1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
# Owner(s): ["module: primTorch"]
from functools import partial
from itertools import product
import warnings
from warnings import catch_warnings
import unittest
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import parametrize, run_tests, TestCase, TEST_SCIPY, skipCUDAMemoryLeakCheckIf
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCUDA,
skipCUDAIfRocm,
dtypes,
OpDTypes,
)
from torch.testing._internal.common_methods_invocations import (
op_db,
)
from torch.testing._internal.common_device_type import (
ops,
)
from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs, log_input
import torch._prims as prims
from torch._prims.executor import make_traced
import torch._refs as refs
from torch.fx.experimental.proxy_tensor import make_fx
if TEST_SCIPY:
import scipy.special
NVPRIM_ATEN_FALLBACK_WARNING = "fallback to aten executor"
GET_ISOLATED_GRAPHMODULE_ERROR = "get_isolated_graphmodule failed on decomposition"
class TestPrims(TestCase):
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float32)
def test_broadcast_in_dim(self, device, dtype):
def _wrapper(a, b, broadcast_dimensions):
return prims.broadcast_in_dim(a, b.shape, broadcast_dimensions)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten', 'strictly_nvfuser'):
fn = partial(traced, executor=executor)
# Same shape
shape = (5, 5)
a = make_arg(shape)
b = make_arg(shape, low=0.0, high=0.0)
result = fn(a, b, (0, 1))
self.assertEqual(result.shape, a.shape)
self.assertTrue(result.is_contiguous)
self.assertEqual(a, result)
# Error input: reordering dims
with self.assertRaises(Exception):
result = fn(a, b, (1, 0))
# Adding outermost dimensions
a = make_arg((5, 5))
b = make_arg((3, 3, 5, 5), low=0.0, high=0.0)
result = fn(a, b, (2, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.broadcast_to(b.shape), result)
# Expands
a = make_arg((1, 5, 1))
b = make_arg((3, 5, 7), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 2))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.expand_as(result), result)
# Unsqueezes
a = make_arg((1, 2, 3))
b = make_arg((1, 2, 1, 3), low=0.0, high=0.0)
result = fn(a, b, (0, 1, 3))
self.assertEqual(result.shape, b.shape)
self.assertEqual(a.unsqueeze(2), result)
# FIXME: This test exposes an issue in nvfuser
# Adds outermost, expands, and unsqueezes
"""
a = make_arg((1, 2, 3))
b = make_arg((4, 1, 7, 2, 3, 3), low=0.0, high=0.0)
result = fn(a, b, (1, 3, 4))
self.assertEqual(result.shape, b.shape)
a.unsqueeze_(3)
a.unsqueeze_(1)
a.unsqueeze_(0)
self.assertEqual(a.expand_as(result), result)
"""
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float32)
def test_broadcast_in_dim_sum(self, device, dtype):
def _wrapper(a):
a_sum = prims.sum(a, [0, 1])
a_bc = prims.broadcast_in_dim(a_sum, [], [])
return a_bc
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten', 'strictly_nvfuser'):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
@dtypes(torch.float64, torch.long)
def test_cbrt_prim(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
batches = [(), (1,), (2,), (0, 1), (1, 1), (2, 2)]
shapes = [(), (0,), (1,), (5,)]
try:
# Sets the default dtype to NumPy's default dtype of double
cur_default = torch.get_default_dtype()
torch.set_default_dtype(torch.double)
# Tested here, as this OP is not currently exposed or tested in ATen
for b, s in product(batches, shapes):
x = make_arg(b + s)
y = prims.cbrt(x)
x_np = x.cpu().numpy()
y_np = scipy.special.cbrt(x_np)
self.assertEqual(y, y_np, exact_device=False)
finally:
torch.set_default_dtype(cur_default)
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_impl_is_used(self, device):
# This test is to ensure that when the nvfuser implementation exists it is used
# Assuming one-to-one mapping between prims and nvfuser implementations
# This test is not intended to test the correctness of the nvfuser implementation
from torch._C._nvfuser import FusionDefinition as fd
prim_nvfuser_ops = set(torch._prims.__all__).intersection(dir(fd.ops))
ops_without_nvfuser_impl = {
name
for name in prim_nvfuser_ops
if getattr(torch.ops.nvprims, name, None) is None
}
assert (
len(ops_without_nvfuser_impl) == 0
), (f"The following prims do not have 'impl_nvfuser' defined: {ops_without_nvfuser_impl} ",
"while there exists nvfuser implementations for them.")
