1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
|
# Owner(s): ["module: unknown"]
from collections.abc import Sequence
from functools import partial
import warnings
import unittest
import itertools
import torch
import contextlib
from collections import defaultdict
from importlib import import_module
from torch.utils._pytree import tree_map
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import (
floating_and_complex_types_and,
all_types_and_complex_and,
)
from test_proxy_tensor import xfail, skip, skipOps
from torch.testing._internal.common_utils import (
TestCase,
is_iterable_of_tensors,
run_tests,
IS_SANDCASTLE,
clone_input_helper,
IS_CI,
suppress_warnings,
noncontiguous_like,
TEST_WITH_ASAN,
TEST_WITH_UBSAN,
skipIfRocm,
IS_WINDOWS,
IS_FBCODE,
first_sample,
parametrize,
skipIfSlowGradcheckEnv,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
UnaryUfuncInfo,
ReductionOpInfo,
ReductionPythonRefInfo,
SpectralFuncInfo,
ops_and_refs,
python_ref_db,
BinaryUfuncInfo,
)
from torch.testing._internal.common_device_type import (
deviceCountAtLeast,
instantiate_device_type_tests,
ops,
onlyCUDA,
onlyCPU,
onlyNativeDeviceTypes,
OpDTypes,
skipCUDAIfRocm,
skipMeta,
)
from torch._subclasses.fake_tensor import (
FakeTensor,
FakeTensorMode,
)
from torch._subclasses.fake_utils import outputs_alias_inputs
import torch._prims as prims
from torch._prims.context import TorchRefsMode
from torch.testing._internal import opinfo
from torch.testing._internal import composite_compliance
from torch.utils._pytree import tree_flatten
from torch.utils._python_dispatch import TorchDispatchMode
# TODO: fixme https://github.com/pytorch/pytorch/issues/68972
torch.set_default_dtype(torch.float32)
# variant testing is only done with torch.float and torch.cfloat to avoid
# excessive test times and maximize signal to noise ratio
_variant_ops = partial(
ops, dtypes=OpDTypes.supported, allowed_dtypes=(torch.float, torch.cfloat)
)
# Get names of all the operators which have ref in their entry in OpInfo (testing infra)
# except for elementwise unary operators (separately implemented in test/test_unary_ufuncs.py),
# elementwise binary operators (separately implemented in test_binary_ufuncs.py),
# reduction operations (separately impelemented in test_reductions.py),
# and Spectral Functions (separately implemented for only 1D as of now, in test/test_spectral_ops.py)
_ref_test_ops = tuple(
filter(
lambda op: not isinstance(
op, (UnaryUfuncInfo, ReductionOpInfo, SpectralFuncInfo, BinaryUfuncInfo)
)
and op.ref is not None,
op_db,
)
)
_ops_and_refs = op_db + python_ref_db
aten = torch.ops.aten
# Tests that apply to all operators and aren't related to any particular
# system
@skipIfSlowGradcheckEnv
class TestCommon(TestCase):
exact_dtype = True
# Verifies, on teardown, that no OpInfo is still using dynamic dtypes in CI
@classmethod
def tearDownClass(cls):
super().tearDownClass()
if IS_CI:
err_msg = (
"The operator(s) below is(are) using dynamic_dtypes in the OpInfo entries."
"This is OK for testing, but be sure to set the dtypes manually before landing your PR!"
)
# Assure no opinfo entry has dynamic_dtypes
filtered_ops = list(filter(opinfo.utils.is_dynamic_dtype_set, op_db))
for op in filtered_ops:
fmt_str = opinfo.utils.str_format_dynamic_dtype(op)
err_msg += "\n" + fmt_str
assert len(filtered_ops) == 0, err_msg
# Validates that each OpInfo works correctly on different CUDA devices
@onlyCUDA
@deviceCountAtLeast(2)
@ops(op_db, allowed_dtypes=(torch.float32, torch.long))
def test_multiple_devices(self, devices, dtype, op):
for cuda_device_str in devices:
cuda_device = torch.device(cuda_device_str)
# NOTE: only tests on first sample
samples = op.sample_inputs(cuda_device, dtype)
sample = first_sample(self, samples)
result = op(sample.input, *sample.args, **sample.kwargs)
if isinstance(result, torch.Tensor):
self.assertTrue(result.device == cuda_device)
elif is_iterable_of_tensors(result):
self.assertTrue(all(map(lambda t: t.device == cuda_device, result)))
else:
self.skipTest(
"Skipped! Only supports single tensor or iterable of tensor outputs."
)
# Tests that the function and its (ndarray-accepting) reference produce the same
# values on the tensors from sample_inputs func for the corresponding op.
# This test runs in double and complex double precision because
# NumPy does computation internally using double precision for many functions
# resulting in possible equality check failures.
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@suppress_warnings
@ops(_ref_test_ops, allowed_dtypes=(torch.float64, torch.long, torch.complex128))
def test_numpy_ref(self, device, dtype, op):
try:
# Sets the default dtype to NumPy's default dtype of double
cur_default = torch.get_default_dtype()
torch.set_default_dtype(torch.double)
for sample_input in op.reference_inputs(device, dtype):
self.compare_with_reference(
op, op.ref, sample_input, exact_dtype=(dtype is not torch.long)
)
finally:
torch.set_default_dtype(cur_default)
# Tests that experimental Python References can propagate shape, dtype,
# and device metadata properly.
# See https://github.com/pytorch/pytorch/issues/78050 for a discussion of stride propagation.
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@ops(python_ref_db)
def test_python_ref_meta(self, device, dtype, op):
with FakeTensorMode() as mode:
pass
def _to_tensormeta(x):
if isinstance(x, torch.Tensor):
out = FakeTensor.from_tensor(x, mode)
return out
return x
# TODO: iterate over requires_grad true/false
for sample in op.reference_inputs(device, dtype, requires_grad=False):
result = op(sample.input, *sample.args, **sample.kwargs)
meta_sample = sample.transform(_to_tensormeta)
try:
with mode:
meta_result = op(meta_sample.input, *meta_sample.args, **meta_sample.kwargs)
except torch._subclasses.fake_tensor.UnsupportedFakeTensorException:
continue
except torch._subclasses.fake_tensor.DataDependentOutputException:
continue
if isinstance(result, torch.Tensor):
self.assertTrue(isinstance(meta_result, FakeTensor))
prims.utils.compare_tensor_meta(result, meta_result)
elif isinstance(result, Sequence):
for a, b in zip(result, meta_result):
if isinstance(a, torch.Tensor) or isinstance(b, torch.Tensor):
self.assertTrue(isinstance(b, FakeTensor))
prims.utils.compare_tensor_meta(a, b)
def _ref_test_helper(
self,
ctx,
device,
dtype,
op,
skip_zero_numel=False,
skip_zero_dim=False,
skip_bfloat=False,
skip_view_consistency=False,
):
# NOTE: this test works by comparing the reference
ex = None
for sample in op.reference_inputs(device, dtype, requires_grad=False):
if isinstance(sample.input, torch.Tensor) and sample.input.numel() == 0 and skip_zero_numel:
continue
if isinstance(sample.input, torch.Tensor) and sample.input.ndim == 0 and skip_zero_dim:
continue
is_lower_than_cuda11_0 = (
(torch.version.cuda is not None)
and ([int(x) for x in torch.version.cuda.split(".")] < [11, 0]))
if (
skip_bfloat
and is_lower_than_cuda11_0
and (
(
isinstance(sample.input, torch.Tensor)
and sample.input.dtype == torch.bfloat16
)
or any(
isinstance(arg, torch.Tensor) and arg.dtype == torch.bfloat16
for arg in sample.args
)
)
):
continue
with ctx():
ref_result = op(sample.input, *sample.args, **sample.kwargs)
torch_result = op.torch_opinfo(sample.input, *sample.args, **sample.kwargs)
for a, b in zip(tree_flatten(ref_result)[0], tree_flatten(torch_result)[0]):
if isinstance(a, torch.Tensor) or isinstance(b, torch.Tensor):
prims.utils.compare_tensor_meta(a, b)
if getattr(op, 'validate_view_consistency', True) and not skip_view_consistency:
msg = (f"The torch implementation {'returns' if b._is_view() else 'does not return'} "
f"a view, while the reference {'does' if a._is_view() else 'does not'}")
self.assertEqual(a._is_view(), b._is_view(), msg)
# Computes the dtype the more precise computatino would occur in
precise_dtype = torch.bool
if prims.utils.is_integer_dtype(dtype):
# Note: bool and integer dtypes do not have more
# precise dtypes -- they simply must be close
precise_dtype = dtype
if prims.utils.is_float_dtype(dtype):
precise_dtype = torch.double
if prims.utils.is_complex_dtype(dtype):
precise_dtype = torch.cdouble
# Checks if the results are close
try:
self.assertEqual(
ref_result,
torch_result,
exact_stride=False,
exact_device=True,
exact_layout=True,
exact_is_coalesced=True,
)
except AssertionError as e:
# Raises the error if the precise dtype comparison wouldn't be
# different
if dtype is precise_dtype:
raise e
ex = e
# Goes to next sample if these results are close
if not ex:
continue
# If the results are not close, checks that the
# reference is more accurate than the torch op
def _make_precise(x):
if isinstance(x, torch.dtype):
return precise_dtype
if isinstance(x, torch.Tensor) and x.dtype is dtype:
return x.to(precise_dtype)
return x
precise_sample = sample.transform(_make_precise)
precise_result = op.torch_opinfo(precise_sample.input, *precise_sample.args, **precise_sample.kwargs)
def _distance(a, b):
# Special-cases boolean comparisons
if prims.utils.is_boolean_dtype(a.dtype):
assert b.dtype is torch.bool
return (a ^ b).sum()
same = (a == b)
if prims.utils.is_float_dtype(a.dtype) or prims.utils.is_complex_dtype(a.dtype):
same = torch.logical_or(same, torch.logical_and(torch.isnan(a), torch.isnan(b)))
actual_error = torch.where(same, 0, torch.abs(a - b)).sum()
return actual_error
ref_distance = 0
for a, b in zip(tree_flatten(ref_result)[0], tree_flatten(precise_result)[0]):
ref_distance = ref_distance + _distance(a, b)
torch_distance = 0
for a, b in zip(tree_flatten(torch_result)[0], tree_flatten(precise_result)[0]):
torch_distance = torch_distance + _distance(a, b)
# TODO: consider adding some tolerance to this comparison
msg = f"Reference result was farther ({ref_distance}) from the precise " \
f"computation than the torch result was ({torch_distance})!"
