1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
# Owner(s): ["module: numpy"]
import torch
import numpy as np
from itertools import product
from torch.testing._internal.common_utils import \
(TestCase, run_tests)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, onlyCPU, dtypes, skipMeta)
from torch.testing._internal.common_dtype import all_types_and_complex_and
# For testing handling NumPy objects and sending tensors to / accepting
# arrays from NumPy.
class TestNumPyInterop(TestCase):
# Note: the warning this tests for only appears once per program, so
# other instances of this warning should be addressed to avoid
# the tests depending on the order in which they're run.
@onlyCPU
def test_numpy_non_writeable(self, device):
arr = np.zeros(5)
arr.flags['WRITEABLE'] = False
self.assertWarns(UserWarning, lambda: torch.from_numpy(arr))
@onlyCPU
def test_numpy_unresizable(self, device) -> None:
x = np.zeros((2, 2))
y = torch.from_numpy(x)
with self.assertRaises(ValueError):
x.resize((5, 5))
z = torch.randn(5, 5)
w = z.numpy()
with self.assertRaises(RuntimeError):
z.resize_(10, 10)
with self.assertRaises(ValueError):
w.resize((10, 10))
@onlyCPU
def test_to_numpy(self, device) -> None:
def get_castable_tensor(shape, dtype):
if dtype.is_floating_point:
dtype_info = torch.finfo(dtype)
# can't directly use min and max, because for double, max - min
# is greater than double range and sampling always gives inf.
low = max(dtype_info.min, -1e10)
high = min(dtype_info.max, 1e10)
t = torch.empty(shape, dtype=torch.float64).uniform_(low, high)
else:
# can't directly use min and max, because for int64_t, max - min
# is greater than int64_t range and triggers UB.
low = max(torch.iinfo(dtype).min, int(-1e10))
high = min(torch.iinfo(dtype).max, int(1e10))
t = torch.empty(shape, dtype=torch.int64).random_(low, high)
return t.to(dtype)
dtypes = [
torch.uint8,
torch.int8,
torch.short,
torch.int,
torch.half,
torch.float,
torch.double,
torch.long,
]
for dtp in dtypes:
# 1D
sz = 10
x = get_castable_tensor(sz, dtp)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
# 1D > 0 storage offset
xm = get_castable_tensor(sz * 2, dtp)
x = xm.narrow(0, sz - 1, sz)
self.assertTrue(x.storage_offset() > 0)
y = x.numpy()
for i in range(sz):
self.assertEqual(x[i], y[i])
def check2d(x, y):
for i in range(sz1):
for j in range(sz2):
self.assertEqual(x[i][j], y[i][j])
# empty
x = torch.tensor([]).to(dtp)
y = x.numpy()
self.assertEqual(y.size, 0)
# contiguous 2D
sz1 = 3
sz2 = 5
x = get_castable_tensor((sz1, sz2), dtp)
y = x.numpy()
check2d(x, y)
self.assertTrue(y.flags['C_CONTIGUOUS'])
# with storage offset
xm = get_castable_tensor((sz1 * 2, sz2), dtp)
x = xm.narrow(0, sz1 - 1, sz1)
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
self.assertTrue(y.flags['C_CONTIGUOUS'])
# non-contiguous 2D
x = get_castable_tensor((sz2, sz1), dtp).t()
y = x.numpy()
check2d(x, y)
self.assertFalse(y.flags['C_CONTIGUOUS'])
# with storage offset
xm = get_castable_tensor((sz2 * 2, sz1), dtp)
x = xm.narrow(0, sz2 - 1, sz2).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
# non-contiguous 2D with holes
xm = get_castable_tensor((sz2 * 2, sz1 * 2), dtp)
x = xm.narrow(0, sz2 - 1, sz2).narrow(1, sz1 - 1, sz1).t()
y = x.numpy()
self.assertTrue(x.storage_offset() > 0)
check2d(x, y)
if dtp != torch.half:
# check writeable
x = get_castable_tensor((3, 4), dtp)
y = x.numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
y = x.t().numpy()
self.assertTrue(y.flags.writeable)
y[0][1] = 3
self.assertTrue(x[0][1] == 3)
def test_to_numpy_bool(self, device) -> None:
x = torch.tensor([True, False], dtype=torch.bool)
self.assertEqual(x.dtype, torch.bool)
y = x.numpy()
self.assertEqual(y.dtype, np.bool_)
for i in range(len(x)):
self.assertEqual(x[i], y[i])
x = torch.tensor([True], dtype=torch.bool)
self.assertEqual(x.dtype, torch.bool)
y = x.numpy()
self.assertEqual(y.dtype, np.bool_)
self.assertEqual(x[0], y[0])
def test_to_numpy_force_argument(self, device) -> None:
for force in [False, True]:
for requires_grad in [False, True]:
for sparse in [False, True]:
for conj in [False, True]:
data = [[1 + 2j, -2 + 3j], [-1 - 2j, 3 - 2j]]
x = torch.tensor(data, requires_grad=requires_grad, device=device)
y = x
if sparse:
if requires_grad:
continue
x = x.to_sparse()
if conj:
x = x.conj()
y = x.resolve_conj()
expect_error = requires_grad or sparse or conj or not device == 'cpu'
error_msg = r"Use (t|T)ensor\..*(\.numpy\(\))?"
