File: test_optim.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (3001 lines) | stat: -rw-r--r-- 141,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
# Owner(s): ["module: optimizer"]

import warnings
import math
import unittest
import functools
import itertools
from copy import deepcopy

import torch
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter
from torch.optim import SGD
from torch import sparse
from torch.optim.lr_scheduler import LambdaLR, MultiplicativeLR, SequentialLR, StepLR, \
    MultiStepLR, ConstantLR, LinearLR, ExponentialLR, CosineAnnealingLR, ReduceLROnPlateau, \
    _LRScheduler, CyclicLR, CosineAnnealingWarmRestarts, OneCycleLR, ChainedScheduler, PolynomialLR, \
    EPOCH_DEPRECATION_WARNING
from torch.optim.swa_utils import AveragedModel, SWALR, update_bn
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_UBSAN, load_tests, \
    parametrize, instantiate_parametrized_tests, gradcheck, skipIfRocm
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests


def rosenbrock(tensor):
    x, y = tensor
    return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2


def drosenbrock(tensor):
    x, y = tensor
    return torch.tensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2)))


class TestOptim(TestCase):
    exact_dtype = True

    def _test_rosenbrock_sparse(self, constructor, scheduler_constructors=None,
                                sparse_only=False, maximize=False):
        if scheduler_constructors is None:
            scheduler_constructors = []
        params_t = torch.tensor([1.5, 1.5])

        params = Parameter(params_t)
        optimizer = constructor([params])
        schedulers = []
        for scheduler_constructor in scheduler_constructors:
            schedulers.append(scheduler_constructor(optimizer))

        if not sparse_only:
            params_c = Parameter(params_t.clone())
            optimizer_c = constructor([params_c])

        solution = torch.tensor([1, 1])
        with torch.no_grad():
            initial_dist = params.dist(solution)

        def eval(params, sparse_grad, w):
            # Depending on w, provide only the x or y gradient
            optimizer.zero_grad()
            loss = rosenbrock(params)
            loss.backward()
            grad = drosenbrock(params.data)
            # NB: We torture test the optimizer by returning an
            # uncoalesced sparse tensor
            if w:
                i = torch.LongTensor([[0, 0]])
                x = grad[0]
                v = torch.tensor([x / 4., x - x / 4.])
            else:
                i = torch.LongTensor([[1, 1]])
                y = grad[1]
                v = torch.tensor([y - y / 4., y / 4.])
            x = sparse.DoubleTensor(i, v, torch.Size([2])).to(dtype=v.dtype)
            with torch.no_grad():
                if sparse_grad:
                    params.grad = x
                else:
                    params.grad = x.to_dense()
            return loss

        for i in range(2000):
            # Do cyclic coordinate descent
            w = i % 2
            optimizer.step(functools.partial(eval, params, True, w))
            for scheduler in schedulers:
                if isinstance(scheduler, ReduceLROnPlateau):
                    scheduler.step(rosenbrock(params))
                else:
                    scheduler.step()
            if not sparse_only:
                optimizer_c.step(functools.partial(eval, params_c, False, w))
                self.assertEqual(params, params_c)

        if not maximize:
            self.assertLessEqual(params.data.dist(solution), initial_dist)
        else:
            self.assertGreaterEqual(rosenbrock(params), rosenbrock(params_t))

    def _test_basic_cases_template(self, weight_tensor, bias_tensor, input_tensor, constructor,
                                   scheduler_constructors, constructor_accepts_maximize=True, constructor_accepts_foreach=False):
        maximize_options = set([False, constructor_accepts_maximize])
        foreach_options = set([False, constructor_accepts_foreach])

        four_arg_constructor = constructor
        if constructor_accepts_maximize and constructor_accepts_foreach:
            pass
        elif constructor_accepts_maximize:
            def four_arg_constructor(weight, bias, maximize, foreach):
                self.assertFalse(foreach)
                return constructor(weight, bias, maximize)
        elif constructor_accepts_foreach:
            def four_arg_constructor(weight, bias, maximize, foreach):
                self.assertFalse(maximize)
                return constructor(weight, bias, foreach)
        else:
            def four_arg_constructor(weight, bias, maximize, foreach):
                self.assertFalse(maximize or foreach)
                return constructor(weight, bias)

        for maximize, foreach in itertools.product(maximize_options, foreach_options):
            with torch.no_grad():
                weight = Parameter(weight_tensor.clone().detach())
                bias = Parameter(bias_tensor.clone().detach())
                input = input_tensor.clone().detach().requires_grad_()
            optimizer = four_arg_constructor(weight, bias, maximize, foreach)
            schedulers = []
            for scheduler_constructor in scheduler_constructors:
                schedulers.append(scheduler_constructor(optimizer))

            # to check if the optimizer can be printed as a string
            optimizer.__repr__()

            def fn():
                optimizer.zero_grad()
                y = weight.mv(input)
                if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device():
                    y = y.cuda(bias.get_device())
                loss = (y + bias).pow(2).sum()
                loss.backward()
                return loss

            initial_value = fn().item()
            for _ in range(200):
                for scheduler in schedulers:
                    if isinstance(scheduler, ReduceLROnPlateau):
                        val_loss = fn()
                        scheduler.step(val_loss)
                    else:
                        scheduler.step()
                optimizer.step(fn)
            if maximize:
                self.assertGreater(fn().item(), initial_value)
            else:
                self.assertLess(fn().item(), initial_value)

    def _test_state_dict(self, weight, bias, input, constructor):
        weight = Parameter(weight)
        bias = Parameter(bias)
        with torch.no_grad():
            input = input.clone().detach().requires_grad_()

        def fn_base(optimizer, weight, bias):
            optimizer.zero_grad()
            i = input_cuda if weight.is_cuda else input
            loss = (weight.mv(i) + bias).pow(2).sum()
            loss.backward()
            return loss

        optimizer = constructor(weight, bias)
        fn = functools.partial(fn_base, optimizer, weight, bias)

        # Prime the optimizer
        for _i in range(20):
            optimizer.step(fn)
        # Clone the weights and construct new optimizer for them
        with torch.no_grad():
            weight_c = Parameter(weight.clone().detach())
            bias_c = Parameter(bias.clone().detach())
        optimizer_c = constructor(weight_c, bias_c)
        fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c)
        # Load state dict
        state_dict = deepcopy(optimizer.state_dict())
        state_dict_c = deepcopy(optimizer.state_dict())
        optimizer_c.load_state_dict(state_dict_c)
        # Run both optimizations in parallel
        for _ in range(20):
            optimizer.step(fn)
            optimizer_c.step(fn_c)
            self.assertEqual(weight, weight_c)
            self.assertEqual(bias, bias_c)
        # Make sure state dict wasn't modified
        self.assertEqual(state_dict, state_dict_c)
        # Make sure state dict is deterministic with equal but not identical parameters
        self.assertEqual(optimizer.state_dict(), optimizer_c.state_dict())
        # Make sure repeated parameters have identical representation in state dict
        optimizer_c.param_groups.extend(optimizer_c.param_groups)
        self.assertEqual(optimizer.state_dict()['param_groups'][-1],
                         optimizer_c.state_dict()['param_groups'][-1])

        # Make sure that optimizers that support maximize can load older models
        state_dict = optimizer.state_dict()
        if 'maximize' in state_dict['param_groups'][0]:
            for group in state_dict['param_groups']:
                del group['maximize']
            optimizer.load_state_dict(state_dict)
            # Make sure we can still step
            optimizer.step()
        # Make sure that optimizers that support foreach can load older models
        state_dict = optimizer.state_dict()
        if 'foreach' in state_dict['param_groups'][0]:
            for group in state_dict['param_groups']:
                del group['foreach']
            optimizer.load_state_dict(state_dict)
            # Make sure we can still step
            optimizer.step()

        # Make sure that loading optimizers with step not wrapped in tensor can work
        state_dict = optimizer.state_dict()
        if 'step' in state_dict['state'][0] and torch.is_tensor(state_dict['state'][0]['step']):
            for state in state_dict['state'].values():
                state['step'] = state['step'].item()
            optimizer.load_state_dict(state_dict)
            optimizer.step()

        # Check that state dict can be loaded even when we cast parameters
        # to a different type and move to a different device.
        if not torch.cuda.is_available():
            return

        with torch.no_grad():
            input_cuda = input.clone().detach().to(dtype=torch.float32, device="cuda")
            weight_cuda = Parameter(weight.clone().detach().to(dtype=torch.float32, device="cuda"))
            bias_cuda = Parameter(bias.clone().detach().to(dtype=torch.float32, device="cuda"))
        optimizer_cuda = constructor(weight_cuda, bias_cuda)
        fn_cuda = functools.partial(fn_base, optimizer_cuda, weight_cuda, bias_cuda)

        state_dict = deepcopy(optimizer.state_dict())
        state_dict_c = deepcopy(optimizer.state_dict())
        optimizer_cuda.load_state_dict(state_dict_c)

        # Make sure state dict wasn't modified
        self.assertEqual(state_dict, state_dict_c)

        # Make sure that device of state['step'] is still CPU
        new_state_dict = optimizer_cuda.state_dict()
        if 'step' in state_dict['state'][0] and torch.is_tensor(state_dict['state'][0]['step']):
            for state in new_state_dict['state'].values():
                self.assertEqual(state['step'].device.type, 'cpu')

        for _i in range(20):
            optimizer.step(fn)
            optimizer_cuda.step(fn_cuda)
            self.assertEqual(weight, weight_cuda)
            self.assertEqual(bias, bias_cuda)

        # validate deepcopy() copies all public attributes
        def getPublicAttr(obj):
            return set(k for k in obj.__dict__ if not k.startswith('_'))
        self.assertEqual(getPublicAttr(optimizer), getPublicAttr(deepcopy(optimizer)))

    def _test_basic_cases(self, constructor, scheduler_constructors=None,
                          ignore_multidevice=False, constructor_accepts_maximize=False, constructor_accepts_foreach=False):
        if scheduler_constructors is None:
            scheduler_constructors = []

        def make_two_arg_constructor(constructor, maximize: bool = False, foreach: bool = False):
            if constructor_accepts_maximize and constructor_accepts_foreach:
                return lambda weight, bias: constructor(weight, bias, maximize, foreach)
            if constructor_accepts_maximize:
                return lambda weight, bias: constructor(weight, bias, maximize)
            if constructor_accepts_foreach:
                return lambda weight, bias: constructor(weight, bias, foreach)
            return constructor

        for maximize, foreach in itertools.product(
            set([False, constructor_accepts_maximize]),
            set([False, constructor_accepts_foreach]),
        ):
            self._test_state_dict(
                torch.randn(10, 5),
                torch.randn(10),
                torch.randn(5),
                make_two_arg_constructor(constructor, maximize, foreach),
            )
        self._test_basic_cases_template(
            torch.randn(10, 5),
            torch.randn(10),
            torch.randn(5),
            constructor,
            scheduler_constructors,
            constructor_accepts_maximize,
            constructor_accepts_foreach,
        )
        # non-contiguous parameters
        self._test_basic_cases_template(
            torch.randn(10, 5, 2)[..., 0],
            torch.randn(10, 2)[..., 0],
            torch.randn(5),
            constructor,
            scheduler_constructors,
            constructor_accepts_maximize,
            constructor_accepts_foreach,
        )
        # CUDA
        if not torch.cuda.is_available():
            return
        self._test_basic_cases_template(
            torch.randn(10, 5).cuda(),
            torch.randn(10).cuda(),
            torch.randn(5).cuda(),
            constructor,
            scheduler_constructors,
            constructor_accepts_maximize,
            constructor_accepts_foreach,
        )
        # Multi-GPU
        if not torch.cuda.device_count() > 1 or ignore_multidevice:
            return
        self._test_basic_cases_template(
            torch.randn(10, 5).cuda(0),
            torch.randn(10).cuda(1),
            torch.randn(5).cuda(0),
            constructor,
            scheduler_constructors,
            constructor_accepts_maximize,
            constructor_accepts_foreach,
        )

    def _test_complex_optimizer(self, optimizer_constructor):
        complex_param = torch.randn(5, 5, dtype=torch.complex64, requires_grad=True)
        real_param = torch.view_as_real(complex_param).detach().clone().requires_grad_()
        complex_opt = optimizer_constructor(complex_param)
        real_opt = optimizer_constructor(real_param)

        for _ in range(3):
            complex_param.grad = torch.randn_like(complex_param)
            real_param.grad = torch.view_as_real(complex_param.grad)
            complex_opt.step()
            real_opt.step()

            self.assertEqual(torch.view_as_real(complex_param), real_param)

    def _test_complex_2d(self, optimizer_constructor, f=None):
        if f is None:
            f = rosenbrock
        a1 = torch.randn(2, dtype=torch.complex64, requires_grad=True)
        a1_real = a1.real.clone().detach()
        a1_imag = a1.imag.clone().detach()
        a1_real.requires_grad_()
        a1_imag.requires_grad_()
        optim1 = optimizer_constructor([a1])
        optim2 = optimizer_constructor([a1_real, a1_imag])

        for _ in range(10):
            optim1.zero_grad()
            optim2.zero_grad()
            a2 = torch.complex(a1_real, a1_imag)
            f(a1).backward()
            f(a2).backward()

            self.assertEqual(a1.grad.real, a1_real.grad)
            self.assertEqual(a1.grad.imag, a1_imag.grad)

            optim1.step()
            optim2.step()
            self.assertEqual(a1.real, a1_real)
            self.assertEqual(a1.imag, a1_imag)

    def _build_params_dict(self, weight, bias, **kwargs):
        return [{'params': [weight]}, dict(params=[bias], **kwargs)]

    def _build_params_dict_single(self, weight, bias, **kwargs):
        return [dict(params=bias, **kwargs)]

