.f, where 'f' is a string"
            mod = torch
            if f.startswith('linalg_'):
                mod = torch.linalg
                f = f[7:]
            if f.startswith('_'):
                mod = torch._VF
            return getattr(mod, f, None)

        def check_namedtuple(tup, names):
            "Check that the namedtuple 'tup' has the given names"
            for i, name in enumerate(names):
                self.assertIs(getattr(tup, name), tup[i])

        def check_torch_return_type(f, names):
            """
            Check that the return_type exists in torch.return_types
            and they can constructed.
            """
            return_type = getattr(torch.return_types, f)
            inputs = [torch.randn(()) for _ in names]
            self.assertEqual(type(return_type(inputs)), return_type)

        for op in operators:
            for f in op.operators:
                # 1. check the namedtuple returned by calling torch.f
                func = get_func(f)
                if func:
                    ret1 = func(a, *op.input)
                    check_namedtuple(ret1, op.names)
                    check_torch_return_type(f, op.names)
                #
                # 2. check the out= variant, if it exists
                if func and op.hasout:
                    ret2 = func(a, *op.input, out=tuple(ret1))
                    check_namedtuple(ret2, op.names)
                    check_torch_return_type(f + "_out", op.names)
                #
                # 3. check the Tensor.f method, if it exists
                meth = getattr(a, f, None)
                if meth:
                    ret3 = meth(*op.input)
                    check_namedtuple(ret3, op.names)

        all_covered_operators = set([x for y in operators for x in y.operators])

        self.assertEqual(all_operators_with_namedtuple_return, all_covered_operators, textwrap.dedent('''
        The set of covered operators does not match the `all_operators_with_namedtuple_return` of
        test_namedtuple_return_api.py. Do you forget to add test for that operator?
        '''))

if __name__ == '__main__':
    run_tests()