self.assertTrue(ref_distance <= torch_distance, msg=msg)
# Reports numerical accuracy discrepancies
if ex is not None:
msg = "Test passed because the reference was more accurate than the torch operator."
warnings.warn(msg)
# Tests that experimental Python References perform the same computation
# as the operators they reference, when operator calls in the torch
# namesapce are remapped to the refs namespace (torch.foo becomes refs.foo).
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@ops(python_ref_db)
def test_python_ref(self, device, dtype, op):
# In this test, primTorch refs call into the refs namespace
# For example, a ref with torch.foo in it will calls refs.foo instead
# Direct calls to refs and prims are not affected
self._ref_test_helper(lambda: TorchRefsMode(strict=True), device, dtype, op)
# Tests that experimental Python References perform the same computation
# as the operators they reference, when operator calls in the torch
# namespace are preserved (torch.foo remains torch.foo).
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@ops(python_ref_db)
def test_python_ref_torch_fallback(self, device, dtype, op):
# In this test, refs call into the torch namespace (after the initial invocation)
# For example, a ref with torch.foo in it will call torch.foo instead of refs.foo
# Direct calls to refs and prims are not translated
self._ref_test_helper(contextlib.nullcontext, device, dtype, op)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyCUDA
@skipCUDAIfRocm
@ops(python_ref_db)
@parametrize('executor', ['aten', 'nvfuser'])
def test_python_ref_executor(self, device, dtype, op, executor):
# TODO: Not all dtypes are supported with nvfuser
from torch._prims_common import _torch_dtype_to_nvfuser_dtype_map
if executor == "nvfuser" and dtype not in _torch_dtype_to_nvfuser_dtype_map:
raise unittest.SkipTest(f"nvfuser doesn't support dtype {dtype}")
# nvFuser tests are rather slow so we only run int32 and float32 types
if executor == "nvfuser" and dtype not in [torch.int32, torch.float32]:
raise unittest.SkipTest("skipped for speed")
if executor == "nvfuser" and not op.supports_nvfuser:
raise unittest.SkipTest(f"{op.name} doesn't support nvfuser")
# nvFuser doesn't support reduction operations on 0-dim tensors yet
skip_zero_dim = False
if executor == "nvfuser" and isinstance(op, ReductionPythonRefInfo):
skip_zero_dim = True
# skip zero-dim tensors for some composites of reduction operations
normalization_ops = ["_refs.softmax", "_refs.logsumexp", "_refs.log_softmax", "_refs.sum_to_size"]
if executor == "nvfuser" and op.name in normalization_ops:
skip_zero_dim = True
from torch._prims.executor import make_traced
from copy import copy
op = copy(op)
executor = "strictly_nvfuser" if executor == "nvfuser" else executor
op.op = partial(make_traced(op.op), executor=executor)
self._ref_test_helper(
contextlib.nullcontext,
device,
dtype,
op,
skip_zero_numel=("nvfuser" in executor), # nvfuser doesn't support zero-sized tensors
skip_zero_dim=skip_zero_dim,
skip_bfloat=("nvfuser" in executor), # nvfuser doesn't support bfloat tensors for pre-11 cuda TK
# # nvfuser doesn't support view consistency
# https://github.com/pytorch/pytorch/issues/84863
skip_view_consistency=("nvfuser" in executor),
)
@skipMeta
@onlyNativeDeviceTypes
@ops([op for op in op_db if op.error_inputs_func is not None], dtypes=OpDTypes.none)
def test_errors(self, device, op):
error_inputs = op.error_inputs(device)
for ei in error_inputs:
si = ei.sample_input
with self.assertRaisesRegex(ei.error_type, ei.error_regex):
op(si.input, *si.args, **si.kwargs)
@skipMeta
@onlyNativeDeviceTypes
@ops([op for op in python_ref_db if op.error_inputs_func is not None], dtypes=OpDTypes.none)
def test_python_ref_errors(self, device, op):
mode = FakeTensorMode()
with mode:
pass
def _to_tensormeta(x):
if isinstance(x, torch.Tensor):
return FakeTensor.from_tensor(x, mode)
return x
error_inputs = op.error_inputs(device)
for ei in error_inputs:
si = ei.sample_input
meta_sample = si.transform(_to_tensormeta)
# TODO: match strings
with self.assertRaisesRegex(ei.error_type, ""):
op(meta_sample.input, *meta_sample.args, **meta_sample.kwargs)
# Tests that the function produces the same result when called with
# noncontiguous tensors.
# TODO: get working with Windows by addressing failing operators
# TODO: get working with ASAN by addressing failing operators
@unittest.skipIf(IS_WINDOWS, "Skipped under Windows")
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyNativeDeviceTypes
@suppress_warnings
@ops(op_db, allowed_dtypes=(torch.float32, torch.long, torch.complex64))
def test_noncontiguous_samples(self, device, dtype, op):
test_grad = dtype in op.supported_backward_dtypes(torch.device(device).type)
sample_inputs = op.sample_inputs(device, dtype, requires_grad=test_grad)
for sample_input in sample_inputs:
t_inp, t_args, t_kwargs = (
sample_input.input,
sample_input.args,
sample_input.kwargs,
)
noncontig_sample = sample_input.noncontiguous()
n_inp, n_args, n_kwargs = (
noncontig_sample.input,
noncontig_sample.args,
noncontig_sample.kwargs,
)
# Verifies sample input tensors should have no grad or history
sample_tensor = t_inp if isinstance(t_inp, torch.Tensor) else t_inp[0]
assert sample_tensor.grad is None
assert sample_tensor.grad_fn is None
# validates forward
expected = op(t_inp, *t_args, **t_kwargs)
actual = op(n_inp, *n_args, **n_kwargs)
self.assertEqual(actual, expected)
# Validate backward
# Short-circuits if the op doesn't support grad in this device x dtype
if not test_grad:
continue
expected = sample_input.output_process_fn_grad(expected)
actual = sample_input.output_process_fn_grad(actual)
if isinstance(expected, torch.Tensor):
grad_for_expected = torch.randn_like(expected)
grad_for_actual = noncontiguous_like(grad_for_expected)
elif isinstance(expected, Sequence):
# Filter output elements that do not require grad
expected = [
t
for t in expected
if isinstance(t, torch.Tensor) and t.requires_grad
]
actual = [
n for n in actual if isinstance(n, torch.Tensor) and n.requires_grad
]
grad_for_expected = [torch.randn_like(t) for t in expected]
grad_for_actual = [noncontiguous_like(n) for n in grad_for_expected]
else:
# Nothing to do if it returns a scalar or things like that
continue
# Concatenate inputs into a tuple
t_inputs = (
(t_inp,) + t_args
if isinstance(t_inp, torch.Tensor)
else tuple(t_inp) + t_args
)
n_inputs = (
(n_inp,) + n_args
if isinstance(n_inp, torch.Tensor)
else tuple(n_inp) + n_args
)
# Filter the elemnts that are tensors that require grad
t_input_tensors = [
t for t in t_inputs if isinstance(t, torch.Tensor) and t.requires_grad
]
n_input_tensors = [
n for n in n_inputs if isinstance(n, torch.Tensor) and n.requires_grad
]
self.assertEqual(len(t_input_tensors), len(n_input_tensors))
# Some functions may not use all the inputs to generate gradients. One of the
# few examples of this "odd" behaviour is F.hinge_embedding_loss
t_grads = torch.autograd.grad(
expected, t_input_tensors, grad_for_expected, allow_unused=True
)
n_grads = torch.autograd.grad(
actual, n_input_tensors, grad_for_actual, allow_unused=True
)
msg = "Got different gradients for contiguous / non-contiguous inputs wrt input {}."