    def test_sgd(self):
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD(
                self._build_params_dict_single(weight, bias, lr=1e-2),
                lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD(
                self._build_params_dict_single(weight, bias, lr=1e-2), maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: StepLR(opt, gamma=0.9, step_size=10)],
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: LinearLR(opt, start_factor=0.4, end_factor=0.8, total_iters=4)],
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: ConstantLR(opt, factor=0.4, total_iters=4)],
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: StepLR(opt, gamma=0.9, step_size=10),
                lambda opt: LinearLR(opt, start_factor=0.4, end_factor=0.6, total_iters=4)],
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: StepLR(opt, gamma=0.9, step_size=10),
                lambda opt: ReduceLROnPlateau(opt)],
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: StepLR(opt, gamma=0.99, step_size=10),
                lambda opt: ExponentialLR(opt, gamma=0.99),
                lambda opt: ReduceLROnPlateau(opt)],
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach:
            optim.SGD([weight, bias], lr=1e-3, momentum=0.5, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach:
            optim.SGD([weight, bias], lr=1e-3, momentum=0.5, weight_decay=1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach:
            optim.SGD([weight, bias], nesterov=True, lr=1e-3, momentum=0.5, weight_decay=1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.SGD([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: PolynomialLR(opt, power=0.9, total_iters=4)],
            constructor_accepts_maximize=True, constructor_accepts_foreach=True,
        )
        with self.assertRaisesRegex(ValueError, "Invalid momentum value: -0.5"):
            optim.SGD(None, lr=1e-2, momentum=-0.5)

    def test_sgd_sparse(self):
        for foreach in (False, True):
            self._test_rosenbrock_sparse(
                lambda params: optim.SGD(params, lr=4.8e-3, foreach=foreach)
            )
            self._test_rosenbrock_sparse(
                lambda params: optim.SGD(params, lr=0.0048, foreach=foreach),
                [lambda opt: StepLR(opt, gamma=0.99999, step_size=300)]
            )

    def test_sgd_complex(self):
        for foreach in (False, True):
            self._test_complex_optimizer(
                lambda param: optim.SGD([param], lr=0.001, foreach=foreach)
            )
            self._test_complex_optimizer(
                lambda param: optim.SGD([param], lr=0.001, momentum=1, foreach=foreach)
            )
            self._test_complex_optimizer(
                lambda param: optim.SGD([param], lr=0.001, momentum=1, weight_decay=1, foreach=foreach)
            )
            self._test_complex_optimizer(
                lambda param: optim.SGD([param], lr=0.001, nesterov=True, momentum=1, weight_decay=1, foreach=foreach)
            )
            self._test_complex_optimizer(
                lambda param: optim.SGD([param], lr=0.001, momentum=1, dampening=0.5, weight_decay=1, foreach=foreach)
            )

    def _test_derived_optimizers(self, optimizer_pairs_with_flags, flag):
        if not torch.cuda.is_available():
            return
        assert flag in ("foreach", "fused")

        kIterations = 4
        device = 'cuda'
        for optimizer_constructor, params in optimizer_pairs_with_flags:
            res, state = [], []
            for foreach in (False, True):
                input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=torch.float64, device=device).reshape(3, 2)

                torch.manual_seed(1)
                model = torch.nn.Sequential(torch.nn.Linear(2, 3),
                                            torch.nn.Sigmoid(),
                                            torch.nn.Linear(3, 1),
                                            torch.nn.Sigmoid())
                model.to(dtype=torch.float64, device=device)
                params_with_foreach = deepcopy(params)
                params_with_foreach["foreach"] = foreach
                optimizer = optimizer_constructor(model.parameters(), **params_with_foreach)

                for _ in range(kIterations):
                    optimizer.zero_grad()
                    output = model(input)
                    loss = output.sum()
                    loss.backward()

                    # Test that step behaves as expected (a no-op) when grads are set to None
                    if iter == 0:
                        optimizer.zero_grad(set_to_none=True)

                    optimizer.step()

                state.append(optimizer.state)
                res.append(model.parameters())

            st_state = state[0]
            mt_state = state[1]
            for st_p, mt_p in zip(res[0], res[1]):
                self.assertEqual(st_p, mt_p, atol=5e-5, rtol=0)

                # check that optimizer states are the same
                st_p_state = st_state[st_p]
                mt_p_state = mt_state[mt_p]

                for k in st_p_state:
                    actual = mt_p_state[k]
                    # If `torch.optim.Adam` is `__init__`ed with either `fused=True` or `capturable=True`,
                    # `step` Tensor is 1D while usually it's 0D.
                    if k == "step" and isinstance(actual, torch.Tensor) and actual.ndim == 1:
                        actual = actual[0]
                    self.assertEqual(st_p_state[k], actual, atol=5e-5, rtol=0)

    def test_multi_tensor_optimizers(self):
        optimizer_pairs_with_flags = [
            (optim.Adam, dict(weight_decay=1., amsgrad=True)),
            (optim.Adam, dict(weight_decay=1., amsgrad=False)),
            (optim.Adam, dict(weight_decay=0., amsgrad=True)),
            (optim.Adam, dict(weight_decay=0., amsgrad=False)),
            (optim.AdamW, dict(weight_decay=1., amsgrad=True)),
            (optim.AdamW, dict(weight_decay=1., amsgrad=False)),
            (optim.AdamW, dict(weight_decay=0., amsgrad=True)),
            (optim.AdamW, dict(weight_decay=0., amsgrad=False)),
            (optim.NAdam, dict(weight_decay=0., momentum_decay=6e-3)),
            (optim.NAdam, dict(weight_decay=1., momentum_decay=6e-3)),
            (optim.NAdam, dict(weight_decay=0., momentum_decay=4e-3)),
            (optim.NAdam, dict(weight_decay=0.01, momentum_decay=4e-3)),
            (optim.SGD, dict(lr=0.2, momentum=1, dampening=0, weight_decay=1, nesterov=True)),
            (optim.SGD, dict(lr=0.2, momentum=1, dampening=0.5, weight_decay=1, nesterov=False)),
            (optim.RAdam, dict(weight_decay=0)),
            (optim.RAdam, dict(weight_decay=1)),
            (optim.RMSprop, dict(weight_decay=1, momentum=1, centered=True)),
            (optim.RMSprop, dict(weight_decay=1, momentum=0, centered=True)),
            (optim.RMSprop, dict(weight_decay=1, momentum=1, centered=False)),
            (optim.RMSprop, dict(weight_decay=0, momentum=1, centered=False)),
            (optim.Rprop, dict(lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50))),
            (optim.ASGD, dict(weight_decay=0)),
            (optim.ASGD, dict(weight_decay=1)),
            (optim.Adamax, dict(weight_decay=0)),
            (optim.Adamax, dict(weight_decay=1)),
            (optim.Adadelta, dict(weight_decay=0)),
            (optim.Adadelta, dict(weight_decay=1)),
            (optim.Adagrad, dict(weight_decay=0)),
            (optim.Adagrad, dict(weight_decay=1)),
        ]
        self._test_derived_optimizers(optimizer_pairs_with_flags, "foreach")

    def test_fused_optimizers(self):
        optimizer_pairs_with_flags = [
            (optim.Adam, dict(weight_decay=1., amsgrad=False)),
            (optim.Adam, dict(weight_decay=1., amsgrad=True)),
            (optim.Adam, dict(weight_decay=0., amsgrad=False)),
            (optim.Adam, dict(weight_decay=0., amsgrad=True)),
        ]
        self._test_derived_optimizers(optimizer_pairs_with_flags, "fused")

    def test_adam(self):
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                [weight, bias], lr=1e-3, amsgrad=True, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                [weight, bias], lr=1e-3, weight_decay=0.1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, amsgrad=True, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: ExponentialLR(opt, gamma=0.9)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: LinearLR(opt, start_factor=0.4, total_iters=4)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: ConstantLR(opt, factor=0.4, total_iters=4)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                [weight, bias], lr=1e-3, amsgrad=True, maximize=maximize, foreach=foreach),
            [lambda opt: ConstantLR(opt, factor=0.4, total_iters=4),
                lambda opt: ExponentialLR(opt, gamma=0.9)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                [weight, bias], lr=1e-3, amsgrad=True, maximize=maximize, foreach=foreach),
            [lambda opt: ExponentialLR(opt, gamma=0.9),
                lambda opt: ReduceLROnPlateau(opt)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, amsgrad=True, maximize=maximize, foreach=foreach),
            [lambda opt: StepLR(opt, gamma=0.9, step_size=10),
                lambda opt: ReduceLROnPlateau(opt)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )

        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, maximize=maximize, foreach=foreach),
            [lambda opt: PolynomialLR(opt, total_iters=4, power=0.9)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_complex_2d(optim.Adam)
        self._test_complex_2d(functools.partial(optim.Adam, foreach=True))

        with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"):
            optim.Adam(None, lr=1e-2, betas=(1.0, 0.0))

        with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"):
            optim.Adam(None, lr=1e-2, weight_decay=-1)

    def test_adamw(self):
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.AdamW([weight, bias], lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.AdamW(
                self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.AdamW(
                [weight, bias], lr=1e-3, weight_decay=1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.AdamW(
                [weight, bias], lr=1e-3, weight_decay=1, amsgrad=True, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_complex_2d(optim.AdamW)
        self._test_complex_2d(functools.partial(optim.AdamW, foreach=True))
        with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"):
            optim.AdamW(None, lr=1e-2, weight_decay=-1)

    def test_sparse_adam(self):
        self._test_rosenbrock_sparse(
            lambda params: optim.SparseAdam(params, lr=4e-2),
            [],
            True
        )
        self._test_rosenbrock_sparse(
            lambda params: optim.SparseAdam(params, lr=4e-2, maximize=True),
            [],
            True,
            True
        )
        with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"):
            optim.SparseAdam(None, lr=1e-2, betas=(1.0, 0.0))
        with self.assertRaisesRegex(ValueError, "SparseAdam requires dense parameter tensors"):
            optim.SparseAdam([torch.zeros(3, layout=torch.sparse_coo)])
        with self.assertRaisesRegex(ValueError, "SparseAdam requires dense parameter tensors"):
            optim.SparseAdam([{"params": [torch.zeros(3, layout=torch.sparse_coo)]}])

    # ROCm precision is too low to pass this test
    def test_adadelta(self):
        # Handles https://github.com/pytorch/pytorch/issues/69698
        self.rel_tol = 4e-3
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adadelta([weight, bias], maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95), maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adadelta(
                self._build_params_dict(weight, bias, rho=0.95), maximize=maximize, foreach=foreach),
            [lambda opt: StepLR(opt, gamma=0.9, step_size=10),
                lambda opt: ReduceLROnPlateau(opt)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adadelta(
                [weight, bias], weight_decay=1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        with self.assertRaisesRegex(ValueError, "Invalid rho value: 1.1"):
            optim.Adadelta(None, lr=1e-2, rho=1.1)

    def test_adadelta_complex(self):
        # Handles https://github.com/pytorch/pytorch/issues/69698
        self.rel_tol = 2e-2
        for optimizer in [optim.Adadelta]:
            self._test_complex_optimizer(
                lambda weight: optimizer([weight])
            )
            self._test_complex_optimizer(
                lambda weight: optimizer([weight], rho=0.95)
            )
            self._test_complex_optimizer(
                lambda weight: optimizer([weight], rho=0.95, weight_decay=1)
            )

    def test_nadam(self):
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.NAdam([weight, bias], lr=1e-3, foreach=foreach),
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.NAdam(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-3, foreach=foreach),
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.NAdam(
                [weight, bias], lr=1e-3, weight_decay=0.1, momentum_decay=6e-3, foreach=foreach),
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.NAdam(
                [weight, bias], lr=1e-3, weight_decay=0.1, momentum_decay=6e-3, foreach=foreach),
            [lambda opt: ExponentialLR(opt, gamma=0.9)],
            constructor_accepts_foreach=True,
        )
        with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"):
            optim.NAdam(None, lr=1e-2, betas=(1.0, 0.0))
        with self.assertRaisesRegex(ValueError, "Invalid momentum_decay value: -0.2"):
            optim.NAdam(None, lr=1e-2, momentum_decay=-0.2)

    def test_adagrad(self):
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adagrad([weight, bias], lr=1e-1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adagrad(
                [weight, bias], lr=1e-1, initial_accumulator_value=0.1, maximize=maximize, foreach=foreach,
            ),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1,
                maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1,
                maximize=maximize, foreach=foreach),
            [lambda opt: ReduceLROnPlateau(opt)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adagrad(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1,
                maximize=maximize, foreach=foreach),
            [lambda opt: ReduceLROnPlateau(opt),
                lambda opt: ExponentialLR(opt, gamma=0.99)],
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        with self.assertRaisesRegex(ValueError, "Invalid lr_decay value: -0.5"):
            optim.Adagrad(None, lr=1e-2, lr_decay=-0.5)

    def test_adagrad_sparse(self):
        for foreach in (False, True):
            self._test_rosenbrock_sparse(
                lambda params: optim.Adagrad(params, lr=1e-1, foreach=foreach)
            )
            self._test_rosenbrock_sparse(
                lambda params: optim.Adagrad(params, lr=0.1, foreach=foreach),
                [lambda opt: StepLR(opt, gamma=1 - 1e-5, step_size=500),
                 lambda opt: ReduceLROnPlateau(opt, threshold=1e-4)]
            )

    def test_adagrad_complex(self):
        for foreach in (False, True):
            self._test_complex_optimizer(
                lambda param: optim.Adagrad([param], lr=1e-1, foreach=foreach)
            )
            self._test_complex_optimizer(
                lambda param: optim.Adagrad(
                    [param], lr=1e-1, initial_accumulator_value=0.1, foreach=foreach,
                )
            )

    def test_adamax(self):
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adamax(
                [weight, bias], lr=1e-1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adamax(
                self._build_params_dict(weight, bias, lr=1e-2),
                lr=1e-1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, maximize, foreach: optim.Adamax(
                [weight, bias], lr=1e-1, weight_decay=1, maximize=maximize, foreach=foreach),
            constructor_accepts_maximize=True,
            constructor_accepts_foreach=True,
        )
        self._test_complex_2d(optim.Adamax)
        self._test_complex_2d(functools.partial(optim.Adamax, foreach=True))
        with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 1: 1.0"):
            optim.Adamax(None, lr=1e-2, betas=(0.0, 1.0))