if not force and expect_error:
self.assertRaisesRegex((RuntimeError, TypeError), error_msg, lambda: x.numpy())
self.assertRaisesRegex((RuntimeError, TypeError), error_msg, lambda: x.numpy(force=False))
elif force and sparse:
self.assertRaisesRegex(TypeError, error_msg, lambda: x.numpy(force=True))
else:
self.assertEqual(x.numpy(force=force), y)
def test_from_numpy(self, device) -> None:
dtypes = [
np.double,
np.float64,
np.float16,
np.complex64,
np.complex128,
np.int64,
np.int32,
np.int16,
np.int8,
np.uint8,
np.longlong,
np.bool_,
]
complex_dtypes = [
np.complex64,
np.complex128,
]
for dtype in dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
tensor_from_array = torch.from_numpy(array)
# TODO: change to tensor equality check once HalfTensor
# implements `==`
for i in range(len(array)):
self.assertEqual(tensor_from_array[i], array[i])
# ufunc 'remainder' not supported for complex dtypes
if dtype not in complex_dtypes:
# This is a special test case for Windows
# https://github.com/pytorch/pytorch/issues/22615
array2 = array % 2
tensor_from_array2 = torch.from_numpy(array2)
for i in range(len(array2)):
self.assertEqual(tensor_from_array2[i], array2[i])
# Test unsupported type
array = np.array([1, 2, 3, 4], dtype=np.uint16)
with self.assertRaises(TypeError):
tensor_from_array = torch.from_numpy(array)
# check storage offset
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[1]
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[1]
self.assertEqual(torch.from_numpy(x), expected)
# check noncontiguous
x = np.linspace(1, 25, 25)
x.shape = (5, 5)
expected = torch.arange(1, 26, dtype=torch.float64).view(5, 5).t()
self.assertEqual(torch.from_numpy(x.T), expected)
# check noncontiguous with holes
x = np.linspace(1, 125, 125)
x.shape = (5, 5, 5)
x = x[:, 1]
expected = torch.arange(1, 126, dtype=torch.float64).view(5, 5, 5)[:, 1]
self.assertEqual(torch.from_numpy(x), expected)
# check zero dimensional
x = np.zeros((0, 2))
self.assertEqual(torch.from_numpy(x).shape, (0, 2))
x = np.zeros((2, 0))
self.assertEqual(torch.from_numpy(x).shape, (2, 0))
# check ill-sized strides raise exception
x = np.array([3., 5., 8.])