for i, (t, n) in enumerate(zip(t_grads, n_grads)):
self.assertEqual(t, n, msg=msg.format(i))
# Separates one case from the following test_out because many ops don't properly implement the
# incorrectly sized out parameter warning properly yet
# Cases test here:
# - out= with the correct dtype and device, but the wrong shape
@ops(_ops_and_refs, dtypes=OpDTypes.none)
def test_out_warning(self, device, op):
# Prefers running in float32 but has a fallback for the first listed supported dtype
supported_dtypes = op.supported_dtypes(self.device_type)
if len(supported_dtypes) == 0:
self.skipTest("Skipped! Op has not supported dtypes on this device.")
dtype = (
torch.float32
if torch.float32 in supported_dtypes
else list(supported_dtypes)[0]
)
samples = op.sample_inputs(device, dtype)
for sample in samples:
# calls it normally to get the expected result
expected = op(sample.input, *sample.args, **sample.kwargs)
op_out = partial(op, sample.input, *sample.args, **sample.kwargs)
# Short-circuits if output is not a single tensor or an
# iterable of tensors
if not isinstance(expected, torch.Tensor) and not is_iterable_of_tensors(
expected, include_empty=True
):
self.skipTest(
"Skipped! Only supports single tensor or iterable of tensor outputs."
)
# Validates the op doesn't support out if it claims not to
if not op.supports_out:
with self.assertRaises(Exception):
assert op_out(out=expected) != NotImplemented
return
# A wrapper around map that works with single tensors and always
# instantiates the map. Used below to apply transforms to
# single tensor and iterable tensor outputs.
def _apply_out_transform(fn, out):
if isinstance(out, torch.Tensor):
return fn(out)
# assumes (see above) that out is an iterable of tensors
return tuple(map(fn, out))
# Extracts strides from a tensor or iterable of tensors into a tuple
def _extract_strides(out):
if isinstance(out, torch.Tensor):
return (out.stride(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.stride(), out))
# Extracts data pointers from a tensor or iterable of tensors into a tuple
# NOTE: only extracts on the CPU and CUDA device types since some
# device types don't have storage
def _extract_data_ptrs(out):
if self.device_type != "cpu" and self.device_type != "cuda":
return ()
if isinstance(out, torch.Tensor):
return (out.data_ptr(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.data_ptr(), out))
@suppress_warnings
def _compare_out(transform, *, compare_strides_and_data_ptrs=True):
out = _apply_out_transform(transform, expected)
original_strides = _extract_strides(out)
original_ptrs = _extract_data_ptrs(out)
op_out(out=out)
final_strides = _extract_strides(out)
final_ptrs = _extract_data_ptrs(out)
self.assertEqual(expected, out)
if compare_strides_and_data_ptrs:
stride_msg = "Strides are not the same! Original strides were {0} and strides are now {1}".format(
original_strides, final_strides
)
self.assertEqual(original_strides, final_strides, msg=stride_msg)
self.assertEqual(original_ptrs, final_ptrs)
# Case Zero: out= with the correct dtype and device, but the wrong shape
# Expected behavior: if nonempty, resize with a warning.
def _case_zero_transform(t):
wrong_shape = list(t.shape)
if len(wrong_shape) == 0:
# Handles scalar tensor case (empty list)
wrong_shape = [2]
else:
wrong_shape[-1] = wrong_shape[-1] + 1
return make_tensor(wrong_shape, dtype=t.dtype, device=t.device)
# Verifies the out values are correct
_compare_out(_case_zero_transform, compare_strides_and_data_ptrs=False)
# Additionally validates that the appropriate warning is thrown if a nonempty
# tensor is resized.
def _any_nonempty(out):
if isinstance(out, torch.Tensor):
return out.numel() > 0
return any(x.numel() > 0 for x in out)
out = _apply_out_transform(_case_zero_transform, expected)
msg_fail = "Resized a non-empty tensor but did not warn about it."
if _any_nonempty(out):
with self.assertWarnsRegex(
UserWarning, "An output with one or more elements", msg=msg_fail
):
op_out(out=out)
# Validates ops implement the correct out= behavior
# See https://github.com/pytorch/pytorch/wiki/Developer-FAQ#how-does-out-work-in-pytorch
# for a description of the correct behavior
# Validates the following cases:
# - Case 0: out has the correct shape, dtype, and device but is full of extremal values
# - Case 1: out has the correct shape, dtype, and device but is noncontiguous
# - Case 2: out has the correct dtype and device, but is zero elements
# - Case 3: out has the correct shape and dtype, but is on a different device type
# - Case 4: out has the correct shape and device, but a dtype that cannot
# "safely" cast to
#
# Case 3 and 4 are slightly different when the op is a factory function:
# - if device, dtype are NOT passed, any combination of dtype/device should be OK for out
# - if device, dtype are passed, device and dtype should match
@ops(_ops_and_refs, dtypes=OpDTypes.any_one)
def test_out(self, device, dtype, op):
# Prefers running in float32 but has a fallback for the first listed supported dtype
samples = op.sample_inputs(device, dtype)
for sample in samples:
# calls it normally to get the expected result
expected = op(sample.input, *sample.args, **sample.kwargs)
op_out = partial(op, sample.input, *sample.args, **sample.kwargs)
# Short-circuits if output is not a single tensor or an
# iterable of tensors
if not isinstance(expected, torch.Tensor) and not is_iterable_of_tensors(
expected, include_empty=True
):
self.skipTest(
"Skipped! Only supports single tensor or iterable of tensor outputs."
)
# Validates the op doesn't support out if it claims not to
if not op.supports_out:
with self.assertRaises(Exception):
assert op_out(out=expected) != NotImplemented
return
# A wrapper around map that works with single tensors and always
# instantiates the map. Used below to apply transforms to
# single tensor and iterable tensor outputs.
def _apply_out_transform(fn, out):
if isinstance(out, torch.Tensor):
return fn(out)
# assumes (see above) that out is an iterable of tensors
return tuple(map(fn, out))
# Extracts strides from a tensor or iterable of tensors into a tuple
def _extract_strides(out):
if isinstance(out, torch.Tensor):
return (out.stride(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.stride(), out))
# Extracts data pointers from a tensor or iterable of tensors into a tuple
# NOTE: only extracts on the CPU and CUDA device types since some
# device types don't have storage
def _extract_data_ptrs(out):
if self.device_type != "cpu" and self.device_type != "cuda":
return ()
if isinstance(out, torch.Tensor):
return (out.data_ptr(),)
# assumes (see above) that out is an iterable of tensors
return tuple(map(lambda t: t.data_ptr(), out))
def _compare_out(transform, *, compare_strides_and_data_ptrs=True):
out = _apply_out_transform(transform, expected)
original_strides = _extract_strides(out)
original_ptrs = _extract_data_ptrs(out)
op_out(out=out)
final_strides = _extract_strides(out)
final_ptrs = _extract_data_ptrs(out)
self.assertEqual(expected, out)
if compare_strides_and_data_ptrs:
stride_msg = "Strides are not the same! Original strides were {0} and strides are now {1}".format(
original_strides, final_strides
)
self.assertEqual(original_strides, final_strides, msg=stride_msg)
self.assertEqual(original_ptrs, final_ptrs)