    def test_radam(self):
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.RAdam([weight, bias], lr=1e-3, foreach=foreach),
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.RAdam(
                self._build_params_dict(weight, bias, lr=1e-2), lr=1e-3, foreach=foreach),
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.RAdam([weight, bias], lr=1e-3, weight_decay=0.1, foreach=foreach),
            constructor_accepts_foreach=True,
        )
        self._test_basic_cases(
            lambda weight, bias, foreach: optim.RAdam([weight, bias], lr=1e-3, foreach=foreach),
            [lambda opt: ExponentialLR(opt, gamma=0.9), lambda opt: ReduceLROnPlateau(opt)],
            constructor_accepts_foreach=True,
        )
        with self.assertRaisesRegex(ValueError, "Invalid beta parameter at index 0: 1.0"):
            optim.RAdam(None, lr=1e-2, betas=(1.0, 0.0))

        with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -1"):
            optim.RAdam(None, lr=1e-2, weight_decay=-1)

    def test_rmsprop(self):
        for foreach in (False, True):
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.RMSprop(
                    [weight, bias], lr=1e-2, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.RMSprop(
                    self._build_params_dict(weight, bias, lr=1e-3),
                    lr=1e-2, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.RMSprop(
                    self._build_params_dict(weight, bias, lr=1e-3),
                    lr=1e-2, centered=True, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.RMSprop(
                    self._build_params_dict(weight, bias, lr=1e-3),
                    lr=1e-2, centered=True, momentum=0.1, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.RMSprop(
                    self._build_params_dict(weight, bias, lr=1e-3),
                    lr=1e-2, momentum=0.1, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.RMSprop(
                    self._build_params_dict(weight, bias, lr=1e-3),
                    lr=1e-2, momentum=0.1, weight_decay=1, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_complex_2d(lambda param: optim.RMSprop(param, foreach=foreach))
            self._test_complex_2d(lambda param: optim.RMSprop(param, centered=True, foreach=foreach))
            self._test_complex_2d(lambda param: optim.RMSprop(param, momentum=0.1, foreach=foreach))
            self._test_complex_2d(lambda param: optim.RMSprop(param, maximize=True, foreach=foreach))
            self._test_complex_optimizer(lambda param: optim.RMSprop([param], foreach=foreach))
            self._test_complex_optimizer(lambda param: optim.RMSprop([param], centered=True, foreach=foreach))
            self._test_complex_optimizer(lambda param: optim.RMSprop([param], momentum=0.1, foreach=foreach))
            self._test_complex_optimizer(lambda param: optim.RMSprop([param], maximize=True, foreach=foreach))
            with self.assertRaisesRegex(ValueError, "Invalid momentum value: -1.0"):
                optim.RMSprop(None, lr=1e-2, momentum=-1.0, foreach=foreach)

    def test_asgd(self):
        for foreach in (False, True):
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.ASGD(
                    [weight, bias], lr=1e-3, t0=100, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.ASGD(
                    self._build_params_dict(weight, bias, lr=1e-2),
                    lr=1e-3, t0=100, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.ASGD(
                    self._build_params_dict(weight, bias, lr=1e-2),
                    lr=1e-3, weight_decay=1, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            # Ref: https://github.com/pytorch/pytorch/issues/84560
            # self._test_complex_2d(optimizer)
            self._test_complex_optimizer(lambda params: optim.ASGD([params], foreach=foreach))
            self._test_complex_optimizer(lambda params: optim.ASGD([params], maximize=True, foreach=foreach))
            self._test_complex_optimizer(lambda params: optim.ASGD([params], maximize=True, weight_decay=0.9, foreach=foreach))
            self._test_complex_optimizer(lambda params: optim.ASGD([params], maximize=False, weight_decay=0.9, foreach=foreach))
            self._test_complex_optimizer(lambda params: optim.ASGD([params], weight_decay=0.9, foreach=foreach))
            with self.assertRaisesRegex(ValueError, "Invalid weight_decay value: -0.5"):
                optim.ASGD(None, lr=1e-2, weight_decay=-0.5, foreach=foreach)

    @skipIfRocm
    def test_rprop(self):
        for foreach in (False, True):
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.Rprop(
                    [weight, bias], lr=2e-4, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_basic_cases(
                lambda weight, bias, maximize, foreach: optim.Rprop(
                    self._build_params_dict(weight, bias, lr=1e-2), lr=2e-4, maximize=maximize, foreach=foreach),
                constructor_accepts_maximize=True,
                constructor_accepts_foreach=True,
            )
            self._test_complex_2d(lambda param: optim.Rprop(param, foreach=foreach))
            self._test_complex_optimizer(
                lambda param: optim.Rprop([param], lr=0.001, foreach=foreach)
            )
            self._test_complex_optimizer(
                lambda param: optim.Rprop([param], lr=0.001, maximize=True, foreach=foreach)
            )
            with self.assertRaisesRegex(ValueError, "Invalid eta values: 1.0, 0.5"):
                optim.Rprop(None, lr=1e-2, etas=(1.0, 0.5), foreach=foreach)

    def test_lbfgs(self):
        self._test_basic_cases(
            lambda weight, bias: optim.LBFGS([weight, bias]),
            ignore_multidevice=True
        )
        self._test_basic_cases(
            lambda weight, bias: optim.LBFGS([weight, bias], line_search_fn="strong_wolfe"),
            ignore_multidevice=True
        )

    @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN")
    def test_lbfgs_return_type(self):
        params = [torch.randn(10, 5), torch.randn(10)]
        opt1 = optim.LBFGS(params, 0.01, tolerance_grad=math.inf)
        opt2 = optim.LBFGS(params, 0.01, tolerance_grad=-math.inf)

        def closure():
            return torch.tensor([10])

        res1 = opt1.step(closure)
        res2 = opt2.step(closure)
        self.assertEqual(type(res1), type(res2))

    def test_invalid_param_type(self):
        with self.assertRaises(TypeError):
            optim.SGD(Parameter(torch.randn(5, 5)), lr=3)

    def test_duplicate_params_in_param_group(self):
        param = Parameter(torch.randn(5, 5))
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            optim.SGD([param, param], lr=0.1)
            self.assertEqual(len(w), 1)
            self.assertIn('a parameter group with duplicate parameters', str(w[0].message))

    def test_no_grad_for_all_params(self):
        params = [torch.randn(5, 5, requires_grad=False) for _ in range(2)]

        optimizer_list = [
            optim.Adadelta,
            optim.AdamW,
            optim.Adam,
            optim.Adagrad,
            optim.Adamax,
            optim.RMSprop,
            optim.SGD,
            optim.SparseAdam,
            optim.ASGD,
        ]
        for optim_ctr in optimizer_list:
            opt = optim_ctr(params, lr=0.1)
            # make sure step can still run even if
            # all params have no grad
            opt.step()

    # make sure that `state_steps` is correctly either updated or not updated when `found_inf`.
    def test_functional_fused_adam_with_foundinf(self):
        if not torch.cuda.is_available():
            self.skipTest("CUDA is required.")

        from torch.optim import adam

        num_tensors = 5
        for amsgrad in (False, True):
            params, grads, exp_avgs, exp_avg_sqs = [[torch.ones((1,), device="cuda") for _ in range(num_tensors)] for _ in range(4)]
            max_exp_avg_sqs = [torch.ones((1,), device="cuda") for _ in range(num_tensors)] if amsgrad else []
            state_steps = [torch.ones((1,), dtype=torch.float32, device="cuda") for _ in range(num_tensors)]
            grad_scale = torch.cuda.amp.grad_scaler._MultiDeviceReplicator(
                torch.ones((1,), dtype=torch.float32, device="cuda"))
            found_inf = torch.cuda.amp.grad_scaler._MultiDeviceReplicator(
                torch.ones((1,), dtype=torch.float32, device="cuda"))

            adam.adam(
                params,
                grads,
                exp_avgs,
                exp_avg_sqs,
                max_exp_avg_sqs,
                state_steps,
                foreach=False,
                capturable=False,
                fused=True,
                amsgrad=amsgrad,
                beta1=0.9,
                beta2=0.99,
                lr=1e-2,
                weight_decay=.0,
                eps=1e-8,
                maximize=False,
                grad_scale=grad_scale,
                found_inf=found_inf,
            )

            self.assertEqual(
                state_steps,
                [torch.ones((1,), dtype=torch.float32, device="cuda") for _ in range(num_tensors)],
            )


class SchedulerTestNet(torch.nn.Module):
    def __init__(self):
        super(SchedulerTestNet, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 1, 1)
        self.conv2 = torch.nn.Conv2d(1, 1, 1)

    def forward(self, x):
        return self.conv2(F.relu(self.conv1(x)))


class LambdaLRTestObject:
    def __init__(self, value):
        self.value = value

    def __call__(self, epoch):
        return self.value * epoch

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False


class TestLRScheduler(TestCase):
    exact_dtype = True

    def setUp(self):
        super(TestLRScheduler, self).setUp()
        self.net = SchedulerTestNet()
        self.opt = SGD(
            [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}],
            lr=0.05)

    def _check_warning_is_epoch_deprecation_warning(self, w, *, num_warnings: int = 1):
        """This function swallows the epoch deprecation warning which is produced when we
        call `scheduler.step(epoch)` with some not `None` value of `epoch`.
        this is deprecated, and this function will need to be removed/updated when
        the schedulers no longer accept the parameter at all.
        """
        self.assertEqual(len(w), num_warnings)
        for warning in w:
            self.assertEqual(len(warning.message.args), 1)
            self.assertEqual(warning.message.args[0], EPOCH_DEPRECATION_WARNING)

    def test_error_when_getlr_has_epoch(self):
        class MultiStepLR(torch.optim.lr_scheduler._LRScheduler):
            def __init__(self, optimizer, gamma, milestones, last_epoch=-1):
                self.init_lr = [group['lr'] for group in optimizer.param_groups]
                self.gamma = gamma
                self.milestones = milestones
                super().__init__(optimizer, last_epoch)

            def get_lr(self, step):
                global_step = self.last_epoch
                gamma_power = ([0] + [i + 1 for i, m in enumerate(self.milestones) if global_step >= m])[-1]
                return [init_lr * (self.gamma ** gamma_power) for init_lr in self.init_lr]

        optimizer = torch.optim.SGD([torch.rand(1)], lr=1)

        with self.assertRaises(TypeError):
            scheduler = MultiStepLR(optimizer, gamma=1, milestones=[10, 20])

    def test_no_cyclic_references(self):
        import gc
        param = Parameter(torch.empty(10))
        optim = SGD([param], lr=0.5)
        scheduler = LambdaLR(optim, lambda epoch: 1.0)
        del scheduler

        # Prior to Python 3.7, local variables in a function will be referred by the current frame.
        import sys
        if sys.version_info < (3, 7):
            import inspect
            referrers = gc.get_referrers(optim)
            self.assertTrue(
                len(referrers) == 1 and referrers[0] is inspect.currentframe(),
                "Optimizer should contain no cyclic references (except current frame)")
            del referrers
        else:
            self.assertTrue(
                len(gc.get_referrers(optim)) == 0,
                "Optimizer should contain no cyclic references")

        gc.collect()
        del optim
        self.assertEqual(
            gc.collect(), 0, msg="Optimizer should be garbage-collected on __del__")

    def test_old_pattern_warning(self):
        epochs = 35
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        def old_pattern():
            for _ in range(epochs):
                scheduler.step()
                self.opt.step()

        self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern)

    def test_old_pattern_warning_with_arg(self):
        epochs = 35
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        def old_pattern2():
            for _ in range(epochs):
                scheduler.step()
                self.opt.step()

        self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2)

    def test_old_pattern_warning_resuming(self):
        epochs = 35
        for i, group in enumerate(self.opt.param_groups):
            group['initial_lr'] = 0.01

        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        def old_pattern():
            for _ in range(epochs):
                scheduler.step()
                self.opt.step()

        self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern)

    def test_old_pattern_warning_resuming_with_arg(self):
        epochs = 35
        for i, group in enumerate(self.opt.param_groups):
            group['initial_lr'] = 0.01

        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        def old_pattern2():
            for _ in range(epochs):
                scheduler.step()
                self.opt.step()

        self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2)

    def test_old_pattern_warning_with_overridden_optim_step(self):
        epochs = 35
        for i, group in enumerate(self.opt.param_groups):
            group['initial_lr'] = 0.01

        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3, last_epoch=10)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        # emulate use-case with optimizer.step overridden
        import types

        old_step = self.opt.step

        def new_step(o, *args, **kwargs):
            retval = old_step(*args, **kwargs)
            return retval

        self.opt.step = types.MethodType(new_step, self.opt)

        def old_pattern2():
            for _ in range(epochs):
                scheduler.step()
                self.opt.step()

        self.assertWarnsRegex(UserWarning, r'how-to-adjust-learning-rate', old_pattern2)

    def test_new_pattern_no_warning(self):
        epochs = 35
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            for _ in range(epochs):
                self.opt.step()
                scheduler.step()
            self.assertTrue(len(ws) == 0, "No warning should be raised")

    def test_new_pattern_no_warning_with_arg(self):
        epochs = 35
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            for _ in range(epochs):
                self.opt.step()
                scheduler.step()
            self.assertTrue(len(ws) == 0, "No warning should be raised")

    def test_new_pattern_no_warning_with_overridden_optim_step(self):
        epochs = 35
        with warnings.catch_warnings(record=True) as ws:
            warnings.simplefilter("always")  # allow any warning to be raised
            scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
            self.assertTrue(len(ws) == 0, "No warning should be raised")

