1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
# Owner(s): ["module: nn"]
import math
import torch
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import run_tests, TestCase
class TestMHADeviceType(TestCase):
@torch.no_grad()
def _test_transform_bias_rescale_qkv_impl(
self, device, dtype, use_nt, use_padding=False
):
tests = [
(64, 4, 16, 8),
# dim_per_head = 12 does not divide evenly by CPU vectorization length of 8
(24, 2, 4, 2),
# Make sure CUDA can handle small input sizes
(2, 2, 2, 2),
# dim_per_head = 6 does not divide evenly by CUDA vectorization length of 4,
# causes alignment issues
(24, 4, 4, 2),
(48, 4, 16, 8),
]
for (embed_dim, num_heads, bs, sl) in tests:
with self.subTest(embed_dim=embed_dim, num_heads=num_heads, bs=bs, sl=sl):
torch.manual_seed(9343)
dense_x = x = (
torch.randn(bs, sl, 3 * embed_dim, device=device, dtype=dtype) * 10
)
if use_padding:
x[0][-1] = torch.full(x[0][-1].shape, float("-Inf"))
if use_nt:
xs = list(torch.unbind(x))
if use_padding:
xs[0] = xs[0][:-1]
x = torch.nested.nested_tensor(xs, device=device, dtype=dtype)
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
# We have to use inference_mode here because q/k/v are
# all views of the same Tensor, which autograd doesn't
# like. This is fine because this function is only
# exposed to Python for purposes of writing this test.
with torch.inference_mode():
(q, k, v) = torch._transform_bias_rescale_qkv(
x, qkv.bias, num_heads=num_heads
)
def simple_transform_bias_rescale_qkv(qkv, bias):
(q, k, v) = torch.split(qkv, embed_dim, dim=-1)
(q_bias, k_bias, v_bias) = torch.split(bias, embed_dim, dim=-1)
def embiggen(x):
if not use_nt:
return x
b, t, d = x.size()
t = t + (8 - t % 8) % 8
newsize = (b, t, d)
new_x = torch.zeros(newsize, device=device, dtype=dtype)
new_x[:x.size()[0], :x.size()[1], :x.size()[2]] = x
return new_x
return tuple(
embiggen(x).reshape(
(bs, -1, num_heads, embed_dim // num_heads)
).transpose(2, 1)
for x in (
(q + q_bias) / math.sqrt(embed_dim // num_heads),
(k + k_bias),
(v + v_bias),
)
)
correct_q, correct_k, correct_v = simple_transform_bias_rescale_qkv(
dense_x, qkv.bias
)
if use_nt and use_padding:
for t in (correct_q, correct_k, correct_v):
t[t == float("-Inf")] = 0
self.assertEqual(q.size(), correct_q.size())
torch.testing.assert_close(q, correct_q)
torch.testing.assert_close(k, correct_k)
torch.testing.assert_close(v, correct_v)
@dtypesIfCUDA(torch.float)
@dtypes(torch.float)
@skipMeta
def test_transform_bias_rescale_qkv(self, device, dtype):
for use_padding in (False, True):
with self.subTest(use_padding=use_padding):
self._test_transform_bias_rescale_qkv_impl(
device, dtype, use_nt=False, use_padding=use_padding
)
@dtypesIfCUDA(torch.float)
@dtypes(torch.float)
@skipMeta
@onlyCUDA
def test_transform_bias_rescale_qkv_nested(self, device, dtype):
for use_padding in (False, True):
with self.subTest(use_padding=use_padding):
self._test_transform_bias_rescale_qkv_impl(
device, dtype, use_nt=True, use_padding=use_padding
)
def _test_multihead_attention_impl(
self, device, dtype, mode, use_nt, need_weights, average_attn_weights, use_padding=False, pad_all=False
):
embed_dim = 64
num_heads = 4
bs = 16
sl = 8
q = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
if use_padding:
if pad_all:
for q_i in q:
q_i[-1] = torch.zeros_like(q[0][-1], device=device, dtype=dtype)
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
for mask_i in mask:
mask_i[-1] = True
else:
q[0][-1] = torch.zeros_like(q[0][-1], device=device, dtype=dtype)
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
mask[0][-1] = True
if mode == "self":
k = q
v = q
elif mode == "encdec":
k = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
v = k
elif mode == "generic":
k = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
v = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
else:
self.fail(f"invalid mode `{mode}`!")