# Case 0: out= with the correct shape, dtype, and device
# but NaN values for floating point and complex tensors, and
# maximum values for integer tensors.
# Expected behavior: out= values have no effect on the computation.
def _case_zero_transform(t):
try:
info = torch.iinfo(t.dtype)
return torch.full_like(t, info.max)
except TypeError as te:
# for non-integer types fills with NaN
return torch.full_like(t, float("nan"))
_compare_out(_case_zero_transform)
# Case 1: out= with the correct shape, dtype, and device,
# but noncontiguous.
# Expected behavior: strides are respected and `out` storage is not changed.
def _case_one_transform(t):
return make_tensor(
t.shape, dtype=t.dtype, device=t.device, noncontiguous=True
)
_compare_out(_case_one_transform)
# Case 2: out= with the correct dtype and device, but has no elements.
# Expected behavior: resize without warning.
def _case_two_transform(t):
return make_tensor((0,), dtype=t.dtype, device=t.device)
_compare_out(_case_two_transform, compare_strides_and_data_ptrs=False)
# Also validates that no warning is thrown when this out is resized
out = _apply_out_transform(_case_two_transform, expected)
with warnings.catch_warnings(record=True) as caught:
warnings.simplefilter("always")
op_out(out=out)
# Verifies no warning is a resize warning
for w in caught:
if "An output with one or more elements" in str(w.message):
self.fail(
"Resizing an out= argument with no elements threw a resize warning!"
)
# Case 3: out= with correct shape and dtype, but wrong device.
wrong_device = None
if torch.device(device).type != "cpu":
wrong_device = "cpu"
elif torch.cuda.is_available():
wrong_device = "cuda"
factory_fn_msg = (
"\n\nNOTE: If your op is a factory function (i.e., it accepts TensorOptions) you should mark its "
"OpInfo with `is_factory_function=True`."
)
if wrong_device is not None:
def _case_three_transform(t):
return make_tensor(t.shape, dtype=t.dtype, device=wrong_device)
out = _apply_out_transform(_case_three_transform, expected)
if op.is_factory_function and sample.kwargs.get("device", None) is None:
op_out(out=out)
else:
msg_fail = (
f"Expected RuntimeError when calling with input.device={device} and out.device={wrong_device}."
) + factory_fn_msg
with self.assertRaises(RuntimeError, msg=msg_fail):
op_out(out=out)
# Case 4: out= with correct shape and device, but a dtype
# that output cannot be "safely" cast to (long).
# Expected behavior: error.
# NOTE: this case is filtered by dtype since some ops produce
# bool tensors, for example, which can be safely cast to any
# dtype. It is applied when single tensors are floating point or complex
# dtypes, or if an op returns multiple tensors when at least one such
# tensor is a floating point or complex dtype.
_dtypes = floating_and_complex_types_and(torch.float16, torch.bfloat16)
if (
isinstance(expected, torch.Tensor)
and expected.dtype in _dtypes
or (
not isinstance(expected, torch.Tensor)
and any(t.dtype in _dtypes for t in expected)
)
):
def _case_four_transform(t):
return make_tensor(t.shape, dtype=torch.long, device=t.device)
out = _apply_out_transform(_case_four_transform, expected)
msg_fail = "Expected RuntimeError when doing an unsafe cast!"
msg_fail = (
msg_fail
if not isinstance(expected, torch.Tensor)
else (
"Expected RuntimeError when doing an unsafe cast from a result of dtype "
f"{expected.dtype} into an out= with dtype torch.long"
)
) + factory_fn_msg
if op.is_factory_function and sample.kwargs.get("dtype", None) is None:
op_out(out=out)
else:
with self.assertRaises(RuntimeError, msg=msg_fail):
op_out(out=out)
# Tests that the forward and backward passes of operations produce the
# same values for the cross-product of op variants (method, inplace)
# against eager's gold standard op function variant
@_variant_ops(op_db)
def test_variant_consistency_eager(self, device, dtype, op):
# Acquires variants (method variant, inplace variant, operator variant, inplace_operator variant, aliases)
method = op.method_variant
inplace = op.inplace_variant
operator = op.operator_variant
inplace_operator = op.inplace_operator_variant
# list of all inplace ops: inplace variant + alias inplace variants if exist
inplace_ops = [inplace, inplace_operator]
variants = [method, inplace, operator, inplace_operator]
operators = [operator, inplace_operator]
for a_op in op.aliases:
variants.append(a_op.op)
variants.append(a_op.method_variant)
variants.append(a_op.inplace_variant)
inplace_ops.append(a_op.inplace_variant)
inplace_variants = tuple(filter(None, inplace_ops))
variants = tuple(filter(None, variants))
operators = tuple(filter(None, operators))
_requires_grad = dtype in op.supported_backward_dtypes(
torch.device(device).type
)
include_conjugated_inputs = op.test_conjugated_samples and dtype.is_complex
samples = op.sample_inputs(
device,
dtype,
requires_grad=_requires_grad,
include_conjugated_inputs=include_conjugated_inputs,
)
samples = list(samples)
def _test_consistency_helper(samples, variants):
for sample in samples:
# TODO: Check grad for all Tensors requiring grad if sample.input is TensorList
tensor = (
sample.input
if isinstance(sample.input, torch.Tensor)
else sample.input[0]
)
# Computes function forward and backward values
tensor.grad = None
expected_forward = op(sample.input, *sample.args, **sample.kwargs)
expected_grad = None
output_process_fn_grad = (
sample.output_process_fn_grad
if sample.output_process_fn_grad
else lambda x: x
)
# Skips inplace variants if the output dtype is not the same as
# the input dtype
skip_inplace = False
if (
isinstance(expected_forward, torch.Tensor)
and expected_forward.dtype is not tensor.dtype
):
skip_inplace = True
# TODO: backward consistency only supported for single tensor outputs
# TODO: backward consistency only checked on sample.input, not all
# tensor inputs
# TODO: update to handle checking grads of all tensor inputs as
# derived from each tensor output
if isinstance(
expected_forward, torch.Tensor
) and dtype in op.supported_backward_dtypes(torch.device(device).type):
output_process_fn_grad(expected_forward).sum().backward()
expected_grad = tensor.grad
# Test eager consistency
for variant in variants:
# Skips inplace ops
if variant in inplace_ops and skip_inplace:
continue
# Compares variant's forward
# Note: copies the to-be-modified input when testing the inplace variant
tensor.grad = None
cloned = (
clone_input_helper(sample.input)
if variant in inplace_ops
else sample.input
)
if variant in inplace_ops and sample.broadcasts_input:
with self.assertRaises(
RuntimeError,
msg=(
"inplace variant either incorrectly allowed "
"resizing or you have marked the sample {}"
" incorrectly with `broadcasts_self=True".format(
sample.summary()
)
),
):
variant_forward = variant(
cloned, *sample.args, **sample.kwargs
)
continue
if variant in operators and sample.kwargs:
# skip samples with kwargs for operator variants
continue
variant_forward = variant(cloned, *sample.args, **sample.kwargs)
self.assertEqual(expected_forward, variant_forward)
# Compares variant's backward
if expected_grad is not None and (
variant not in inplace_ops or op.supports_inplace_autograd
):
output_process_fn_grad(variant_forward).sum().backward()
self.assertEqual(expected_grad, tensor.grad)
_test_consistency_helper(samples, variants)
def _test_inplace_preserve_storage(samples, variants):
for sample in samples:
# Skips inplace variants if the output dtype is not the same as
# the input dtype
expected_forward = op(sample.input, *sample.args, **sample.kwargs)
tensor = (
sample.input
if isinstance(sample.input, torch.Tensor)
else sample.input[0]
)
skip_inplace = False
if (
isinstance(expected_forward, torch.Tensor)
and expected_forward.dtype is not tensor.dtype
):
skip_inplace = True
if skip_inplace:
return
for variant in variants:
cloned = (
clone_input_helper(sample.input)
if variant in inplace_ops
else sample.input
)
inp_tensor = (
cloned if isinstance(cloned, torch.Tensor) else cloned[0]
)
data_ptr = inp_tensor.data_ptr()
if variant in operators and sample.kwargs:
# skip samples with kwargs for operator variants
continue
variant_forward = variant(cloned, *sample.args, **sample.kwargs)
# TODO Support non-tensor outputs if they exist for inplace ops
if isinstance(variant_forward, torch.Tensor):
self.assertEqual(
data_ptr, variant_forward.data_ptr(), atol=0, rtol=0
)
else:
self.assertTrue(
False,
"Non-tensor outputs for inplace ops are not supported",
)
if len(inplace_ops) > 0:
inplace_samples = list(
filter(lambda sample: not sample.broadcasts_input, samples)
)
_test_inplace_preserve_storage(inplace_samples, inplace_variants)