        # emulate use-case with optimizer.step overridden
        import types

        old_step = self.opt.step

        def new_step(o, *args, **kwargs):
            retval = old_step(*args, **kwargs)
            return retval

        self.opt.step = types.MethodType(new_step, self.opt)

        def new_pattern():
            for e in range(epochs):
                self.opt.step()
                scheduler.step()

        self.assertWarnsRegex(UserWarning, r'`optimizer.step\(\)` has been overridden', new_pattern)

    def _test_lr_is_constant_for_constant_epoch(self, scheduler):
        l = []

        for _ in range(10):
            scheduler.optimizer.step()
            with warnings.catch_warnings(record=True) as w:
                scheduler.step(2)
                self._check_warning_is_epoch_deprecation_warning(w)

            l.append(self.opt.param_groups[0]['lr'])
        self.assertEqual(min(l), max(l))

    def test_step_lr_is_constant_for_constant_epoch(self):
        scheduler = StepLR(self.opt, 2)
        self._test_lr_is_constant_for_constant_epoch(scheduler)

    def test_exponential_lr_is_constant_for_constant_epoch(self):
        scheduler = ExponentialLR(self.opt, gamma=0.9)
        self._test_lr_is_constant_for_constant_epoch(scheduler)

    def test_constantlr_is_constant_for_constant_epoch(self):
        scheduler = ConstantLR(self.opt)
        self._test_lr_is_constant_for_constant_epoch(scheduler)

    def test_linear_linearlr_is_constant_for_constant_epoch(self):
        scheduler = LinearLR(self.opt)
        self._test_lr_is_constant_for_constant_epoch(scheduler)

    def test_polynomial_lr_is_constant_for_constant_epoch(self):
        scheduler = PolynomialLR(self.opt, power=0.9)
        self._test_lr_is_constant_for_constant_epoch(scheduler)

    def test_step_lr(self):
        # lr = 0.05     if epoch < 3
        # lr = 0.005    if 30 <= epoch < 6
        # lr = 0.0005   if epoch >= 9
        epochs = 10
        single_targets = [0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
        self._test(scheduler, targets, epochs)

    def test_get_last_lr_step_lr(self):
        from torch.nn import Parameter
        epochs = 10
        optimizer = torch.optim.SGD([Parameter(torch.randn(2, 2, requires_grad=True))], 0.1)
        targets = [[0.1] * 3 + [0.01] * 3 + [0.001] * 3 + [0.0001]]
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 3, gamma=0.1)
        self._test_get_last_lr(scheduler, targets, epochs)

    def test_get_last_lr_multi_step_lr(self):
        # lr = 0.05     if epoch < 2
        # lr = 0.005    if 2 <= epoch < 5
        # lr = 0.0005   if 5 <= epoch < 9
        # lr = 0.00005   if 9 <= epoch
        epochs = 10
        single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 1
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        self._test_get_last_lr(scheduler, targets, epochs)

    def test_multi_step_lr(self):
        # lr = 0.05     if epoch < 2
        # lr = 0.005    if 2 <= epoch < 5
        # lr = 0.0005   if epoch < 9
        # lr = 0.00005   if epoch >= 9
        epochs = 10
        single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        self._test(scheduler, targets, epochs)

    def test_multi_step_lr_with_epoch(self):
        # lr = 0.05     if epoch < 2
        # lr = 0.005    if 2 <= epoch < 5
        # lr = 0.0005   if epoch < 9
        # lr = 0.00005   if epoch >= 9
        epochs = 10
        single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 3
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        self._test_with_epoch(scheduler, targets, epochs)

    def test_get_last_lr_constantlr(self):
        # lr = 0.025     if epoch < 5
        # lr = 0.005    if 5 <= epoch
        epochs = 10
        single_targets = [0.025] * 5 + [0.05] * 5
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5)
        self._test_get_last_lr(scheduler, targets, epochs)

    def test_get_last_lr_linearlr(self):
        # lr = 0.025     if epoch == 0
        # lr = 0.03125   if epoch == 1
        # lr = 0.0375    if epoch == 2
        # lr = 0.04375   if epoch == 3
        # lr = 0.005     if 4 <= epoch
        epochs = 10
        start_factor = 1.0 / 4
        end_factor = 3. / 5
        iters = 4
        interpolation = [start_factor + i * (end_factor - start_factor) / iters for i in range(iters)]
        single_targets = [x * 0.05 for x in interpolation] + [0.05 * end_factor] * (epochs - iters)
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = LinearLR(self.opt, start_factor=start_factor, end_factor=end_factor, total_iters=iters)
        self._test_get_last_lr(scheduler, targets, epochs)

    def test_constantlr(self):
        # lr = 0.025     if epoch < 5
        # lr = 0.005    if 5 <= epoch
        epochs = 10
        single_targets = [0.025] * 5 + [0.05] * 5
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5)
        self._test(scheduler, targets, epochs)

    def test_linearlr(self):
        # lr = 0.025     if epoch == 0
        # lr = 0.03125   if epoch == 1
        # lr = 0.0375    if epoch == 2
        # lr = 0.04375   if epoch == 3
        # lr = 0.005     if 4 <= epoch
        epochs = 10
        start_factor = 1.0 / 2
        iters = 4
        interpolation = [start_factor + i * (1 - start_factor) / iters for i in range(iters)]
        single_targets = [x * 0.05 for x in interpolation] + [0.05] * (epochs - iters)
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = LinearLR(self.opt, start_factor=start_factor, total_iters=iters)
        self._test(scheduler, targets, epochs)

    def test_constantlr_with_epoch(self):
        # lr = 0.025     if epoch < 5
        # lr = 0.005    if 5 <= epoch
        epochs = 10
        single_targets = [0.025] * 5 + [0.05] * 5
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = ConstantLR(self.opt, factor=1.0 / 2, total_iters=5)
        self._test_with_epoch(scheduler, targets, epochs)

    def test_linearlr_with_epoch(self):
        # lr = 0.025     if epoch == 0
        # lr = 0.03125   if epoch == 1
        # lr = 0.0375    if epoch == 2
        # lr = 0.04375   if epoch == 3
        # lr = 0.005     if 4 <= epoch
        epochs = 10
        start_factor = 1.0 / 2
        end_factor = 1.
        iters = 4
        interpolation = [start_factor + i * (end_factor - start_factor) / iters for i in range(iters)]
        single_targets = [x * 0.05 for x in interpolation] + [0.05] * (epochs - iters)
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = LinearLR(self.opt, start_factor=start_factor, total_iters=iters)
        self._test_with_epoch(scheduler, targets, epochs)

    def test_exp_lr(self):
        epochs = 10
        single_targets = [0.05 * (0.9 ** x) for x in range(epochs)]
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = ExponentialLR(self.opt, gamma=0.9)
        self._test(scheduler, targets, epochs)

    def test_poly_lr(self):
        epochs = 10
        power = 0.9
        total_iters = 5
        single_targets = [(1.0 - x / total_iters) ** power * 0.05 for x in range(total_iters)] + [0.0] * (epochs - total_iters)
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = PolynomialLR(self.opt, power=power, total_iters=total_iters)
        self._test(scheduler, targets, epochs)

    def test_cos_anneal_lr(self):
        epochs = 10
        eta_min = 1e-10
        single_targets = [eta_min + (0.05 - eta_min) *
                          (1 + math.cos(math.pi * x / epochs)) / 2
                          for x in range(epochs)]
        targets = [single_targets, [x * epochs for x in single_targets]]
        scheduler = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min)
        self._test(scheduler, targets, epochs)

    def test_closed_form_step_lr(self):
        scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
        closed_form_scheduler = StepLR(self.opt, gamma=0.1, step_size=3)
        self._test_against_closed_form(scheduler, closed_form_scheduler, 20)

    def test_closed_form_linearlr(self):
        scheduler = LinearLR(self.opt, start_factor=1.0 / 3, end_factor=0.7, total_iters=4)
        closed_form_scheduler = LinearLR(self.opt, start_factor=1.0 / 3, end_factor=0.7, total_iters=4)
        self._test_against_closed_form(scheduler, closed_form_scheduler, 20)

    def test_closed_form_constantlr(self):
        scheduler = ConstantLR(self.opt, factor=1.0 / 3, total_iters=4)
        closed_form_scheduler = ConstantLR(self.opt, factor=1.0 / 3, total_iters=4)
        self._test_against_closed_form(scheduler, closed_form_scheduler, 20)

    def test_closed_form_multi_step_lr(self):
        scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        closed_form_scheduler = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        self._test_against_closed_form(scheduler, closed_form_scheduler, 20)

    def test_closed_form_exp_lr(self):
        scheduler = ExponentialLR(self.opt, gamma=0.9)
        closed_form_scheduler = ExponentialLR(self.opt, gamma=0.9)
        self._test_against_closed_form(scheduler, closed_form_scheduler, 20)

    def test_closed_form_poly_lr(self):
        scheduler = PolynomialLR(self.opt, power=0.9)
        closed_form_scheduler = PolynomialLR(self.opt, power=0.9)
        self._test_against_closed_form(scheduler, closed_form_scheduler, 20)

    def test_closed_form_cos_anneal_lr(self):
        eta_min = 1e-10
        epochs = 20
        T_max = 5
        scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min)
        closed_form_scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min)
        self._test_against_closed_form(scheduler, closed_form_scheduler, epochs)

    def test_cos_anneal_lr_continue(self):
        eta_min = 0.1
        T_max = 5
        scheduler = CosineAnnealingLR(self.opt, T_max=T_max, eta_min=eta_min)
        self.opt.step()
        scheduler.step()
        original_lrs = scheduler._last_lr
        new_scheduler = CosineAnnealingLR(
            self.opt, T_max=T_max, eta_min=eta_min, last_epoch=0)
        new_lrs = new_scheduler._last_lr
        torch.testing.assert_allclose(original_lrs, new_lrs, rtol=1e-4, atol=1e-5)

    def test_reduce_lr_on_plateau1(self):
        epochs = 10
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * 20]
        metrics = [10 - i * 0.0167 for i in range(20)]
        scheduler = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min',
                                      threshold=0.01, patience=5, cooldown=5)
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_reduce_lr_on_plateau2(self):
        epochs = 22
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2]
        metrics = [10 - i * 0.0165 for i in range(22)]
        scheduler = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs',
                                      mode='min', threshold=0.1)
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_reduce_lr_on_plateau3(self):
        epochs = 22
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4]
        metrics = [-0.8] * 2 + [-0.234] * 20
        scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5,
                                      threshold_mode='abs')
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_reduce_lr_on_plateau4(self):
        epochs = 20
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * 20]
        metrics = [1.5 * (1.025 ** i) for i in range(20)]  # 1.025 > 1.1**0.25
        scheduler = ReduceLROnPlateau(self.opt, mode='max', patience=3,
                                      threshold_mode='rel', threshold=0.1)
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_reduce_lr_on_plateau5(self):
        epochs = 20
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4]
        metrics = [1.5 * (1.005 ** i) for i in range(20)]
        scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel',
                                      threshold=0.1, patience=5, cooldown=5)
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_reduce_lr_on_plateau6(self):
        epochs = 20
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * 20]
        metrics = [1.5 * (0.85 ** i) for i in range(20)]
        scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel',
                                      threshold=0.1)
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_reduce_lr_on_plateau7(self):
        epochs = 20
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * 6 + [0.05] * (5 + 6) + [0.005] * 4]
        metrics = [1] * 7 + [0.6] + [0.5] * 12
        scheduler = ReduceLROnPlateau(self.opt, mode='min', threshold_mode='rel',
                                      threshold=0.1, patience=5, cooldown=5)
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_reduce_lr_on_plateau8(self):
        epochs = 20
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        targets = [[0.5] * 6 + [0.4] * 14, [0.5] * 6 + [0.3] * 14]
        metrics = [1.5 * (1.005 ** i) for i in range(20)]
        scheduler = ReduceLROnPlateau(self.opt, mode='max', threshold_mode='rel', min_lr=[0.4, 0.3],
                                      threshold=0.1, patience=5, cooldown=5)
        self._test_reduce_lr_on_plateau(scheduler, targets, metrics, epochs)

    def test_sequentiallr1(self):
        epochs = 19
        schedulers = [None] * 2
        targets = [[0.05, 0.04, 0.032] + [0.05 for x in range(4)]
                                       + [0.05 * 0.1 for x in range(4)]
                                       + [0.05 * 0.01 for x in range(4)]
                                       + [0.05 * 0.001 for x in range(4)]]
        milestones = [3]
        schedulers[0] = ExponentialLR(self.opt, gamma=0.8)
        schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=4)
        scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones)
        self._test(scheduler, targets, epochs)

    def test_sequentiallr2(self):
        epochs = 13
        schedulers = [None] * 2
        targets = [[0.005, 0.005, 0.005] + [0.05 * 0.9 ** x for x in range(10)]]
        milestones = [3]
        schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3)
        schedulers[1] = ExponentialLR(self.opt, gamma=0.9)
        scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones)
        self._test(scheduler, targets, epochs)

    def test_sequentiallr3(self):
        epochs = 12
        schedulers = [None] * 3
        targets = [[0.005, 0.005, 0.005] + [0.05, 0.04, 0.032]
                                         + [0.05, 0.05, 0.005, 0.005, 0.0005, 0.0005]]
        milestones = [3, 6]
        schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3)
        schedulers[1] = ExponentialLR(self.opt, gamma=0.8)
        schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=2)
        scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones)
        self._test(scheduler, targets, epochs)

    def test_sequentiallr4(self):
        optimizer = torch.optim.SGD([torch.tensor(0.5)], lr=0.1)
        prev_lr = optimizer.param_groups[0]["lr"]

        schedulers = [
            torch.optim.lr_scheduler.ConstantLR(optimizer, factor=1),
            torch.optim.lr_scheduler.ConstantLR(optimizer, factor=0.1)
        ]
        scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers, milestones=[10])

        new_lr = optimizer.param_groups[0]["lr"]