x.strides = (3,)
self.assertRaises(ValueError, lambda: torch.from_numpy(x))
@skipMeta
def test_from_list_of_ndarray_warning(self, device):
warning_msg = r"Creating a tensor from a list of numpy.ndarrays is extremely slow"
with self.assertWarnsOnceRegex(UserWarning, warning_msg):
torch.tensor([np.array([0]), np.array([1])], device=device)
def test_ctor_with_invalid_numpy_array_sequence(self, device):
# Invalid list of numpy array
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor([np.random.random(size=(3, 3)), np.random.random(size=(3, 0))], device=device)
# Invalid list of list of numpy array
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor([[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))]], device=device)
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor([[np.random.random(size=(3, 3)), np.random.random(size=(3, 3))],
[np.random.random(size=(3, 3)), np.random.random(size=(3, 2))]], device=device)
# expected shape is `[1, 2, 3]`, hence we try to iterate over 0-D array
# leading to type error : not a sequence.
with self.assertRaisesRegex(TypeError, "not a sequence"):
torch.tensor([[np.random.random(size=(3)), np.random.random()]], device=device)
# list of list or numpy array.
with self.assertRaisesRegex(ValueError, "expected sequence of length"):
torch.tensor([[1, 2, 3], np.random.random(size=(2,)), ], device=device)
@onlyCPU
def test_ctor_with_numpy_scalar_ctor(self, device) -> None:
dtypes = [
np.double,
np.float64,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
np.bool_,
]
for dtype in dtypes:
self.assertEqual(dtype(42), torch.tensor(dtype(42)).item())
@onlyCPU
def test_numpy_index(self, device):
i = np.array([0, 1, 2], dtype=np.int32)
x = torch.randn(5, 5)
for idx in i:
self.assertFalse(isinstance(idx, int))
self.assertEqual(x[idx], x[int(idx)])
@onlyCPU
def test_numpy_array_interface(self, device):
types = [
torch.DoubleTensor,
torch.FloatTensor,
torch.HalfTensor,
torch.LongTensor,
torch.IntTensor,
torch.ShortTensor,
torch.ByteTensor,
]
dtypes = [
np.float64,
np.float32,
np.float16,
np.int64,
np.int32,
np.int16,
np.uint8,
]
for tp, dtype in zip(types, dtypes):
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
if np.dtype(dtype).kind == 'u': # type: ignore[misc]
# .type expects a XxxTensor, which have no type hints on
# purpose, so ignore during mypy type checking
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
array = np.array([1, 2, 3, 4], dtype=dtype)
else:
x = torch.tensor([1, -2, 3, -4]).type(tp) # type: ignore[call-overload]
array = np.array([1, -2, 3, -4], dtype=dtype)
# Test __array__ w/o dtype argument
asarray = np.asarray(x)
self.assertIsInstance(asarray, np.ndarray)
self.assertEqual(asarray.dtype, dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test __array_wrap__, same dtype
abs_x = np.abs(x)
abs_array = np.abs(array)
self.assertIsInstance(abs_x, tp)
for i in range(len(x)):
self.assertEqual(abs_x[i], abs_array[i])
# Test __array__ with dtype argument
for dtype in dtypes:
x = torch.IntTensor([1, -2, 3, -4])
asarray = np.asarray(x, dtype=dtype)
self.assertEqual(asarray.dtype, dtype)
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
if np.dtype(dtype).kind == 'u': # type: ignore[misc]
wrapped_x = np.array([1, -2, 3, -4], dtype=dtype)
for i in range(len(x)):
self.assertEqual(asarray[i], wrapped_x[i])
else:
for i in range(len(x)):
self.assertEqual(asarray[i], x[i])
# Test some math functions with float types
float_types = [torch.DoubleTensor, torch.FloatTensor]
float_dtypes = [np.float64, np.float32]
for tp, dtype in zip(float_types, float_dtypes):
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
array = np.array([1, 2, 3, 4], dtype=dtype)
for func in ['sin', 'sqrt', 'ceil']:
ufunc = getattr(np, func)
res_x = ufunc(x)
res_array = ufunc(array)
self.assertIsInstance(res_x, tp)
for i in range(len(x)):
self.assertEqual(res_x[i], res_array[i])