# Reference testing for operations in complex32 against complex64.
# NOTE: We test against complex64 as NumPy doesn't have a complex32 equivalent dtype.
@ops(op_db, allowed_dtypes=(torch.complex32,))
def test_complex_half_reference_testing(self, device, dtype, op):
if not op.supports_dtype(torch.complex32, device):
unittest.skip("Does not support complex32")
for sample in op.sample_inputs(device, dtype):
actual = op(sample.input, *sample.args, **sample.kwargs)
# sample.transform applies the lambda to torch.Tensor and torch.dtype.
# However, we only want to apply it to Tensors with dtype `torch.complex32`..
transformed_sample = sample.transform(lambda x: x.to(torch.complex64) if isinstance(
x, torch.Tensor) and x.dtype is torch.complex32 else x)
expected = op(
transformed_sample.input,
*transformed_sample.args,
**transformed_sample.kwargs,
)
# Since range of chalf is much less compared to cfloat,
# we get `inf`s easily (eg. with `pow`, `exp`),
# so we cast `cfloat` back to `chalf`.
expected = tree_map(lambda x: x.to(torch.complex32) if isinstance(
x, torch.Tensor) and x.dtype is torch.complex64 else x, expected)
# `exact_dtype` is False because for ops like real, imag
# we get different dtypes for `actual` and `expected`
# `chalf` input -> `half` output
# `cfloat` input -> `float` output
self.assertEqual(actual, expected, exact_dtype=False)
@ops(op_db, allowed_dtypes=(torch.bool,))
@unittest.skipIf(TEST_WITH_UBSAN, "Test uses undefined behavior")
def test_non_standard_bool_values(self, device, dtype, op):
# Test boolean values other than 0x00 and 0x01 (gh-54789)
def convert_boolean_tensors(x):
if not isinstance(x, torch.Tensor) or x.dtype != torch.bool:
return x
# Map False -> 0 and True -> Random value in [2, 255]
true_vals = torch.randint(2, 255, x.shape, dtype=torch.uint8, device=x.device)
false_vals = torch.zeros((), dtype=torch.uint8, device=x.device)
x_int = torch.where(x, true_vals, false_vals)
ret = x_int.view(torch.bool)
self.assertEqual(ret, x)
return ret
for sample in op.sample_inputs(device, dtype):
expect = op(sample.input, *sample.args, **sample.kwargs)
transformed = sample.transform(convert_boolean_tensors)
actual = op(transformed.input, *transformed.args, **transformed.kwargs)
self.assertEqual(expect, actual)
# Validates that each OpInfo specifies its forward and backward dtypes
# correctly for CPU and CUDA devices
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipMeta
@onlyNativeDeviceTypes
@ops(ops_and_refs, dtypes=OpDTypes.none)
def test_dtypes(self, device, op):
# Check complex32 support only if the op claims.
# TODO: Once the complex32 support is better, we should add check for complex32 unconditionally.
device_type = torch.device(device).type
include_complex32 = (
(torch.complex32,)
if op.supports_dtype(torch.complex32, device_type)
else ()
)
# dtypes to try to backward in
allowed_backward_dtypes = floating_and_complex_types_and(
*((torch.half, torch.bfloat16) + include_complex32)
)
# lists for (un)supported dtypes
supported_dtypes = set()
unsupported_dtypes = set()
supported_backward_dtypes = set()
unsupported_backward_dtypes = set()
def unsupported(dtype):
unsupported_dtypes.add(dtype)
if dtype in allowed_backward_dtypes:
unsupported_backward_dtypes.add(dtype)
for dtype in all_types_and_complex_and(
*((torch.half, torch.bfloat16, torch.bool) + include_complex32)
):
# tries to acquire samples - failure indicates lack of support
requires_grad = dtype in allowed_backward_dtypes
try:
samples = tuple(
op.sample_inputs(device, dtype, requires_grad=requires_grad)
)
except Exception as e:
unsupported(dtype)
continue
for sample in samples:
# tries to call operator with the sample - failure indicates
# lack of support
try:
result = op(sample.input, *sample.args, **sample.kwargs)
supported_dtypes.add(dtype)
except Exception as e:
# NOTE: some ops will fail in forward if their inputs
# require grad but they don't support computing the gradient
# in that type! This is a bug in the op!
unsupported(dtype)
continue
# Checks for backward support in the same dtype, if the input has
# one or more tensors requiring grad
def _tensor_requires_grad(x):
if isinstance(x, dict):
for k, v in x.items():
if _tensor_requires_grad(v):
return True
if isinstance(x, (list, tuple)):
for a in x:
if _tensor_requires_grad(a):
return True
if isinstance(x, torch.Tensor) and x.requires_grad:
return True
return False
requires_grad = _tensor_requires_grad(sample.input) \
or _tensor_requires_grad(sample.args) or _tensor_requires_grad(sample.kwargs)
if not requires_grad:
continue
try:
result = sample.output_process_fn_grad(result)
if isinstance(result, torch.Tensor):
backward_tensor = result
elif isinstance(result, Sequence) and isinstance(
result[0], torch.Tensor
):
backward_tensor = result[0]
else:
continue
# Note: this grad may not have the same dtype as dtype
# For functions like complex (float -> complex) or abs
# (complex -> float) the grad tensor will have a
# different dtype than the input.
# For simplicity, this is still modeled as these ops
# supporting grad in the input dtype.
grad = torch.randn_like(backward_tensor)
backward_tensor.backward(grad)
supported_backward_dtypes.add(dtype)
except Exception as e:
unsupported_backward_dtypes.add(dtype)
# Checks that dtypes are listed correctly and generates an informative
# error message
supported_forward = supported_dtypes - unsupported_dtypes
partially_supported_forward = supported_dtypes & unsupported_dtypes
unsupported_forward = unsupported_dtypes - supported_dtypes
supported_backward = supported_backward_dtypes - unsupported_backward_dtypes
partially_supported_backward = (
supported_backward_dtypes & unsupported_backward_dtypes
)
unsupported_backward = unsupported_backward_dtypes - supported_backward_dtypes
device_type = torch.device(device).type
claimed_forward = set(op.supported_dtypes(device_type))
supported_but_unclaimed_forward = supported_forward - claimed_forward
claimed_but_unsupported_forward = claimed_forward & unsupported_forward
claimed_backward = set(op.supported_backward_dtypes(device_type))
supported_but_unclaimed_backward = supported_backward - claimed_backward
claimed_but_unsupported_backward = claimed_backward & unsupported_backward
# Partially supporting a dtype is not an error, but we print a warning
if (len(partially_supported_forward) + len(partially_supported_backward)) > 0:
msg = "Some dtypes for {0} on device type {1} are only partially supported!\n".format(
op.name, device_type
)
if len(partially_supported_forward) > 0:
msg = (
msg
+ "The following dtypes only worked on some samples during forward: {0}.\n".format(
partially_supported_forward
)
)
if len(partially_supported_backward) > 0:
msg = (
msg
+ "The following dtypes only worked on some samples during backward: {0}.\n".format(
partially_supported_backward
)
)
print(msg)
if (
len(supported_but_unclaimed_forward)
+ len(claimed_but_unsupported_forward)
+ len(supported_but_unclaimed_backward)
+ len(claimed_but_unsupported_backward)
) == 0:
return
# Reference operators often support additional dtypes, and that's OK
if op in python_ref_db:
if (
len(claimed_but_unsupported_forward)
+ len(claimed_but_unsupported_backward)
) == 0:
return
# Generates error msg
msg = "The supported dtypes for {0} on device type {1} are incorrect!\n".format(
op.name, device_type
)
if len(supported_but_unclaimed_forward) > 0:
msg = (
msg
+ "The following dtypes worked in forward but are not listed by the OpInfo: {0}.\n".format(
supported_but_unclaimed_forward
)
)
if len(supported_but_unclaimed_backward) > 0:
msg = (
msg
+ "The following dtypes worked in backward but are not listed by the OpInfo: {0}.\n".format(
supported_but_unclaimed_backward
)
)
if len(claimed_but_unsupported_forward) > 0:
msg = (
msg
+ "The following dtypes did not work in forward but are listed by the OpInfo: {0}.\n".format(
claimed_but_unsupported_forward
)
)
if len(claimed_but_unsupported_backward) > 0:
msg = (
msg
+ "The following dtypes did not work in backward but are listed by the OpInfo: {0}.\n".format(
claimed_but_unsupported_backward
)
)
self.fail(msg)
class TestCompositeCompliance(TestCase):
# Checks if the operator (if it is composite) is written to support most
# backends and Tensor subclasses. See "CompositeImplicitAutograd Compliance"
# in aten/src/ATen/native/README.md for more details
@unittest.skipIf(
IS_FBCODE or IS_SANDCASTLE, "__torch_dispatch__ does not work in fbcode"
)
@ops(op_db, allowed_dtypes=(torch.float,))
def test_operator(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
composite_compliance.check_with_mode(op, args, kwargs, self.assertEqual)
composite_compliance.check_all_permutations(op, args, kwargs, self.assertEqual)
@unittest.skipIf(
IS_FBCODE or IS_SANDCASTLE, "__torch_dispatch__ does not work in fbcode"
)
@ops([op for op in op_db if op.supports_autograd], allowed_dtypes=(torch.float,))