        # Ensure that multiple schedulers does not affect the initial learning rate
        self.assertEqual(prev_lr, new_lr)

    def test_get_last_lr_sequentiallr(self):
        epochs = 12
        milestones = [3, 6]
        schedulers = [None] * 3
        schedulers[0] = ConstantLR(self.opt, factor=0.1, total_iters=3)
        schedulers[1] = ExponentialLR(self.opt, gamma=0.8)
        schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=2)
        scheduler = SequentialLR(self.opt, schedulers=schedulers, milestones=milestones)
        constant_lr_target = [0.005] * 3
        exponential_lr_target = [0.05, 0.04, 0.032]
        step_lr_target = [0.05, 0.05, 0.005, 0.005, 0.0005, 0.0005]
        single_targets = constant_lr_target + exponential_lr_target + step_lr_target
        targets = [single_targets, [x * 10 for x in single_targets]]
        self._test_get_last_lr(scheduler, targets, epochs)

    def test_chained_lr2_get_last_lr_before_step(self):
        schedulers = [
            LinearLR(self.opt, start_factor=0.4, total_iters=3),
            MultiStepLR(self.opt, milestones=[4, 8, 10], gamma=0.1)
        ]
        scheduler = ChainedScheduler(schedulers)
        self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr())

    def test_chained_lr1(self):
        epochs = 10
        schedulers = [None] * 1
        targets = [[0.05] * 3 + [0.005] * 3 + [0.0005] * 3 + [0.00005] * 3]
        schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3)
        scheduler = ChainedScheduler(schedulers)
        self._test([scheduler], targets, epochs)
        self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr())

    def test_chained_lr2(self):
        epochs = 10
        schedulers = [None] * 1
        targets = [[0.02, 0.03, 0.04] + [0.05] * 9]
        schedulers[0] = LinearLR(self.opt, start_factor=0.4, total_iters=3)
        scheduler = ChainedScheduler(schedulers)
        self._test([scheduler], targets, epochs)
        self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr())

    def test_chained_lr3(self):
        epochs = 10
        schedulers = [None] * 2
        targets = [[0.02, 0.03, 0.04, 0.05] + [0.005] * 4 + [0.0005] * 3 + [0.00005] * 3]
        schedulers[0] = LinearLR(self.opt, start_factor=0.4, total_iters=3)
        schedulers[1] = MultiStepLR(self.opt, milestones=[4, 8, 10], gamma=0.1)
        scheduler = ChainedScheduler(schedulers)
        self._test([scheduler], targets, epochs)
        self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr())

    def test_chained_lr4(self):
        epochs = 9
        schedulers = [None] * 3
        targets = [[0.05 * 0.2 * 0.9 ** x for x in range(3)]
                   + [0.05 * 0.2 * 0.9 ** 3 * 0.1]
                   + [0.05 * 0.9 ** x * 0.1 for x in range(4, 6)]
                   + [0.05 * 0.9 ** x * 0.01 for x in range(6, 9)]]
        schedulers[0] = ExponentialLR(self.opt, gamma=0.9)
        schedulers[1] = ConstantLR(self.opt, factor=0.2, total_iters=4)
        schedulers[2] = StepLR(self.opt, gamma=0.1, step_size=3)
        scheduler = ChainedScheduler(schedulers)
        self._test([scheduler], targets, epochs)
        self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr())

    def test_chained_lr5(self):
        def poly_lr(lr: float):
            return [
                (lr * ((1.0 - x / total_iters) ** power)) for x in range(total_iters)
            ] + [0.0] * (epochs - total_iters)

        schedulers = [None] * 2
        epochs = 10
        power = 0.9
        total_iters = 5
        const_factor = 0.1
        single_targets = [x * const_factor for x in poly_lr(lr=0.05)]
        targets = [single_targets, [x * const_factor for x in poly_lr(0.5)]]
        schedulers[0] = PolynomialLR(self.opt, power=power, total_iters=total_iters)
        schedulers[1] = ConstantLR(self.opt, factor=const_factor)
        scheduler = ChainedScheduler(schedulers)
        self._test(scheduler, targets, epochs)
        self.assertEqual(scheduler.get_last_lr(), schedulers[-1].get_last_lr())

    def test_compound_step_and_multistep_lr(self):
        epochs = 10
        schedulers = [None] * 2
        schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3)
        schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        targets = [[0.05] * 2 + [0.005] * 1 + [5e-4] * 2 + [5e-5] + [5e-6] * 3 + [5e-8]]
        self._test(schedulers, targets, epochs)

    def test_compound_step_and_exp_lr(self):
        epochs = 10
        schedulers = [None] * 2
        single_targets = [0.05 * (0.9 ** x) for x in range(3)]
        single_targets += [0.005 * (0.9 ** x) for x in range(3, 6)]
        single_targets += [0.0005 * (0.9 ** x) for x in range(6, 9)]
        single_targets += [0.00005 * (0.9 ** x) for x in range(9, 12)]
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3)
        schedulers[1] = ExponentialLR(self.opt, gamma=0.9)
        self._test(schedulers, targets, epochs)

    def test_compound_exp_and_multistep_lr(self):
        epochs = 10
        schedulers = [None] * 2
        single_targets = [0.05 * (0.9 ** x) for x in range(2)]
        single_targets += [0.005 * (0.9 ** x) for x in range(2, 5)]
        single_targets += [0.0005 * (0.9 ** x) for x in range(5, 9)]
        single_targets += [0.00005 * (0.9 ** x) for x in range(9, 11)]
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers[0] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        schedulers[1] = ExponentialLR(self.opt, gamma=0.9)
        self._test(schedulers, targets, epochs)

    def test_compound_exp_and_linearlr(self):
        epochs = 10
        iters = 4
        start_factor = 0.4
        end_factor = 0.9
        schedulers = [None] * 2
        single_targets = [0.05 * (0.9 ** x) for x in range(11)]
        for i in range(iters):
            single_targets[i] *= start_factor + i / iters * (end_factor - start_factor)
        for i in range(iters, 11):
            single_targets[i] *= end_factor
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers[0] = LinearLR(self.opt, start_factor=start_factor, end_factor=end_factor, total_iters=iters)
        schedulers[1] = ExponentialLR(self.opt, gamma=0.9)
        self._test(schedulers, targets, epochs)

    def test_compound_step_and_constantlr(self):
        epochs = 10
        iters = 4
        factor = 0.4
        schedulers = [None] * 2
        single_targets = [0.05 * 0.4] * 3 + [0.005 * 0.4] + [0.005] * 2 + [0.0005] * 3 + [0.00005] * 3
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers[0] = StepLR(self.opt, gamma=0.1, step_size=3)
        schedulers[1] = ConstantLR(self.opt, factor=0.4, total_iters=4)
        self._test(schedulers, targets, epochs)

    def test_compound_linearlr_and_multistep_lr(self):
        epochs = 10
        iters = 4
        start_factor = 0.4
        schedulers = [None] * 2
        single_targets = [0.05] * 2 + [0.005] * 3 + [0.0005] * 4 + [0.00005] * 2
        for i in range(iters):
            single_targets[i] *= start_factor + i / iters * (1 - start_factor)
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers[0] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        schedulers[1] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters)
        self._test(schedulers, targets, epochs)

    def test_compound_cosanneal_and_step_lr(self):
        epochs = 10
        eta_min = 1e-10
        single_targets = [eta_min + (0.05 - eta_min) *
                          (1 + math.cos(math.pi * x / epochs)) / 2
                          for x in range(epochs)]
        single_targets = [x * 0.1 ** (i // 3) for i, x in enumerate(single_targets)]
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers = [None] * 2
        schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min)
        schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3)
        self._test(schedulers, targets, epochs)

    def test_compound_cosanneal_and_multistep_lr(self):
        epochs = 10
        eta_min = 1e-10
        single_targets = [eta_min + (0.05 - eta_min) *
                          (1 + math.cos(math.pi * x / epochs)) / 2
                          for x in range(epochs)]
        multipliers = [1] * 2 + [0.1] * 3 + [0.01] * 4 + [0.001]
        single_targets = [x * y for x, y in zip(single_targets, multipliers)]
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers = [None] * 2
        schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min)
        schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9])
        self._test(schedulers, targets, epochs)

    def test_compound_cosanneal_and_linearlr(self):
        epochs = 10
        iters = 4
        start_factor = 0.4
        eta_min = 1e-10
        schedulers = [None] * 2
        single_targets = [eta_min + (0.05 - eta_min) *
                          (1 + math.cos(math.pi * x / epochs)) / 2
                          for x in range(epochs)]
        for i in range(iters):
            single_targets[i] *= start_factor + i / iters * (1 - start_factor)
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers[0] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters)
        schedulers[1] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min)
        self._test(schedulers, targets, epochs)

    def test_compound_cosanneal_and_exp_lr(self):
        epochs = 10
        eta_min = 1e-10
        single_targets = [eta_min + (0.05 - eta_min) *
                          (1 + math.cos(math.pi * x / epochs)) / 2
                          for x in range(epochs)]
        multipliers = [0.1 ** i for i in range(epochs)]
        single_targets = [x * y for x, y in zip(single_targets, multipliers)]
        targets = [single_targets, [x * epochs for x in single_targets]]
        schedulers = [None] * 2
        schedulers[0] = CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min)
        schedulers[1] = ExponentialLR(self.opt, gamma=0.1)
        self._test(schedulers, targets, epochs)

    def test_compound_reduce_lr_on_plateau1(self):
        epochs = 10
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        single_targets = [0.5] * 20
        multipliers = [0.1 ** (i // 3) for i in range(20)]
        single_targets = [x * y for x, y in zip(multipliers, single_targets)]
        targets = [single_targets]
        targets = targets[1:]  # test runs step before checking lr
        metrics = [10 - i * 0.0167 for i in range(20)]
        schedulers = [None, None]
        schedulers[0] = ReduceLROnPlateau(self.opt, threshold_mode='abs', mode='min',
                                          threshold=0.01, patience=5, cooldown=5)
        schedulers[1] = StepLR(self.opt, gamma=0.1, step_size=3)
        self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs)

    def test_compound_reduce_lr_on_plateau2(self):
        epochs = 22
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        single_targets = [0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2
        multipliers = [1] * 3 + [0.1] * 5 + [0.01] * 4 + [0.001] * 10
        single_targets = [x * y for x, y in zip(single_targets, multipliers)]
        targets = [single_targets]
        targets = targets[1:]  # test runs step before checking lr
        metrics = [10 - i * 0.0165 for i in range(22)]
        schedulers = [None] * 2
        schedulers[0] = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs',
                                          mode='min', threshold=0.1)
        schedulers[1] = MultiStepLR(self.opt, gamma=0.1, milestones=[3, 8, 12])
        self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs)

    def test_compound_reduce_lr_on_plateau3(self):
        epochs = 22
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        single_targets = [0.5] * (2 + 6) + [0.05] * (5 + 6) + [0.005] * 4
        multipliers = [0.1 ** i for i in range(epochs)]
        single_targets = [x * y for x, y in zip(multipliers, single_targets)]
        targets = [single_targets]
        targets = targets[1:]  # test runs step before checking lr
        metrics = [-0.8] * 2 + [-0.234] * 20
        schedulers = [None, None]
        schedulers[0] = ReduceLROnPlateau(self.opt, mode='max', patience=5, cooldown=5,
                                          threshold_mode='abs')
        schedulers[1] = ExponentialLR(self.opt, gamma=0.1)
        self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs)

    def test_compound_reduce_lr_on_plateau4(self):
        epochs = 20
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.05
        epochs = 10
        eta_min = 1e-10
        single_targets = [eta_min + (0.05 - eta_min) *
                          (1 + math.cos(math.pi * x / epochs)) / 2
                          for x in range(epochs)]
        targets = [single_targets]
        targets = targets[1:]  # test runs step before checking lr
        metrics = [1.5 * (1.025 ** i) for i in range(20)]  # 1.025 > 1.1**0.25
        schedulers = [None, None]
        schedulers[0] = ReduceLROnPlateau(self.opt, mode='max', patience=3,
                                          threshold_mode='rel', threshold=0.1)
        schedulers[1] = CosineAnnealingLR(self.opt, epochs, eta_min)
        self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs)

    def test_compound_reduce_lr_on_plateau5(self):
        iters = 4
        start_factor = 0.4
        epochs = 22
        for param_group in self.opt.param_groups:
            param_group['lr'] = 0.5
        single_targets = [0.5] * 6 + [0.05] * 7 + [0.005] * 7 + [0.0005] * 2
        multipliers = [1] * 22
        for i in range(iters):
            multipliers[i] *= start_factor + i / iters * (1 - start_factor)
        single_targets = [x * y for x, y in zip(single_targets, multipliers)]
        targets = [single_targets]
        targets = targets[1:]  # test runs step before checking lr
        metrics = [10 - i * 0.0165 for i in range(22)]
        schedulers = [None] * 2
        schedulers[0] = ReduceLROnPlateau(self.opt, patience=5, cooldown=0, threshold_mode='abs',
                                          mode='min', threshold=0.1)
        schedulers[1] = LinearLR(self.opt, start_factor=start_factor, total_iters=iters)
        self._test_reduce_lr_on_plateau(schedulers, targets, metrics, epochs)

    def test_cycle_lr_invalid_mode(self):
        with self.assertRaises(ValueError):
            scheduler = CyclicLR(self.opt, base_lr=0, max_lr=0, mode="CATS")

    def test_cycle_lr_triangular_mode_one_lr(self):
        lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3]
        momentum_target = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3]
        lr_targets = [lr_target, lr_target]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4,
                             cycle_momentum=True, base_momentum=1, max_momentum=5,
                             mode='triangular')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target))

    def test_cycle_lr_triangular_mode_one_lr_no_momentum(self):
        lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3]
        lr_targets = [lr_target, lr_target]
        momentum_target = [self.opt.defaults['momentum']] * len(lr_target)
        momentum_targets = [momentum_target, momentum_target]
        scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4,
                             cycle_momentum=False, mode='triangular')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target))

    def test_cycle_lr_triangular2_mode_one_lr(self):
        lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1.5, 2.0, 2.5, 3.0, 2.5, 2.0, 1.5,
                     1, 1.25, 1.50, 1.75, 2.00, 1.75]
        momentum_target = [5.0, 4.0, 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0,
                           3.5, 3.0, 3.5, 4.0, 4.5, 5.0, 4.75, 4.5, 4.25, 4.0, 4.25]
        lr_targets = [lr_target, lr_target]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4,
                             cycle_momentum=True, base_momentum=1, max_momentum=5,
                             mode='triangular2')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target))

    def test_cycle_lr_exp_range_mode_one_lr(self):
        base_lr, max_lr = 1, 5
        diff_lr = max_lr - base_lr
        gamma = 0.9
        xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1]
        lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)]
        momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)]
        lr_targets = [lr_target, lr_target]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = CyclicLR(self.opt, base_lr=base_lr,
                             max_lr=max_lr, step_size_up=4,
                             cycle_momentum=True, base_momentum=base_lr, max_momentum=max_lr,
                             mode='exp_range', gamma=gamma)
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target))