def test_skip_ops_nvfuser_prims_mode(self, device):
# This test verifies that the NvfuserPrimsMode skips the specified
# functions. Skipping a function means that it's not converted into
# nvprims counterparts.
from torch._prims.context import NvfuserPrimsMode
a = make_tensor(5, 5, device=device, dtype=torch.float32)
def func(a):
return torch.ops.prims.sin.default(a)
skip_ops = {"prims.sin.default", }
with NvfuserPrimsMode(skip_ops=skip_ops):
gm = make_fx(func)(a)
includes_any_prims_sin = any(
node.target == torch.ops.prims.sin.default for node in gm.graph.nodes
)
self.assertTrue(includes_any_prims_sin)
include_any_nvprims_sin = any(
node.target == torch.ops.nvprims.sin.default for node in gm.graph.nodes
)
self.assertFalse(include_any_nvprims_sin)
def test_skip_ops_nvfuser_capability_mode(self, device):
# This test verifies that the NvfuserCapabilityMode skips the specified
# functions. Skipping a function means that specific
# reference/decomposition is not traced and there's no attempt to lower
# it to nvprims.
from torch._prims.context import TorchRefsNvfuserCapabilityMode
a = make_tensor(5, 5, device=device, dtype=torch.float32)
def func(a):
return torch.sin(a)
skip_ops = {"torch.sin", }
with TorchRefsNvfuserCapabilityMode(skip_ops=skip_ops):
gm = make_fx(func)(a)
includes_any_aten_sin = any(
node.target == torch.ops.aten.sin.default for node in gm.graph.nodes
)
self.assertTrue(includes_any_aten_sin)
include_any_nvprims_sin = any(
node.target == torch.ops.nvprims.sin.default for node in gm.graph.nodes
)
self.assertFalse(include_any_nvprims_sin)
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_empty_fusion(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
a = torch.randn(3, 3, device=device)
def func(a, b, c):
return (a, b, c)
gm = make_fx(func)(a, a, a)
with self.assertRaisesRegex(AssertionError, "Graph must contain at least one call_function node"):
execute(gm, a, a, a, executor="strictly_nvfuser")
# Should pass with partitioned executor
out = execute(gm, a, a, a, executor="nvfuser")
self.assertEqual(out, (a, a, a))
@onlyCUDA
@dtypes(torch.float16, torch.uint8)
def test_nvprim_convert_element_type(self, device, dtype):
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch._prims_common import _torch_dtype_to_nvfuser_dtype_map
# initialize input as float32, which is different from `dtype` in the argument.
# this ensures that tracing will have a _to_copy node.
a = torch.randn(3, 3, device=device, dtype=torch.float32)
def func(x, dtype):
return x.to(dtype).to(x.dtype)
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(a, dtype)
execute(gm, a, dtype, executor="nvfuser")
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
includes_aten_to_copy = any(
torch.ops.aten._to_copy.default == node.target
for node in call_function_nodes
)
includes_nvprim_convert_element_type = any(
torch.ops.nvprims.convert_element_type.default == node.target
for node in call_function_nodes
)
nvprim_support_flag = _torch_dtype_to_nvfuser_dtype_map.get(dtype) is not None
self.assertEqual(includes_aten_to_copy, not nvprim_support_flag)
self.assertEqual(includes_nvprim_convert_element_type, nvprim_support_flag)
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_rand_like_fusion(self, device):
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
a = torch.randn(3, 3, device=device)
def func(a):
return torch.rand_like(a)
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(a)
out = execute(gm, a, executor="strictly_nvfuser")
self.assertEqual(out.size(), a.size())
@skipCUDAMemoryLeakCheckIf(True) # https://github.com/pytorch/pytorch/issues/84529
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_no_args(self, device):
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
from torch._prims.nvfuser_executor import make_nvfuser_fusion
a = torch.randn(3, 3, device=device)
def func():
return torch.sigmoid(a)
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)()
with warnings.catch_warnings(record=True) as caught:
execute(gm, executor="strictly_nvfuser")
# fusion execute with no cuda input is handled by nvprim aten fallback
self.assertTrue(any(NVPRIM_ATEN_FALLBACK_WARNING in str(w.message) for w in caught))
with self.assertRaisesRegex(AssertionError, "There must be at least one argument"):
make_nvfuser_fusion(gm)
with self.assertRaisesRegex(AssertionError, "Number of placeholder nodes in the graph must match"):
execute(gm, a, executor="strictly_nvfuser")
# Should pass with partitioned executor
out = execute(gm, executor="nvfuser")
self.assertEqual(out, func())
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_constant_tensors(self, device):
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
a = torch.randn(3, 3, device=device)
b = torch.randn(3, 3, device=device)
def func(b):
return a + b
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(b)
with self.assertRaisesRegex(AssertionError, "not supported yet"):
execute(gm, b, executor="strictly_nvfuser")
# Should pass with partitioned executor
out = execute(gm, b, executor="nvfuser")
self.assertEqual(out, gm(b))
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_executor_cached_noncontiguous(self, device):
# This test is to ensure that nvfuser computes correct results for noncontiguous tensors
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
from torch._prims.executor import execute