def test_backward(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
# We pass assertEqual so that decorators like `toleranceOverride`
# actually work (otherwise they silently do nothing!)
composite_compliance.check_backward_formula(
op.get_op(), args, kwargs,
sample.output_process_fn_grad,
op.gradcheck_wrapper, self.assertEqual)
@unittest.skipIf(
IS_FBCODE or IS_SANDCASTLE, "__torch_dispatch__ does not work in fbcode"
)
@ops(op_db, allowed_dtypes=(torch.float,))
def test_forward_ad(self, device, dtype, op):
if torch.float not in op.supported_backward_dtypes(device):
raise unittest.SkipTest("Does not support autograd")
if not op.supports_forward_ad:
raise unittest.SkipTest("Does not support forward_ad")
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
# We pass assertEqual so that decorators like `toleranceOverride`
# actually work (otherwise they silently do nothing!)
composite_compliance.check_forward_ad_formula(
op.get_op(), args, kwargs, op.gradcheck_wrapper, self.assertEqual)
@skipIfSlowGradcheckEnv
class TestMathBits(TestCase):
# Tests that
# 1. The operator's output for physically conjugated/negated tensors and conjugate/negative view tensors
# produces the same value
# 2. The gradients are same in both cases mentioned in (1)
# 3. If the operator's inplace variant is supported, tests that the inplace operation
# produces the correct value when called on a conjugate/negative view tensor and that the output
# has its conj/neg bit set to true
# This test only runs for C -> R and C -> C functions
# TODO: add tests for `R->C` functions
# Note: This test runs for functions that take both tensors and tensorlists as input.
def _test_math_view(
self,
device,
dtype,
op,
samples,
math_op_physical,
math_op_view,
is_bit_set,
out_type,
):
inplace_variant = op.inplace_variant
# helper function to clone and conjugate/negate the input if its a tensor
# else clone the sequence and conjugate/negate the first element in the sequence
# If a requires_grad argument is provided the tensor being conjugated/negated will
# have its requires_grad set to that value.
def clone_and_perform_view(input, **kwargs):
if isinstance(input, torch.Tensor):
requires_grad = kwargs.get("requires_grad", input.requires_grad)
with torch.no_grad():
# Ensure view represents the original sample input
input = math_op_physical(input)
# Note: .conj() is not called under no_grad mode since it's not allowed to modify a
# view created in no_grad mode. Here it's ok to do so, so as a workaround we call conj
# before resetting the requires_grad field for input
input = math_op_view(input)
assert input.is_leaf
return input.requires_grad_(requires_grad)
if isinstance(input, Sequence):
out = list(map(clone_input_helper, input))
out[0] = clone_and_perform_view(out[0])
return tuple(out)
for sample in samples:
tensor = (
sample.input
if isinstance(sample.input, torch.Tensor)
else sample.input[0]
)
cloned1 = clone_and_perform_view(sample.input)
# Computes function forward value with a physically conjugated/negated tensor and
# a conj/neg view tensor and verifies that the output in both case are equal.
expected_forward = op(sample.input, *sample.args, **sample.kwargs)
forward_with_mathview = op(cloned1, *sample.args, **sample.kwargs)
self.assertEqual(expected_forward, forward_with_mathview)
# If the op has an inplace variant, and the input doesn't require broadcasting
# and has the same dtype as output, verify that the inplace operation on a conjugated/negated
# input produces correct output, and the output tensor has the conj/neg bit set to True
if inplace_variant is not None and not sample.broadcasts_input:
cloned2 = clone_and_perform_view(tensor, requires_grad=False)
if (
isinstance(expected_forward, torch.Tensor)
and expected_forward.dtype is tensor.dtype
):
inplace_forward = inplace_variant(
cloned2, *sample.args, **sample.kwargs
)
self.assertTrue(is_bit_set(inplace_forward))
self.assertEqual(inplace_forward, expected_forward)
# TODO: backward consistency only supported for single tensor outputs
# TODO: backward consistency only checked on sample.input, not all
# tensor inputs
# TODO: update to handle checking grads of all tensor inputs as
# derived from each tensor output
if (
isinstance(expected_forward, torch.Tensor)
and expected_forward.requires_grad
):
output_process_fn_grad = sample.output_process_fn_grad or (lambda x: x)
expected_forward = output_process_fn_grad(expected_forward)
forward_with_mathview = output_process_fn_grad(forward_with_mathview)
tensor = (
sample.input
if isinstance(sample.input, torch.Tensor)
else sample.input[0]
)
expected_forward.sum().backward(retain_graph=True)
forward_with_mathview.sum().backward(retain_graph=True)
if tensor.grad is not None:
cloned1_tensor = (
cloned1 if isinstance(cloned1, torch.Tensor) else cloned1[0]
)
self.assertEqual(tensor.grad, cloned1_tensor.grad)
tensor.grad, cloned1_tensor.grad = None, None
# a repeat of the above test if output is not complex valued
if out_type(expected_forward):
grad = torch.randn_like(expected_forward)
expected_forward.backward(grad)
forward_with_mathview.backward(
math_op_view(math_op_physical(grad))
)
self.assertEqual(tensor.grad, cloned1_tensor.grad)
@ops(ops_and_refs, allowed_dtypes=(torch.cfloat,))
def test_conj_view(self, device, dtype, op):
if not op.test_conjugated_samples:
self.skipTest("Operation doesn't support conjugated inputs.")
math_op_physical = torch.conj_physical
math_op_view = torch.conj
_requires_grad = torch.cfloat in op.supported_backward_dtypes(
torch.device(device).type
)
is_bit_set = torch.is_conj
samples = op.sample_inputs(device, dtype, requires_grad=_requires_grad)
self._test_math_view(
device,
dtype,
op,
samples,
math_op_physical,
math_op_view,
is_bit_set,
torch.is_complex,
)
@ops(ops_and_refs, allowed_dtypes=(torch.double,))
def test_neg_view(self, device, dtype, op):
if not op.test_neg_view:
self.skipTest("Operation not tested with tensors with negative bit.")
math_op_physical = torch.neg
math_op_view = torch._neg_view
is_bit_set = torch.is_neg
samples = op.sample_inputs(device, dtype, requires_grad=op.supports_autograd)
self._test_math_view(
device,
dtype,
op,
samples,
math_op_physical,
math_op_view,
is_bit_set,
lambda x: True,
)
@ops(ops_and_refs, allowed_dtypes=(torch.cdouble,))
def test_neg_conj_view(self, device, dtype, op):
if not op.test_neg_view:
self.skipTest("Operation not tested with tensors with negative bit.")
if not op.test_conjugated_samples:
self.skipTest("Operation doesn't support conjugated inputs.")