    def test_cycle_lr_triangular_mode(self):
        lr_target_1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3]
        lr_target_2 = [x + 1 for x in lr_target_1]
        lr_targets = [lr_target_1, lr_target_2]
        momentum_target_1 = [5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3]
        momentum_target_2 = [x + 1 for x in momentum_target_1]
        momentum_targets = [momentum_target_1, momentum_target_2]
        scheduler = CyclicLR(self.opt, base_lr=[1, 2], max_lr=[5, 6], step_size_up=4,
                             cycle_momentum=True, base_momentum=[1, 2], max_momentum=[5, 6],
                             mode='triangular')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1))

    def test_cycle_lr_triangular2_mode(self):
        lr_target_1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 1.5, 2.0, 2.5, 3.0, 2.5, 2.0, 1.5, 1,
                       1.25, 1.50, 1.75, 2.00, 1.75]
        lr_target_2 = [x + 2 for x in lr_target_1]
        lr_targets = [lr_target_1, lr_target_2]
        momentum_target_1 = [5.0, 4.0, 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.5,
                             3.0, 3.5, 4.0, 4.5, 5.0, 4.75, 4.5, 4.25, 4.0, 4.25]
        momentum_target_2 = [x + 2 for x in momentum_target_1]
        momentum_targets = [momentum_target_1, momentum_target_2]
        scheduler = CyclicLR(self.opt, base_lr=[1, 3], max_lr=[5, 7], step_size_up=4,
                             cycle_momentum=True, base_momentum=[1, 3], max_momentum=[5, 7],
                             mode='triangular2')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1))

    def test_cycle_lr_exp_range_mode(self):
        base_lr_1, max_lr_1 = 1, 5
        base_lr_2, max_lr_2 = 5, 12

        diff_lr_1 = max_lr_1 - base_lr_1
        diff_lr_2 = max_lr_2 - base_lr_2

        gamma = 0.9
        xs = [0, 0.25, 0.5, 0.75, 1, 0.75, 0.50, 0.25, 0, 0.25, 0.5, 0.75, 1]
        lr_target_1 = [base_lr_1 + x * diff_lr_1 * gamma**i for i, x in enumerate(xs)]
        lr_target_2 = [base_lr_2 + x * diff_lr_2 * gamma**i for i, x in enumerate(xs)]
        lr_targets = [lr_target_1, lr_target_2]
        momentum_target_1 = [max_lr_1 - x * diff_lr_1 * gamma**i for i, x in enumerate(xs)]
        momentum_target_2 = [max_lr_2 - x * diff_lr_2 * gamma**i for i, x in enumerate(xs)]
        momentum_targets = [momentum_target_1, momentum_target_2]
        scheduler = CyclicLR(self.opt, base_lr=[base_lr_1, base_lr_2],
                             max_lr=[max_lr_1, max_lr_2], step_size_up=4,
                             cycle_momentum=True, base_momentum=[base_lr_1, base_lr_2],
                             max_momentum=[max_lr_1, max_lr_2],
                             mode='exp_range', gamma=gamma)
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target_1))

    def test_cycle_lr_triangular_mode_step_size_up_down(self):
        lr_target = [1.0, 2.0, 3.0, 4.0, 5.0, 13.0 / 3, 11.0 / 3, 9.0 / 3, 7.0 / 3, 5.0 / 3, 1.0]
        lr_targets = [lr_target, lr_target]
        momentum_target = [5.0, 4.0, 3.0, 2.0, 1.0, 5.0 / 3, 7.0 / 3, 3.0, 11.0 / 3, 13.0 / 3, 5.0]
        momentum_targets = [momentum_target, momentum_target]

        scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5,
                             step_size_up=4,
                             step_size_down=6,
                             cycle_momentum=True,
                             base_momentum=1, max_momentum=5,
                             mode='triangular')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target))

    def test_cycle_lr_triangular2_mode_step_size_up_down(self):
        lr_base_target = ([
            1.0, 3.0, 5.0, 13.0 / 3, 11.0 / 3, 9.0 / 3, 7.0 / 3, 5.0 / 3, 1.0, 2.0, 3.0, 8.0 / 3,
            7.0 / 3, 6.0 / 3, 5.0 / 3, 4.0 / 3, 1.0, 3.0 / 2, 2.0, 11.0 / 6, 10.0 / 6, 9.0 / 6,
            8.0 / 6, 7.0 / 6
        ])
        momentum_base_target = ([
            5.0, 3.0, 1.0, 5.0 / 3, 7.0 / 3, 3.0, 11.0 / 3, 13.0 / 3, 5.0, 4.0, 3.0, 10.0 / 3,
            11.0 / 3, 4.0, 13.0 / 3, 14.0 / 3, 5.0, 4.5, 4.0, 25.0 / 6, 13.0 / 3, 4.5, 14.0 / 3,
            29.0 / 6
        ])
        deltas = [2 * i for i in range(0, 2)]
        base_lrs = [1 + delta for delta in deltas]
        max_lrs = [5 + delta for delta in deltas]
        lr_targets = [[x + delta for x in lr_base_target] for delta in deltas]
        momentum_targets = [[x + delta for x in momentum_base_target] for delta in deltas]
        scheduler = CyclicLR(
            self.opt,
            base_lr=base_lrs,
            max_lr=max_lrs,
            step_size_up=2,
            step_size_down=6,
            cycle_momentum=True,
            base_momentum=base_lrs,
            max_momentum=max_lrs,
            mode='triangular2')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_base_target))

    def test_cycle_lr_exp_range_mode_step_size_up_down(self):
        base_lr, max_lr = 1, 5
        diff_lr = max_lr - base_lr
        gamma = 0.9
        xs = ([
            0.0, 0.5, 1.0, 5.0 / 6, 4.0 / 6, 3.0 / 6, 2.0 / 6, 1.0 / 6, 0.0, 0.5, 1.0, 5.0 / 6,
            4.0 / 6
        ])
        lr_target = [base_lr + x * diff_lr * gamma**i for i, x in enumerate(xs)]
        lr_targets = [lr_target, lr_target]
        momentum_target = [max_lr - x * diff_lr * gamma**i for i, x in enumerate(xs)]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = CyclicLR(self.opt, base_lr=base_lr, max_lr=max_lr,
                             step_size_up=2, step_size_down=6,
                             cycle_momentum=True, base_momentum=base_lr,
                             max_momentum=max_lr,
                             mode='exp_range', gamma=gamma)
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target))

    def test_cycle_lr_with_momentumless_optimizer(self):
        # Note [Temporarily set optimizer to Adam]
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # The TestLRScheduler object carries around an SGD optimizer to avoid having to
        # instantiate one for every test. This gets in the way for our very specific case
        # in which we need to use Adam (or really any optimizer that doesn't use momentum)
        # in order to test that the momentum bug in CyclicLR is fixed (the bug is described
        # in more detail in https://github.com/pytorch/pytorch/issues/19003 ).
        old_opt = self.opt
        self.opt = optim.Adam(
            [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}],
            lr=0.05)

        lr_target = [1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3]
        lr_targets = [lr_target, lr_target]
        momentum_target = [None] * len(lr_target)
        momentum_targets = [momentum_target, momentum_target]
        scheduler = CyclicLR(self.opt, base_lr=1, max_lr=5, step_size_up=4,
                             cycle_momentum=False, mode='triangular')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, len(lr_target))

        self.opt = old_opt  # set optimizer back to SGD

    def test_cycle_lr_cycle_momentum_fail_with_momentumless_optimizer(self):
        with self.assertRaises(ValueError):
            adam_opt = optim.Adam(self.net.parameters())
            scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=True)

    def test_cycle_lr_removed_after_out_of_scope(self):
        import gc
        import weakref
        gc.disable()

        def test():
            adam_opt = optim.Adam(self.net.parameters())
            scheduler = CyclicLR(adam_opt, base_lr=1, max_lr=5, cycle_momentum=False)
            return weakref.ref(scheduler)

        ref = test()
        assert ref() is None
        gc.enable()

    def test_onecycle_lr_invalid_anneal_strategy(self):
        with self.assertRaises(ValueError):
            scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, anneal_strategy="CATS")

    def test_onecycle_lr_invalid_pct_start(self):
        with self.assertRaises(ValueError):
            scheduler = OneCycleLR(self.opt, max_lr=1e-3, total_steps=10, pct_start=1.1)

    def test_onecycle_lr_cannot_calculate_total_steps(self):
        with self.assertRaises(ValueError):
            scheduler = OneCycleLR(self.opt, max_lr=1e-3)

    def test_onecycle_lr_linear_annealing(self):
        lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5]
        momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22]
        lr_targets = [lr_target, lr_target]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22,
                               total_steps=10, anneal_strategy='linear')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10)

    def test_onecycle_lr_linear_annealing_three_phases(self):
        lr_target = [1, 9, 17, 25, 17, 9, 1, 0.75, 0.5, 0.25]
        momentum_target = [22, 15, 8, 1, 8, 15, 22, 22, 22, 22]
        lr_targets = [lr_target, lr_target]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = OneCycleLR(self.opt, max_lr=25, div_factor=25,
                               base_momentum=1, max_momentum=22,
                               total_steps=10, anneal_strategy='linear',
                               pct_start=0.4, final_div_factor=4,
                               three_phase=True)
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10)

    def test_onecycle_lr_cosine_annealing(self):
        def annealing_cos(start, end, pct):
            cos_out = math.cos(math.pi * pct) + 1
            return end + (start - end) / 2.0 * cos_out
        lr_target = [1, 13, 25, annealing_cos(25, 0.5, 1 / 7.0), annealing_cos(25, 0.5, 2 / 7.0),
                     annealing_cos(25, 0.5, 3 / 7.0), annealing_cos(25, 0.5, 4 / 7.0), annealing_cos(25, 0.5, 5 / 7.0),
                     annealing_cos(25, 0.5, 6 / 7.0), 0.5]
        momentum_target = [22, 11.5, 1, annealing_cos(1, 22, 1 / 7.0), annealing_cos(1, 22, 2 / 7.0),
                           annealing_cos(1, 22, 3 / 7.0), annealing_cos(1, 22, 4 / 7.0), annealing_cos(1, 22, 5 / 7.0),
                           annealing_cos(1, 22, 6 / 7.0), 22]
        lr_targets = [lr_target, lr_target]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22,
                               total_steps=10)
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10)

    def test_cycle_lr_with_adam(self):
        old_opt = self.opt
        self.opt = optim.Adam(
            [{'params': self.net.conv1.parameters()}, {'params': self.net.conv2.parameters(), 'lr': 0.5}],
            lr=0.05)

        lr_target = [1, 13, 25, 21.5, 18, 14.5, 11, 7.5, 4, 0.5]
        momentum_target = [22, 11.5, 1, 4, 7, 10, 13, 16, 19, 22]
        lr_targets = [lr_target, lr_target]
        momentum_targets = [momentum_target, momentum_target]
        scheduler = OneCycleLR(self.opt, max_lr=25, final_div_factor=2, base_momentum=1, max_momentum=22,
                               total_steps=10, anneal_strategy='linear')
        self._test_cycle_lr(scheduler, lr_targets, momentum_targets, 10, use_beta1=True)
        self.opt = old_opt  # set optimizer back to SGD

    def test_lambda_lr(self):
        epochs = 10
        self.opt.param_groups[0]['lr'] = 0.05
        self.opt.param_groups[1]['lr'] = 0.4
        targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]]
        scheduler = LambdaLR(self.opt,
                             lr_lambda=[lambda x1: 0.9 ** x1, lambda x2: 0.8 ** x2])
        self._test(scheduler, targets, epochs)

    def test_multiplicative_lr(self):
        epochs = 10
        self.opt.param_groups[0]['lr'] = 0.05
        self.opt.param_groups[1]['lr'] = 0.4
        targets = [[0.05 * (0.9 ** x) for x in range(epochs)], [0.4 * (0.8 ** x) for x in range(epochs)]]
        scheduler = MultiplicativeLR(self.opt, lr_lambda=[lambda x1: 0.9, lambda x2: 0.8])
        self._test(scheduler, targets, epochs)

    @parametrize("T_mult", [1, 2, 4])
    def test_CosineAnnealingWarmRestarts_lr1(self, T_mult):
        iters = 100
        eta_min = 1e-10
        T_i = 10
        T_cur = 0
        targets = [[0.05], [0.5]]
        scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min)
        for _ in range(1, iters, 1):
            T_cur += 1
            if T_cur >= T_i:
                T_cur = T_cur - T_i
                T_i = int(T_mult) * T_i
            targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2]
            targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2]
        self._test(scheduler, targets, iters)

    def test_CosineAnnealingWarmRestarts_lr2(self):
        iters = 30
        eta_min = 1e-10
        T_mults = [1, 2, 4]
        for T_mult in T_mults:
            T_i = 10
            T_cur = 0
            targets = [[0.05], [0.5]]
            scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=T_i, T_mult=T_mult, eta_min=eta_min)
            for _ in torch.arange(0.1, iters, 0.1):
                T_cur = round(T_cur + 0.1, 1)
                if T_cur >= T_i:
                    T_cur = T_cur - T_i
                    T_i = int(T_mult) * T_i
                targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2]
                targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2]
            self._test_CosineAnnealingWarmRestarts(scheduler, targets, iters)

    def test_CosineAnnealingWarmRestarts_lr3(self):
        epochs_for_T_mults = [[0, 1, 2, 3, 4, 5, 12, 27, 3, 4, 5, 6, 13],
                              [0, 1, 2, 3, 4, 5, 25, 32, 33, 34, 80, 81, 3],
                              [0, 0.1, 0.2, 0.3, 1.3, 2.3, 17.5, 18.5, 19.5, 29.5, 30.5, 31.5, 50]]
        T_curs_for_T_mults = [[1, 2, 3, 4, 5, 2, 7, 3, 4, 5, 6, 3],
                              [1, 2, 3, 4, 5, 15, 2, 3, 4, 10, 11, 3],
                              [0.1, 0.2, 0.3, 1.3, 2.3, 7.5, 8.5, 9.5, 19.5, 20.5, 21.5, 10]]
        T_is_for_T_mults = [[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10],
                            [10, 10, 10, 10, 10, 20, 40, 40, 40, 80, 80, 10],
                            [10, 10, 10, 10, 10, 30, 30, 30, 30, 30, 30, 90]]
        eta_min = 1e-10
        T_mults = [1, 2, 3]
        for epochs, T_mult, T_curs, T_is in zip(epochs_for_T_mults, T_mults, T_curs_for_T_mults, T_is_for_T_mults):
            targets = [[0.05], [0.5]]
            scheduler = CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=T_mult, eta_min=eta_min)
            for T_cur, T_i in zip(T_curs, T_is):
                targets[0] += [eta_min + (0.05 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2]
                targets[1] += [eta_min + (0.5 - eta_min) * (1 + math.cos(math.pi * T_cur / T_i)) / 2]
            self._test_interleaved_CosineAnnealingWarmRestarts(scheduler, targets, epochs)