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
proj = torch.nn.Linear(embed_dim, embed_dim, device=device, dtype=dtype)
pt = torch.nn.MultiheadAttention(
embed_dim, num_heads, batch_first=True, device=device, dtype=dtype
)
pt.in_proj_weight = qkv.weight
pt.in_proj_bias = qkv.bias
pt.out_proj.weight = proj.weight
pt.out_proj.bias = proj.bias
class NativeMHA(torch.nn.Module):
def __init__(self, embed_dim, num_heads, qkv, proj):
super().__init__()
self.qkv = qkv
self.proj = proj
self.embed_dim = embed_dim
self.num_heads = num_heads
def forward(self, q, k, v, key_padding_mask):
return torch._native_multi_head_attention(
q,
k,
v,
self.embed_dim,
self.num_heads,
self.qkv.weight,
self.qkv.bias,
self.proj.weight,
self.proj.bias,
key_padding_mask,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
mask_type=1, # mask_type = 1 => src_key_padding_mask, mask_type = 0 => src_mask
)
npt = NativeMHA(
embed_dim=embed_dim, num_heads=num_heads, qkv=qkv, proj=proj
).to(dtype)
if device == "cuda":
pt = pt.cuda()
npt = npt.cuda()
ypt, weight_pt = pt(
q,
k,
v,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
key_padding_mask=mask if use_padding else None,
)
if use_nt:
qs = list(torch.unbind(q))
if use_padding:
if pad_all:
qs = [x[:-1] for x in qs]
else:
qs[0] = qs[0][:-1]
q = torch.nested.nested_tensor(qs, device=device, dtype=dtype)
if mode == "self":
k = v = q
elif mode == "encdec":
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
v = k
else:
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
v = torch.nested.nested_tensor(torch.unbind(v), device=device, dtype=dtype)
ynpt, weight_npt = npt(
q, k, v, key_padding_mask=mask if use_padding and not use_nt else None
)
if use_nt:
ynpt = ynpt.to_padded_tensor(0)
if pad_all:
ynpt_final = torch.zeros_like(ypt)
ynpt_final[:, :ynpt.shape[1], :] = ynpt
ynpt = ynpt_final
def do_pad_all(tensors):
for t in tensors:
for t_i in t:
t_i[-1] = torch.zeros_like(t_i[-1], device=device, dtype=dtype)
# PyTorch implementation returns non-zero junk in the padding
# locations; overwrite it so that the comparison works out.
if use_padding:
ypt[0][-1] = torch.zeros_like(ypt[0][-1], device=device, dtype=dtype)
ynpt[0][-1] = torch.zeros_like(ynpt[0][-1], device=device, dtype=dtype)
if pad_all:
do_pad_all((ypt, ynpt))
# Zero the last row of each TxT weight matrix
if need_weights:
if average_attn_weights:
weight_pt[0][-1] = torch.zeros_like(weight_pt[0][-1], device=device, dtype=dtype)
weight_npt[0][-1] = torch.zeros_like(weight_npt[0][-1], device=device, dtype=dtype)
if pad_all:
do_pad_all((weight_pt, weight_npt))
else:
for nh in range(num_heads):
weight_pt[0][nh][-1] = torch.zeros_like(weight_pt[0][nh][-1], device=device, dtype=dtype)
weight_npt[0][nh][-1] = torch.zeros_like(weight_npt[0][nh][-1], device=device, dtype=dtype)
if dtype == torch.half:
torch.testing.assert_close(ypt, ynpt, atol=1e-3, rtol=1e-3)
else:
# High rtol seems necessary for
# test_native_multihead_attention_cpu_float32 on Windows,
# otherwise 2e-4 would likely be fine.
torch.testing.assert_close(ypt, ynpt, atol=2e-5, rtol=2e-3)
if need_weights:
torch.testing.assert_close(weight_pt, weight_npt)
else:
self.assertEqual(weight_pt, weight_npt)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_self_attention(self, device, dtype):
for (use_padding, pad_all) in ((False, False), (True, False), (True, True)):
for use_nt in (False, True):
# Figuring out exactly which elements of the weights are garbage in this
# case eludes me, and it's not particularly enlightening to test anyway
# because padding doesn't especially affect the intermediate weights.
for need_weights in (False, not pad_all):
for average_attn_weights in (False, True):
with self.subTest(use_padding=use_padding, pad_all=pad_all,
use_nt=use_nt, need_weights=need_weights,
average_attn_weights=average_attn_weights):
self._test_multihead_attention_impl(
device,
dtype,
"self",
use_nt=use_nt,
use_padding=use_padding,
pad_all=pad_all,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_encoder_decoder_attention(self, device, dtype):
self._test_multihead_attention_impl(
device,
dtype,
"encdec",
use_nt=False,
need_weights=False,
average_attn_weights=False,
)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_attention(self, device, dtype):
self._test_multihead_attention_impl(
device,
dtype,
"generic",
use_nt=False,
need_weights=False,
average_attn_weights=False,
)
instantiate_device_type_tests(TestMHADeviceType, globals())
if __name__ == "__main__":
run_tests()
|