def math_op_physical(x):
return -x.conj_physical()
def math_op_view(x):
return torch._neg_view(x).conj()
def is_bit_set(x):
return torch.is_neg(x) and torch.is_conj(x)
_requires_grad = dtype in op.supported_backward_dtypes(
torch.device(device).type
)
samples = op.sample_inputs(device, dtype, requires_grad=_requires_grad)
# Only test one sample
samples = itertools.islice(samples, 1)
self._test_math_view(
device,
dtype,
op,
samples,
math_op_physical,
math_op_view,
is_bit_set,
torch.is_complex,
)
# input strides and size may have been altered due to the result of an inplace op
def check_inplace_view(func, input, rs, input_size, input_strides):
if func is None:
return
# TODO: extend this test to test ops with multiple outputs and ops like native_batch_norm.out
# which mutate not necessarily the first input.
if isinstance(rs, torch.Tensor) and rs is input:
unequal_size = rs.size() != input_size
unequal_strides = rs.stride() != input_strides
# resize_ should probably have inplace_view tag. Not adding the tag since it
# breaks some codegen logic
if (unequal_size or unequal_strides):
if isinstance(func, torch._ops.OpOverloadPacket):
func = func.default
# Reference: https://github.com/pytorch/pytorch/issues/78759
if func is not torch.ops.aten.resize_.default:
# TODO: use self.assertIn when we have separate tests for each tag
assert torch.Tag.inplace_view in func.tags
# A mode that when enabled runs correctness checks to ensure
# that operators have expected tags based on their input and
# ouput tensor properties
@skipIfSlowGradcheckEnv
class TestTagsMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
if isinstance(args[0], torch.Tensor):
old_size = args[0].size()
old_stride = args[0].stride()
rs = func(*args, **kwargs)
check_inplace_view(func, args[0], rs, old_size, old_stride)
else:
rs = func(*args, **kwargs)
return rs
# Test to verify the correctness for tags in `tags.yaml`, also available for access through `torch.Tags`
@skipIfSlowGradcheckEnv
class TestTags(TestCase):
@onlyCPU
@ops(ops_and_refs, dtypes=OpDTypes.any_one)
def test_tags(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample in samples:
# TODO: Test tags for ops that return a list of tensors
input = sample.input
if isinstance(input, torch.Tensor):
old_size = input.size()
old_stride = input.stride()
with TestTagsMode():
rs = op(input, *sample.args, **sample.kwargs)
# TODO: add test for aliases: https://github.com/pytorch/pytorch/issues/78761
aten_name = op.aten_name if op.aten_name is not None else op.name
opoverloadpacket = getattr(torch.ops.aten, aten_name, None)
check_inplace_view(opoverloadpacket, input, rs, old_size, old_stride)
@skipIfSlowGradcheckEnv
class TestRefsOpsInfo(TestCase):
import_paths = ["_refs", "_refs.special", "_refs.nn.functional", "_refs.fft"]
module_alls = [(path, import_module(f"torch.{path}").__all__) for path in import_paths]
ref_ops_names = tuple(itertools.chain.from_iterable(
[f"{path}.{op}" for op in module_all] for path, module_all in module_alls))
ref_db_names = set(ref_op.name for ref_op in python_ref_db)
# TODO: References that do not have an entry in python_ref_db
skip_ref_ops = {
'_refs.bitwise_right_shift',
'_refs.copy_to',
'_refs.empty_strided',
'_refs.equal',
'_refs.full',
'_refs.full_like',
'_refs.item',
'_refs.to',
'_refs.ones',
'_refs.ones_like',
'_refs.std_var',
'_refs.swap_axes',
'_refs.uniform',
'_refs.scalar_tensor',
'_refs.trunc_divide',
'_refs.zeros',
'_refs.zeros_like',
'_refs.rfloordiv',
'_refs.rtruediv',
'_refs.rpow',
# These should be tested with their out-of-place counterparts
'_refs.index_add_',
'_refs.index_copy_',
'_refs.index_fill_',
}
not_in_decomp_table = {
# duplicated in _decomp and _refs
'_refs.nn.functional.elu',
'_refs.nn.functional.mse_loss',
'_refs.var',
'_refs.rsub',
# duplicated due to efficiency concerns of the ref vs the decomp
'_refs.index_add_',
# these are not aten ops?
'_refs.broadcast_shapes',
'_refs.broadcast_tensors',
'_refs.nn.functional.tanhshrink',
'_refs.rfloordiv',
'_refs.rtruediv',
'_refs.rpow',
# CompositeImplicitAutograd
'_refs.allclose',
'_refs.atleast_1d',
'_refs.atleast_2d',
'_refs.atleast_3d',
'_refs.broadcast_to',
'_refs.chunk',
'_refs.column_stack',
'_refs.contiguous',
'_refs.dsplit',
'_refs.dstack',
'_refs.fill',
'_refs.flatten',
'_refs.fliplr',
'_refs.flipud',
'_refs.float_power',
'_refs.hsplit',
'_refs.hstack',
'_refs.isclose',
'_refs.isfinite',
'_refs.isreal',
'_refs.movedim',
'_refs.narrow',
'_refs.nn.functional.l1_loss',
'_refs.nn.functional.poisson_nll_loss',
'_refs.positive',
'_refs.ravel',
'_refs.reshape',
'_refs.square',
'_refs.tensor_split',
'_refs.to',
'_refs.true_divide',
'_refs.trunc_divide',
'_refs.vsplit',
'_refs.vstack',
'_refs.linalg.matrix_norm',
'_refs.linalg.norm',
'_refs.linalg.svd',
'_refs.linalg.svdvals',
'_refs.unflatten',
'_refs.sum_to_size',
# ref implementation missing kwargs
'_refs.full', # missing "layout"
'_refs.full_like', # missing "layout"
'_refs.ones_like', # missing "layout"
'_refs.round', # missing "decimals"
'_refs.scalar_tensor', # missing "layout"
'_refs.zeros_like', # missing "layout"
# other
'_refs.expand_as',
'_refs.as_strided', # _prims._as_strided_meta: "reduce() of empty sequence with no initial value"
'_refs.copy_to', # torch._C._jit_get_operation: No such operator aten::copy_to
'_refs.equal', # 'bool' object has no attribute 'dtype'
'_refs.conj', # Calls _prims.conj
'_refs.real',
'_refs.imag',
}
@parametrize("op", ref_ops_names)
def test_refs_are_in_python_ref_db(self, op):
if op in self.skip_ref_ops:
raise unittest.SkipTest(f"{op} does not have an entry in python_ref_db")
self.assertIn(op, self.ref_db_names)
@parametrize("op", ref_ops_names)
def test_refs_are_in_decomp_table(self, op):
path = op.split('.')
module_path = '.'.join(path[:-1])
op_name = path[-1]
op_impl = getattr(import_module(f"torch.{module_path}"), op_name)
if op in self.not_in_decomp_table:
self.assertNotIn(op_impl, torch._decomp.decomposition_table.values(),
f"Unexpectedly found {op} in torch._decomp.decomposition_table.values()")
else:
self.assertIn(op_impl, torch._decomp.decomposition_table.values(),
f"Did not find {op} in torch._decomp.decomposition_table.values()")
fake_skips = (
"aminmax", # failing input
"cholesky", # Could not run 'aten::cholesky' with arguments from the 'Meta' backend
"cholesky_inverse", # Could not run 'aten::cholesky' with arguments from the 'Meta' backend
"cov", # aweights cannot be negtaive
"istft", # window overlap add min: 0
"linalg.eigvals", # The tensor has a non-zero number of elements, but its data is not allocated yet
"linalg.eigvalsh", # aten::linalg_eigvalsh.out' with arguments from the 'Meta' backend
"linalg.matrix_power", # Could not run 'aten::eye.m_out' with arguments from the 'Meta' backend
# "linalg.pinv", # Could not run 'aten::pinv.out' with arguments from the 'Meta' backen
"linalg.matrix_rank.hermitian", # Could not run 'aten::linalg_eigvalsh.out' with arguments from the 'Meta' backend
"linalg.pinv.hermitian", # tensor.mH is only supported on matrices or batches of matrices. Got 1-D tensor
"linalg.solve", # Could not run 'aten::linalg_solve' with arguments from the 'Meta' backend
"linalg.tensorsolve", # Could not run 'aten::linalg_solve' with arguments from the 'Meta'
"lu_solve", # MALLOC ERROR: debug
"multinomial", # Could not run 'aten::multinomial' with arguments from the 'Meta' backend
"mvlgamma.mvlgamma_p_1", # Could not run 'aten::_local_scalar_dense' with arguments from the 'Meta' backend
"mvlgamma.mvlgamma_p_3", # Could not run 'aten::_local_scalar_dense' with arguments from the 'Meta' backend
"mvlgamma.mvlgamma_p_5", # Could not run 'aten::_local_scalar_dense' with arguments from the 'Meta' backend
"nanmean", # logical_not() got an unexpected keyword argument 'out'
"quantile", # quantile() q values must be in the range [0, 1]
"nanquantile", # quantile() q values must be in the range [0, 1]
"nn.functional.ctc_loss", # The tensor has a non-zero number of elements, but its data is not allocated yet
"nn.functional.embedding_bag", # sometimes errors
"nn.functional.nll_loss", # sometimes errors
"nn.functional.max_pool1d", # The tensor has a non-zero number of elements
"to_sparse", # Could not run 'aten::to_sparse' with arguments from the 'Meta' backend
"tensor_split", # The tensor has a non-zero number of elements, but its data is not allocated yet
"repeat_interleave", # cannot repeat_interleave a meta tensor without output_size
"segment_reduce.lengths", # Could not run 'aten::segment_reduce' with arguments from the 'Meta' backend.