    def test_swalr_no_anneal(self):
        epochs, swa_start, swa_lr = 10, 5, 0.01
        initial_lrs = [group['lr'] for group in self.opt.param_groups]
        targets = [[lr] * (swa_start + 1) + [swa_lr] * (epochs - swa_start - 1)
                   for lr in initial_lrs]
        swa_scheduler = SWALR(self.opt, anneal_epochs=1, swa_lr=swa_lr)
        self._test_swalr(swa_scheduler, None, targets, swa_start, epochs)

    def test_swalr_cosine_anneal_after_multiplicative(self):
        # same swa_lr for different param_groups
        epochs, swa_start, swa_lr, anneal_epochs = 15, 5, 0.01, 5
        mult_factor = 0.9
        scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor)
        swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs, swa_lr=swa_lr)

        def anneal_coef(t):
            if t + 1 >= anneal_epochs:
                return 0.
            return (1 + math.cos(math.pi * (t + 1) / anneal_epochs)) / 2

        initial_lrs = [group['lr'] for group in self.opt.param_groups]
        targets_before_swa = [[lr * mult_factor**i for i in range(swa_start + 1)]
                              for lr in initial_lrs]
        swa_epochs = epochs - swa_start - 1
        targets = [lrs + [lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs)]
                   for lrs in targets_before_swa]

        self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs)

    def test_swalr_linear_anneal_after_multiplicative(self):
        # separate swa_lr for different param_groups
        epochs, swa_start, swa_lrs, anneal_epochs = 15, 5, [0.01, 0.02], 4
        mult_factor = 0.9
        scheduler = MultiplicativeLR(self.opt, lr_lambda=lambda epoch: mult_factor)
        swa_scheduler = SWALR(self.opt, anneal_epochs=anneal_epochs,
                              anneal_strategy="linear", swa_lr=swa_lrs)

        def anneal_coef(t):
            if t + 1 >= anneal_epochs:
                return 0.
            return 1 - (t + 1) / anneal_epochs

        initial_lrs = [group['lr'] for group in self.opt.param_groups]
        targets_before_swa = [[lr * mult_factor**i for i in range(swa_start + 1)]
                              for lr in initial_lrs]
        swa_epochs = epochs - swa_start - 1
        targets = [lrs + [lrs[-1] * anneal_coef(t) + swa_lr * (1 - anneal_coef(t)) for t in range(swa_epochs)]
                   for lrs, swa_lr in zip(targets_before_swa, swa_lrs)]

        self._test_swalr(swa_scheduler, scheduler, targets, swa_start, epochs)

    def _test_swalr(self, swa_scheduler, scheduler, targets, swa_start, epochs):
        for epoch in range(epochs):
            for param_group, target in zip(self.opt.param_groups, targets):
                self.assertEqual(target[epoch], param_group['lr'],
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0)
            if epoch >= swa_start:
                self.opt.step()
                swa_scheduler.step()
            elif scheduler is not None:
                self.opt.step()
                scheduler.step()

    def test_swalr_hypers(self):
        # Test that SWALR raises errors for incorrect hyper-parameters
        with self.assertRaisesRegex(ValueError, "anneal_strategy must"):
            swa_scheduler = SWALR(self.opt, anneal_strategy="exponential", swa_lr=1.)

        with self.assertRaisesRegex(ValueError, "anneal_epochs must"):
            swa_scheduler = SWALR(self.opt, anneal_epochs=-1, swa_lr=1.)
        with self.assertRaisesRegex(ValueError, "anneal_epochs must"):
            swa_scheduler = SWALR(self.opt, anneal_epochs=1.7, swa_lr=1.)
        with self.assertRaisesRegex(ValueError, "swa_lr must"):
            swa_scheduler = SWALR(self.opt, swa_lr=[1., 0.1, 0.01])

    def test_step_lr_state_dict(self):
        self._check_scheduler_state_dict(
            lambda: StepLR(self.opt, gamma=0.1, step_size=3),
            lambda: StepLR(self.opt, gamma=0.01 / 2, step_size=1))

    def test_multi_step_lr_state_dict(self):
        self._check_scheduler_state_dict(
            lambda: MultiStepLR(self.opt, gamma=0.1, milestones=[2, 5, 9]),
            lambda: MultiStepLR(self.opt, gamma=0.01, milestones=[1, 4, 6]))

    def test_exp_step_lr_state_dict(self):
        self._check_scheduler_state_dict(
            lambda: ExponentialLR(self.opt, gamma=0.1),
            lambda: ExponentialLR(self.opt, gamma=0.01))

    def test_cosine_lr_state_dict(self):
        epochs = 10
        eta_min = 1e-10
        self._check_scheduler_state_dict(
            lambda: CosineAnnealingLR(self.opt, T_max=epochs, eta_min=eta_min),
            lambda: CosineAnnealingLR(self.opt, T_max=epochs // 2, eta_min=eta_min / 2),
            epochs=epochs)

    def test_reduce_lr_on_plateau_state_dict(self):
        scheduler = ReduceLROnPlateau(self.opt, mode='min', factor=0.1, patience=2)
        for score in [1.0, 2.0, 3.0, 4.0, 3.0, 4.0, 5.0, 3.0, 2.0, 1.0]:
            scheduler.step(score)
        scheduler_copy = ReduceLROnPlateau(self.opt, mode='max', factor=0.5, patience=10)
        scheduler_copy.load_state_dict(scheduler.state_dict())
        for key in scheduler.__dict__.keys():
            if key not in {'optimizer', 'is_better'}:
                self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])

    def test_lambda_lr_state_dict_fn(self):
        scheduler = LambdaLR(self.opt, lr_lambda=lambda x: x)
        state = scheduler.state_dict()
        self.assertIsNone(state['lr_lambdas'][0])

        scheduler_copy = LambdaLR(self.opt, lr_lambda=lambda x: x)
        scheduler_copy.load_state_dict(state)
        for key in scheduler.__dict__.keys():
            if key not in {'optimizer', 'lr_lambdas'}:
                self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])

    def test_lambda_lr_state_dict_obj(self):
        scheduler = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(10))
        state = scheduler.state_dict()
        self.assertIsNotNone(state['lr_lambdas'][0])

        scheduler_copy = LambdaLR(self.opt, lr_lambda=LambdaLRTestObject(-1))
        scheduler_copy.load_state_dict(state)
        for key in scheduler.__dict__.keys():
            if key not in {'optimizer'}:
                self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])

    def test_CosineAnnealingWarmRestarts_lr_state_dict(self):
        self._check_scheduler_state_dict(
            lambda: CosineAnnealingWarmRestarts(self.opt, T_0=10, T_mult=2),
            lambda: CosineAnnealingWarmRestarts(self.opt, T_0=100))

    def test_swa_lr_state_dict(self):
        self._check_scheduler_state_dict(
            lambda: SWALR(self.opt, anneal_epochs=3, swa_lr=0.5),
            lambda: SWALR(self.opt, anneal_epochs=10, anneal_strategy="linear", swa_lr=5.))

    def _check_scheduler_state_dict(self, constr, constr2, epochs=10):
        scheduler = constr()
        for _ in range(epochs):
            scheduler.optimizer.step()
            scheduler.step()
        scheduler_copy = constr2()
        scheduler_copy.load_state_dict(scheduler.state_dict())
        for key in scheduler.__dict__.keys():
            if key != 'optimizer':
                self.assertEqual(scheduler.__dict__[key], scheduler_copy.__dict__[key])
        self.assertEqual(scheduler.get_last_lr(), scheduler_copy.get_last_lr())

    def _test_get_last_lr(self, schedulers, targets, epochs=10):
        if isinstance(schedulers, _LRScheduler):
            schedulers = [schedulers]
        optimizers = {scheduler.optimizer for scheduler in schedulers}
        for epoch in range(epochs):
            result = [scheduler.get_last_lr() for scheduler in schedulers]
            [optimizer.step() for optimizer in optimizers]
            [scheduler.step() for scheduler in schedulers]
            target = [[t[epoch] for t in targets]] * len(schedulers)
            for t, r in zip(target, result):
                self.assertEqual(target, result,
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, t, r), atol=1e-5, rtol=0)

    def _test_with_epoch(self, schedulers, targets, epochs=10):
        if isinstance(schedulers, _LRScheduler):
            schedulers = [schedulers]
        optimizers = {scheduler.optimizer for scheduler in schedulers}
        for epoch in range(epochs):
            [optimizer.step() for optimizer in optimizers]
            with warnings.catch_warnings(record=True) as w:
                [scheduler.step(epoch) for scheduler in schedulers]  # step before assert: skip initial lr
                self._check_warning_is_epoch_deprecation_warning(w, num_warnings=len(schedulers))
            for param_group, target in zip(self.opt.param_groups, targets):
                self.assertEqual(target[epoch], param_group['lr'],
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0)

    def _test(self, schedulers, targets, epochs=10):
        if isinstance(schedulers, _LRScheduler):
            schedulers = [schedulers]
        for epoch in range(epochs):
            for param_group, target in zip(self.opt.param_groups, targets):
                self.assertEqual(target[epoch], param_group['lr'],
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0)
            [scheduler.step() for scheduler in schedulers]

    def _test_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs=10):
        for index, epoch in enumerate(torch.arange(0, epochs, 0.1)):
            epoch = round(epoch.item(), 1)
            scheduler.step(epoch)
            for param_group, target in zip(self.opt.param_groups, targets):
                self.assertEqual(target[index], param_group['lr'],
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, target[index], param_group['lr']), atol=1e-5, rtol=0)

    def _test_interleaved_CosineAnnealingWarmRestarts(self, scheduler, targets, epochs):
        for index, epoch in enumerate(epochs):
            scheduler.step(epoch)
            for param_group, target in zip(self.opt.param_groups, targets):
                self.assertEqual(target[index], param_group['lr'],
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, target[index], param_group['lr']), atol=1e-5, rtol=0)

    def _test_against_closed_form(self, scheduler, closed_form_scheduler, epochs=10):
        self.setUp()
        targets = []
        for epoch in range(epochs):
            closed_form_scheduler.optimizer.step()
            with warnings.catch_warnings(record=True) as w:
                closed_form_scheduler.step(epoch)
                self._check_warning_is_epoch_deprecation_warning(w)
            targets.append([group['lr'] for group in self.opt.param_groups])
        self.setUp()
        for epoch in range(epochs):
            self.opt.step()
            scheduler.step()
            for i, param_group in enumerate(self.opt.param_groups):
                self.assertEqual(targets[epoch][i], param_group['lr'],
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, targets[epoch][i], param_group['lr']), atol=1e-5, rtol=0)

    def _test_reduce_lr_on_plateau(self, schedulers, targets, metrics, epochs=10, verbose=False):
        if isinstance(schedulers, _LRScheduler) or isinstance(schedulers, ReduceLROnPlateau):
            schedulers = [schedulers]
        for epoch in range(epochs):
            self.opt.step()
            for scheduler in schedulers:
                if isinstance(scheduler, ReduceLROnPlateau):
                    scheduler.step(metrics[epoch])
                else:
                    scheduler.step()
            if verbose:
                print('epoch{}:\tlr={}'.format(epoch, self.opt.param_groups[0]['lr']))
            for param_group, target in zip(self.opt.param_groups, targets):
                self.assertEqual(target[epoch], param_group['lr'],
                                 msg='LR is wrong in epoch {}: expected {}, got {}'.format(
                                     epoch, target[epoch], param_group['lr']), atol=1e-5, rtol=0)

    def _test_cycle_lr(self, scheduler, lr_targets, momentum_targets, batch_iterations, verbose=False, use_beta1=False):
        for batch_num in range(batch_iterations):
            if verbose:
                if 'momentum' in self.opt.param_groups[0].keys():
                    print('batch{}:\tlr={},momentum={}'.format(batch_num, self.opt.param_groups[0]['lr'],
                                                               self.opt.param_groups[0]['momentum']))
                elif use_beta1 and 'betas' in self.opt.param_groups[0].keys():
                    print('batch{}:\tlr={},beta1={}'.format(batch_num, self.opt.param_groups[0]['lr'],
                                                            self.opt.param_groups[0]['betas'][0]))
                else:
                    print('batch{}:\tlr={}'.format(batch_num, self.opt.param_groups[0]['lr']))

            for param_group, lr_target, momentum_target in zip(self.opt.param_groups, lr_targets, momentum_targets):
                self.assertEqual(
                    lr_target[batch_num], param_group['lr'],
                    msg='LR is wrong in batch_num {}: expected {}, got {}'.format(
                        batch_num, lr_target[batch_num], param_group['lr']), atol=1e-5, rtol=0)

                if use_beta1 and 'betas' in param_group.keys():
                    self.assertEqual(
                        momentum_target[batch_num], param_group['betas'][0],
                        msg='Beta1 is wrong in batch_num {}: expected {}, got {}'.format(
                            batch_num, momentum_target[batch_num], param_group['betas'][0]), atol=1e-5, rtol=0)
                elif 'momentum' in param_group.keys():
                    self.assertEqual(
                        momentum_target[batch_num], param_group['momentum'],
                        msg='Momentum is wrong in batch_num {}: expected {}, got {}'.format(
                            batch_num, momentum_target[batch_num], param_group['momentum']), atol=1e-5, rtol=0)
            self.opt.step()
            scheduler.step()

    def test_cosine_then_cyclic(self):
        # https://github.com/pytorch/pytorch/issues/21965

        max_lr = 0.3
        base_lr = 0.1
        optim_lr = 0.5

        model = torch.nn.Linear(2, 1)
        optimizer = torch.optim.SGD(model.parameters(), lr=optim_lr)
        lr_scheduler_1 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=20, eta_min=0.1)
        lr_scheduler_2 = torch.optim.lr_scheduler.CyclicLR(
            optimizer, base_lr=base_lr, max_lr=max_lr, step_size_up=1, step_size_down=3
        )