# Test functions with boolean return value
for tp, dtype in zip(types, dtypes):
x = torch.tensor([1, 2, 3, 4]).type(tp) # type: ignore[call-overload]
array = np.array([1, 2, 3, 4], dtype=dtype)
geq2_x = np.greater_equal(x, 2)
geq2_array = np.greater_equal(array, 2).astype('uint8')
self.assertIsInstance(geq2_x, torch.ByteTensor)
for i in range(len(x)):
self.assertEqual(geq2_x[i], geq2_array[i])
@onlyCPU
def test_multiplication_numpy_scalar(self, device) -> None:
for np_dtype in [np.float32, np.float64, np.int32, np.int64, np.int16, np.uint8]:
for t_dtype in [torch.float, torch.double]:
# mypy raises an error when np.floatXY(2.0) is called
# even though this is valid code
np_sc = np_dtype(2.0) # type: ignore[abstract, arg-type]
t = torch.ones(2, requires_grad=True, dtype=t_dtype)
r1 = t * np_sc
self.assertIsInstance(r1, torch.Tensor)
self.assertTrue(r1.dtype == t_dtype)
self.assertTrue(r1.requires_grad)
r2 = np_sc * t
self.assertIsInstance(r2, torch.Tensor)
self.assertTrue(r2.dtype == t_dtype)
self.assertTrue(r2.requires_grad)
@onlyCPU
def test_parse_numpy_int(self, device):
# Only concrete class can be given where "Type[number[_64Bit]]" is expected
self.assertRaisesRegex(RuntimeError, "Overflow",
lambda: torch.mean(torch.randn(1, 1), np.uint64(-1))) # type: ignore[call-overload]
# https://github.com/pytorch/pytorch/issues/29252
for nptype in [np.int16, np.int8, np.uint8, np.int32, np.int64]:
scalar = 3
np_arr = np.array([scalar], dtype=nptype)
np_val = np_arr[0]
# np integral type can be treated as a python int in native functions with
# int parameters:
self.assertEqual(torch.ones(5).diag(scalar), torch.ones(5).diag(np_val))
self.assertEqual(torch.ones([2, 2, 2, 2]).mean(scalar), torch.ones([2, 2, 2, 2]).mean(np_val))
# numpy integral type parses like a python int in custom python bindings:
self.assertEqual(torch.Storage(np_val).size(), scalar) # type: ignore[attr-defined]
tensor = torch.tensor([2], dtype=torch.int)
tensor[0] = np_val
self.assertEqual(tensor[0], np_val)
# Original reported issue, np integral type parses to the correct
# PyTorch integral type when passed for a `Scalar` parameter in
# arithmetic operations:
t = torch.from_numpy(np_arr)
self.assertEqual((t + np_val).dtype, t.dtype)
self.assertEqual((np_val + t).dtype, t.dtype)
def test_has_storage_numpy(self, device):
for dtype in [np.float32, np.float64, np.int64,
np.int32, np.int16, np.uint8]:
arr = np.array([1], dtype=dtype)
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.float32).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.double).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.int).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.long).storage())
self.assertIsNotNone(torch.tensor(arr, device=device, dtype=torch.uint8).storage())
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_numpy_scalar_cmp(self, device, dtype):
if dtype.is_complex:
tensors = (torch.tensor(complex(1, 3), dtype=dtype, device=device),
torch.tensor([complex(1, 3), 0, 2j], dtype=dtype, device=device),
torch.tensor([[complex(3, 1), 0], [-1j, 5]], dtype=dtype, device=device))
else:
tensors = (torch.tensor(3, dtype=dtype, device=device),
torch.tensor([1, 0, -3], dtype=dtype, device=device),
torch.tensor([[3, 0, -1], [3, 5, 4]], dtype=dtype, device=device))
for tensor in tensors:
if dtype == torch.bfloat16:
with self.assertRaises(TypeError):
np_array = tensor.cpu().numpy()
continue
np_array = tensor.cpu().numpy()
for t, a in product((tensor.flatten()[0], tensor.flatten()[0].item()),
(np_array.flatten()[0], np_array.flatten()[0].item())):
self.assertEqual(t, a)
if dtype == torch.complex64 and torch.is_tensor(t) and type(a) == np.complex64:
# TODO: Imaginary part is dropped in this case. Need fix.
# https://github.com/pytorch/pytorch/issues/43579
self.assertFalse(t == a)
else:
self.assertTrue(t == a)
instantiate_device_type_tests(TestNumPyInterop, globals())
if __name__ == '__main__':
run_tests()
|