"sparse.sampled.addmm", # sparsity not supported
# Can not infer total number of classes from meta. no way at present to throw DynamicOutputShapeException
"nn.functional.one_hot",
"narrow", # Fails only for one overload with DataDependentOutputException (hence skip).
)
fake_autocast_device_skips = defaultdict(dict)
# TODO: investigate/fix
fake_autocast_device_skips["cpu"] = set(
("linalg.pinv",)
)
dynamic_output_op_tests = (
"argwhere",
"bincount",
"combinations",
"linalg.lstsq",
"masked_select",
"nonzero",
"unique_consecutive",
"unique",
"linalg.lstsq.grad_oriented",
)
# some inputs invoke dynamic output shape operators, some do not
sometimes_dynamic_output_op_test = (
"__getitem__",
"index_select",
)
data_dependent_op_tests = (
"equal",
"corrcoef",
"nn.functional.gaussian_nll_loss",
"allclose",
)
aliasing_failures = (
"histogramdd",
"nn.functional.pixel_shuffle",
"nn.functional.pixel_unshuffle",
)
# tests which have inconsistent fake tensor stride propagation
# XXX: no new tests should be added to this list as a result of a
# decomp or prim, see https://github.com/pytorch/pytorch/issues/78050#issuecomment-1253950325
fake_tensor_stride_failing_ops = {
"fft.fft2",
"fft.fft",
"fft.fftn",
"fft.hfft2",
"fft.hfft",
"fft.hfftn",
"fft.ifft2",
"fft.ifft",
"fft.ifftn",
"fft.ihfft2",
"fft.ihfft",
"fft.ihfftn",
"fft.irfft2",
"fft.irfft",
"fft.irfftn",
"fft.rfft2",
"fft.rfft",
"fft.rfftn",
"svd",
"linalg.svd",
}
fake_backward_xfails = fake_tensor_stride_failing_ops | {
"linalg.cond",
"linalg.matrix_norm",
"linalg.norm",
"linalg.svd",
"linalg.svdvals",
"nn.functional.binary_cross_entropy_with_logits",
"nn.functional.huber_loss",
"nn.functional.logsigmoid",
"nn.functional.multilabel_soft_margin_loss",
"pca_lowrank",
"roll",
"svd_lowrank",
"sgn",
"cholesky",
"linalg.eigh",
"symeig",
}
fake_backward_xfails = {xfail(stride_skip) for stride_skip in fake_backward_xfails} | {
xfail("segment_reduce", "lengths"),
xfail("norm", "nuc"),
xfail("linalg.norm", "subgradients_at_zero"), # can accept vector inputs
skip('nn.functional.ctc_loss'),
}
fake_autocast_backward_xfails = {
skip("nn.functional.binary_cross_entropy"),
skip("sparse.sampled_addmm"),
skip("linalg.pinv"),
skip("linalg.pinv", "hermitian"),
skip("linalg.pinv", "singular"),
skip('pinverse'),
}
@skipIfSlowGradcheckEnv
class TestFakeTensor(TestCase):
def _test_fake_helper(self, device, dtype, op, context):
name = op.name
if op.variant_test_name:
name += "." + op.variant_test_name
if name in fake_skips or "sparse" in name or "jiterator" in name:
self.skipTest("Skip failing test")
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample in samples:
try:
mode = FakeTensorMode(throw_on_data_dependent_ops=True)
def map_to_fake(e):
if isinstance(e, torch.Tensor):
return mode.from_tensor(e)
else:
return e
input = tree_map(map_to_fake, sample.input)
args = tree_map(map_to_fake, sample.args)
kwargs = tree_map(map_to_fake, sample.kwargs)
try:
with context():
res = op(sample.input, *sample.args, **sample.kwargs)
except Exception as e:
continue
with context():
with mode:
res_fake = op(input, *args, **kwargs)
for fake_out, real_out in zip(
tree_flatten(res_fake)[0], tree_flatten(res)[0]
):
if not isinstance(fake_out, torch.Tensor):
self.assertTrue(not isinstance(real_out, torch.Tensor))
continue
self.assertTrue(isinstance(fake_out, FakeTensor))
# if you see a shape exception here, you may need to add
# a `dynamic_output_shape` tag to an operator
check_strides = name not in fake_tensor_stride_failing_ops
# prims/decomps must correctly model strides,
# see https://github.com/pytorch/pytorch/issues/78050#issuecomment-1253950325
prims.utils.compare_tensor_meta(fake_out, real_out, check_strides)
if name not in aliasing_failures:
fake_aliasing = outputs_alias_inputs((input, args, kwargs), res_fake)
real_aliasing = outputs_alias_inputs((sample.input, sample, args, sample.kwargs), res)
self.assertEqual(fake_aliasing, real_aliasing)
self.assertTrue(name not in dynamic_output_op_tests and name not in data_dependent_op_tests)
except torch._subclasses.fake_tensor.UnsupportedFakeTensorException:
pass
except torch._subclasses.fake_tensor.DynamicOutputShapeException:
self.assertTrue(name in dynamic_output_op_tests or name in sometimes_dynamic_output_op_test)
except torch._subclasses.fake_tensor.DataDependentOutputException:
self.assertTrue(name in data_dependent_op_tests)
@ops(op_db, dtypes=OpDTypes.any_one)
def test_fake(self, device, dtype, op):
self._test_fake_helper(device, dtype, op, contextlib.nullcontext)
@ops(op_db, dtypes=OpDTypes.any_one)
def test_fake_autocast(self, device, dtype, op):
if op.name in fake_autocast_device_skips[device]:
self.skipTest("Skip failing test")
context = torch.cuda.amp.autocast if device == "cuda" else torch.cpu.amp.autocast
self._test_fake_helper(device, dtype, op, context)
def _test_fake_crossref_helper(self, device, dtype, op, context):
samples = op.sample_inputs(device, dtype, requires_grad=True)
for iter, sample in enumerate(samples):
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
# skip these to speed up tests
common_skip_ops = (
aten.detach.default,
aten.empty_strided.default,
aten.copy_.default,
aten.is_same_size.default,
)
# TODO: enable check_aliasing, batch norm fails
with torch._subclasses.CrossRefFakeMode(ignore_op_fn=lambda fn: fn in common_skip_ops, check_aliasing=True):
with warnings.catch_warnings(), context():
composite_compliance.compute_expected_grads(
op.get_op(), args, kwargs,
sample.output_process_fn_grad,
op.gradcheck_wrapper)
@skipIfRocm
@onlyCUDA
@ops([op for op in op_db if op.supports_autograd], allowed_dtypes=(torch.float,))
@skipOps('TestFakeTensor', 'test_fake_crossref_backward_no_amp', fake_backward_xfails)
def test_fake_crossref_backward_no_amp(self, device, dtype, op):
self._test_fake_crossref_helper(device, dtype, op, contextlib.nullcontext)
@skipIfRocm
@onlyCUDA
@ops([op for op in op_db if op.supports_autograd], allowed_dtypes=(torch.float,))
@skipOps('TestFakeTensor', 'test_fake_crossref_backward_amp', fake_backward_xfails | fake_autocast_backward_xfails)
def test_fake_crossref_backward_amp(self, device, dtype, op):
self._test_fake_crossref_helper(device, dtype, op, torch.cuda.amp.autocast)
instantiate_device_type_tests(TestCommon, globals())
instantiate_device_type_tests(TestCompositeCompliance, globals())
instantiate_device_type_tests(TestMathBits, globals())
instantiate_device_type_tests(TestRefsOpsInfo, globals(), only_for="cpu")
instantiate_device_type_tests(TestFakeTensor, globals())
instantiate_device_type_tests(TestTags, globals())
if __name__ == "__main__":
run_tests()
|