        for i in range(40):
            optimizer.step()
            if i <= lr_scheduler_1.T_max:
                lr_scheduler_1.step()
            else:
                lr_scheduler_2.step()
            last_lr = optimizer.param_groups[0]["lr"]

        self.assertLessEqual(last_lr, max_lr)


class SWATestDNN(torch.nn.Module):
    def __init__(self, input_features):
        super(SWATestDNN, self).__init__()
        self.n_features = 100
        self.fc1 = torch.nn.Linear(input_features, self.n_features)
        self.bn = torch.nn.BatchNorm1d(self.n_features)

    def compute_preactivation(self, x):
        return self.fc1(x)

    def forward(self, x):
        x = self.fc1(x)
        x = self.bn(x)
        return x


class SWATestCNN(torch.nn.Module):
    def __init__(self, input_channels):
        super(SWATestCNN, self).__init__()
        self.n_features = 10
        self.conv1 = torch.nn.Conv2d(input_channels, self.n_features, kernel_size=3, padding=1)
        self.bn = torch.nn.BatchNorm2d(self.n_features, momentum=0.3)

    def compute_preactivation(self, x):
        return self.conv1(x)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn(x)
        return x


class TestSWAUtils(TestCase):

    def _test_averaged_model(self, net_device, swa_device):
        dnn = torch.nn.Sequential(
            torch.nn.Conv2d(1, 5, kernel_size=3),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2),
            torch.nn.BatchNorm2d(5, momentum=0.3),
            torch.nn.Conv2d(5, 2, kernel_size=3),
            torch.nn.ReLU(),
            torch.nn.Linear(5, 5),
            torch.nn.ReLU(),
            torch.nn.Linear(5, 10)
        ).to(net_device)

        averaged_dnn = AveragedModel(dnn, device=swa_device)
        averaged_params = [torch.zeros_like(param) for param in dnn.parameters()]
        n_updates = 10
        for i in range(n_updates):
            for p, p_avg in zip(dnn.parameters(), averaged_params):
                p.detach().add_(torch.randn_like(p))
                p_avg += p.detach() / n_updates
            averaged_dnn.update_parameters(dnn)

        for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()):
            self.assertEqual(p_avg, p_swa)
            # Check that AveragedModel is on the correct device
            self.assertTrue(p_swa.device == swa_device)
            self.assertTrue(p.device == net_device)
        self.assertTrue(averaged_dnn.n_averaged.device == swa_device)

    def test_averaged_model_all_devices(self):
        cpu = torch.device("cpu")
        self._test_averaged_model(cpu, cpu)
        if torch.cuda.is_available():
            cuda = torch.device(0)
            self._test_averaged_model(cuda, cpu)
            self._test_averaged_model(cpu, cuda)
            self._test_averaged_model(cuda, cuda)

    def test_averaged_model_mixed_device(self):
        if not torch.cuda.is_available():
            return
        dnn = torch.nn.Sequential(
            torch.nn.Conv2d(1, 5, kernel_size=3),
            torch.nn.Linear(5, 10)
        )
        dnn[0].cuda()
        dnn[1].cpu()
        averaged_dnn = AveragedModel(dnn)
        averaged_params = [torch.zeros_like(param) for param in dnn.parameters()]
        n_updates = 10
        for i in range(n_updates):
            for p, p_avg in zip(dnn.parameters(), averaged_params):
                p.detach().add_(torch.randn_like(p))
                p_avg += p.detach() / n_updates
            averaged_dnn.update_parameters(dnn)

        for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()):
            self.assertEqual(p_avg, p_swa)
            # Check that AveragedModel is on the correct device
            self.assertTrue(p_avg.device == p_swa.device)

    def test_averaged_model_state_dict(self):
        dnn = torch.nn.Sequential(
            torch.nn.Conv2d(1, 5, kernel_size=3),
            torch.nn.Linear(5, 10)
        )
        averaged_dnn = AveragedModel(dnn)
        averaged_dnn2 = AveragedModel(dnn)
        n_updates = 10
        for i in range(n_updates):
            for p in dnn.parameters():
                p.detach().add_(torch.randn_like(p))
            averaged_dnn.update_parameters(dnn)
        averaged_dnn2.load_state_dict(averaged_dnn.state_dict())
        for p_swa, p_swa2 in zip(averaged_dnn.parameters(), averaged_dnn2.parameters()):
            self.assertEqual(p_swa, p_swa2)
        self.assertTrue(averaged_dnn.n_averaged == averaged_dnn2.n_averaged)

    def test_averaged_model_exponential(self):
        # Test AveragedModel with EMA as avg_fn
        dnn = torch.nn.Sequential(
            torch.nn.Conv2d(1, 5, kernel_size=3),
            torch.nn.Linear(5, 10)
        )
        alpha = 0.9

        def avg_fn(p_avg, p, n_avg):
            return alpha * p_avg + (1 - alpha) * p
        averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn)
        averaged_params = [torch.zeros_like(param) for param in dnn.parameters()]
        n_updates = 10
        for i in range(n_updates):
            updated_averaged_params = []
            for p, p_avg in zip(dnn.parameters(), averaged_params):
                p.detach().add_(torch.randn_like(p))
                if i == 0:
                    updated_averaged_params.append(p.clone())
                else:
                    updated_averaged_params.append((p_avg * alpha +
                                                   p * (1 - alpha)).clone())
            averaged_dnn.update_parameters(dnn)
            averaged_params = updated_averaged_params

        for p_avg, p_swa in zip(averaged_params, averaged_dnn.parameters()):
            self.assertEqual(p_avg, p_swa)

    def test_averaged_model_exponential_buffers(self):
        # Test AveragedModel with EMA as avg_fn and use_buffers as True.
        dnn = torch.nn.Sequential(
            torch.nn.Conv2d(1, 5, kernel_size=3),
            torch.nn.BatchNorm2d(5, momentum=0.3),
            torch.nn.Linear(5, 10)
        )
        alpha = 0.9

        def avg_fn(p_avg, p, n_avg):
            return alpha * p_avg + (1 - alpha) * p
        averaged_dnn = AveragedModel(dnn, avg_fn=avg_fn, use_buffers=True)
        dnn_params = itertools.chain(dnn.parameters(), dnn.buffers())
        averaged_params = [torch.zeros_like(param) for param in dnn_params
                           if param.size() != torch.Size([])]
        n_updates = 10
        for i in range(n_updates):
            updated_averaged_params = []
            for p, p_avg in zip(dnn_params, averaged_params):
                if p.size() == torch.Size([]):
                    continue
                p.detach().add_(torch.randn_like(p))
                if i == 0:
                    updated_averaged_params.append(p.clone())
                else:
                    updated_averaged_params.append((p_avg * alpha +
                                                   p * (1 - alpha)).clone())
            averaged_dnn.update_parameters(dnn)
            averaged_params = updated_averaged_params

        for p_avg, p_swa in zip(
                averaged_params, itertools.chain(averaged_dnn.module.parameters(), averaged_dnn.module.buffers())):
            self.assertEqual(p_avg, p_swa)

    def _test_update_bn(self, dnn, dl_x, dl_xy, cuda):

        preactivation_sum = torch.zeros(dnn.n_features)
        preactivation_squared_sum = torch.zeros(dnn.n_features)
        if cuda:
            preactivation_sum = preactivation_sum.cuda()
            preactivation_squared_sum = preactivation_squared_sum.cuda()
        total_num = 0
        for x in dl_x:
            x = x[0]
            if cuda:
                x = x.cuda()

            dnn.forward(x)
            preactivations = dnn.compute_preactivation(x)
            if len(preactivations.shape) == 4:
                preactivations = preactivations.transpose(1, 3)
            preactivations = preactivations.contiguous().view(-1, dnn.n_features)
            total_num += preactivations.shape[0]

            preactivation_sum += torch.sum(preactivations, dim=0)
            preactivation_squared_sum += torch.sum(preactivations**2, dim=0)

        preactivation_mean = preactivation_sum / total_num
        preactivation_var = preactivation_squared_sum / total_num
        preactivation_var = preactivation_var - preactivation_mean**2

        update_bn(dl_xy, dnn, device=x.device)
        self.assertEqual(preactivation_mean, dnn.bn.running_mean)
        self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0)

        def _reset_bn(module):
            if issubclass(module.__class__,
                          torch.nn.modules.batchnorm._BatchNorm):
                module.running_mean = torch.zeros_like(module.running_mean)
                module.running_var = torch.ones_like(module.running_var)
        # reset batch norm and run update_bn again
        dnn.apply(_reset_bn)
        update_bn(dl_xy, dnn, device=x.device)
        self.assertEqual(preactivation_mean, dnn.bn.running_mean)
        self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0)
        # using the dl_x loader instead of dl_xy
        dnn.apply(_reset_bn)
        update_bn(dl_x, dnn, device=x.device)
        self.assertEqual(preactivation_mean, dnn.bn.running_mean)
        self.assertEqual(preactivation_var, dnn.bn.running_var, atol=1e-1, rtol=0)

    def test_update_bn_dnn(self):
        # Test update_bn for a fully-connected network with BatchNorm1d
        objects, input_features = 100, 5
        x = torch.rand(objects, input_features)
        y = torch.rand(objects)
        ds_x = torch.utils.data.TensorDataset(x)
        ds_xy = torch.utils.data.TensorDataset(x, y)
        dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True)
        dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True)
        dnn = SWATestDNN(input_features=input_features)
        dnn.train()
        self._test_update_bn(dnn, dl_x, dl_xy, False)
        if torch.cuda.is_available():
            dnn = SWATestDNN(input_features=input_features)
            dnn.train()
            self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True)
        self.assertTrue(dnn.training)

    def test_update_bn_cnn(self):
        # Test update_bn for convolutional network and BatchNorm2d
        objects = 100
        input_channels = 3
        height, width = 5, 5
        x = torch.rand(objects, input_channels, height, width)
        y = torch.rand(objects)
        ds_x = torch.utils.data.TensorDataset(x)
        ds_xy = torch.utils.data.TensorDataset(x, y)
        dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True)
        dl_xy = torch.utils.data.DataLoader(ds_xy, batch_size=5, shuffle=True)
        dnn = SWATestCNN(input_channels=input_channels)
        dnn.train()
        self._test_update_bn(dnn, dl_x, dl_xy, False)
        if torch.cuda.is_available():
            dnn = SWATestCNN(input_channels=input_channels)
            dnn.train()
            self._test_update_bn(dnn.cuda(), dl_x, dl_xy, True)
        self.assertTrue(dnn.training)

    def test_bn_update_eval_momentum(self):
        # check that update_bn preserves eval mode
        objects = 100
        input_channels = 3
        height, width = 5, 5
        x = torch.rand(objects, input_channels, height, width)
        ds_x = torch.utils.data.TensorDataset(x)
        dl_x = torch.utils.data.DataLoader(ds_x, batch_size=5, shuffle=True)
        dnn = SWATestCNN(input_channels=input_channels)
        dnn.eval()
        update_bn(dl_x, dnn)
        self.assertFalse(dnn.training)

        # check that momentum is preserved
        self.assertEqual(dnn.bn.momentum, 0.3)


instantiate_parametrized_tests(TestLRScheduler)


def _diff_fn(p, grad, opt_differentiable_state, opt_class, kwargs, *ignored):
    # Ignored is the list of values in `opt_differentiable_state`, we do this
    # for `gradcheck` to correctly track the state tensors as function inputs
    # because otherwise it can't unpack the values in the `opt_differentiable_state`
    # dict
    p = p.clone()
    p.grad = grad
    opt_differentiable_state = {
        k: v.clone() if isinstance(v, torch.Tensor) else v
        for k, v in opt_differentiable_state.items()
    }
    opt = opt_class([p], **kwargs)
    opt.state[p].update(opt_differentiable_state)
    opt.step()
    return (p,) + tuple(
        v for v in opt_differentiable_state.values() if isinstance(v, torch.Tensor) and v.requires_grad)


class TestDifferentiableOptimizer(TestCase):

    def test_sgd(self):
        p = torch.rand(10, requires_grad=True, dtype=torch.float64)
        grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
        mbuff = torch.rand(10, requires_grad=True, dtype=torch.float64)
        state = {'momentum_buffer': mbuff}
        gradcheck(_diff_fn, (p, grad, state, torch.optim.SGD, {'lr': 0.9, 'differentiable': True}, *state.values()))

    def test_adam(self):
        state = {}
        p = torch.rand(10, requires_grad=True, dtype=torch.float64)
        grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
        # `step` is not a continuous variable (even though we define it as a float)
        # and so it shouldn't require gradients.
        state['step'] = torch.tensor(10., requires_grad=False, dtype=torch.float64)
        state['exp_avg'] = torch.rand(10, requires_grad=True, dtype=torch.float64)
        state['exp_avg_sq'] = torch.rand(10, requires_grad=True, dtype=torch.float64)
        state['max_exp_avg_sq'] = torch.rand(10, requires_grad=True, dtype=torch.float64)

        gradcheck(
            _diff_fn,
            (p, grad, state, torch.optim.Adam,
             {'lr': 0.9, 'differentiable': True, 'amsgrad': True}, *state.values())
        )

    def test_rmsprop(self):
        state = {}
        p = torch.rand(10, requires_grad=True, dtype=torch.float64)
        grad = torch.rand(10, requires_grad=True, dtype=torch.float64)
        state['step'] = 0
        state['square_avg'] = torch.rand(10, requires_grad=True, dtype=torch.float64)
        state['momentum_buffer'] = torch.rand(10, requires_grad=True, dtype=torch.float64)
        # This can cause issues with large values and nan due to sqrt ops
        state['grad_avg'] = 1e-2 * torch.rand(10, requires_grad=True, dtype=torch.float64)
        gradcheck(
            _diff_fn,
            (p, grad, state, torch.optim.RMSprop,
             {'lr': 0.9, 'maximize': True, 'momentum': 0.9, 'differentiable': True, 'centered': True, 'weight_decay': 0.1},
             *state.values()))


if __name__ == '__main__':
    run_tests()