a = torch.randn(3, 3, device=device)
def func(a):
return torch.sigmoid(a)
with TorchRefsMode():
gm = make_fx(func)(a)
# First run to create the cache
execute(gm, a, executor="nvfuser")
# a.mT is noncontiguous, but it shouldn't affect correctness
expected = execute(gm, a.mT, executor="aten")
actual = execute(gm, a.mT, executor="nvfuser")
self.assertEqual(expected, actual)
def test_nvfuser_capability_context(self, device):
# This test is to ensure that the torch calls are replaced with refs
# based on the nvfuser+prims capability
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsNvfuserCapabilityMode
# It's assumed that digamma is not supported by nvfuser
# If it's ever supported, this test will need to be updated
self.assertTrue(getattr(torch.ops.nvprims, "digamma", None) is None)
a = torch.randn(3, 3, device=device)
def func(a):
return torch.digamma(a)
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(a)
# Check that the torch.digamma is not replaced with torch.ops.prims.digamma
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
includes_aten_digamma = any(
torch.ops.aten.digamma.default == node.target
for node in call_function_nodes
)
includes_prims_digamma = any(
torch.ops.prims.digamma.default == node.target
for node in call_function_nodes
)
self.assertTrue(includes_aten_digamma)
self.assertFalse(includes_prims_digamma)
# Check mixed case, sigmoid is replaced with refs, but digamma is not
def func(a):
return torch.sigmoid(torch.digamma(a))
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(a)
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
includes_aten_sigmoid = any(
torch.ops.aten.sigmoid.default == node.target
for node in call_function_nodes
)
includes_prims_digamma = any(
torch.ops.prims.digamma.default == node.target
for node in call_function_nodes
)
includes_nvprims_exp = any(
torch.ops.nvprims.exp.default == node.target
for node in call_function_nodes
)
self.assertFalse(includes_aten_sigmoid)
self.assertFalse(includes_prims_digamma)
self.assertTrue(includes_nvprims_exp)
def test_aten_overload_to_prims(self, device):
# This test is to ensure that the torch.ops.aten calls are replaced with refs
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
a = torch.randn(3, 3, device=device)
def func(a):
return torch.ops.aten.sigmoid.default(torch.ops.aten.digamma.default(a))
with TorchRefsMode():
gm = make_fx(func)(a)
# Check that all call_function nodes are prims
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
all_prims_namespace = all(
node.target.name().startswith("prims") for node in call_function_nodes
)
self.assertTrue(all_prims_namespace)
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_executor_parameters(self, device):
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
a = torch.randn(3, 4, device=device)
def func(a):
return torch.ops.nvprims.add(a, a)
gm = make_fx(func)(a)
expected = execute(gm, a, executor="aten")
# Shouldn't raise an error because unuseful parameters are ignored
params_dicts = [None, {}, {"none": None}]
for params in params_dicts:
actual = execute(gm, a, executor="nvfuser", executor_parameters=params)
self.assertEqual(expected, actual)
# Check caching parameter
for use_cache in [True, False]:
params = {"use_python_fusion_cache": use_cache}
actual = execute(gm, a, executor="nvfuser", executor_parameters=params)
self.assertEqual(expected, actual)
# Check allow_single_op_fusion parameter
for allow_single_op_fusion in [True, False]:
params = {"allow_single_op_fusion": allow_single_op_fusion}
actual = execute(gm, a, executor="nvfuser", executor_parameters=params)
self.assertEqual(expected, actual)
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_executor_partitioned(self, device):
# This test is to ensure that nvfuser partitioned executor works correctly
# It's assumed that digamma is not supported by nvfuser
# If it's ever supported, this test will need to be updated
self.assertTrue(getattr(torch.ops.nvprims, "digamma", None) is None)
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
from torch._prims.executor import execute
a = torch.randn(3, 4, device=device)
b = torch.rand(3, 1, device=device)
c = torch.rand(3, 4, device=device)
def func(a, b, c):
aa = torch.digamma(a) # not supported by nvfuser
d = torch.add(b, c)
dd = torch.sqrt(d)
return torch.mul(aa, dd.digamma())
with TorchRefsMode():
gm = make_fx(func)(a, b, c)
expected = execute(gm, a, b, c, executor="aten")
actual = execute(gm, a, b, c, executor="nvfuser")
self.assertEqual(expected, actual)
@onlyCUDA
@skipCUDAIfRocm
def test_nvfuser_executor_partitioned_no_partitions_error(self, device):
# This test is to ensure that nvfuser partitioned executor works correctly
# It's assumed that digamma is not supported by nvfuser
# If it's ever supported, this test will need to be updated
self.assertTrue(getattr(torch.ops.nvprims, "digamma", None) is None)
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
from torch._prims.executor import execute
a = torch.randn(3, 4, device=device)
def func(a):
return torch.digamma(a) # not supported by nvfuser
with TorchRefsMode():
gm = make_fx(func)(a)
with catch_warnings(record=True) as w:
# Trigger warning
execute(gm, a, executor="nvfuser")
# Check warning occurs
self.assertEqual(len(w), 1)
self.assertTrue("is not supported by nvFuser" in str(w[-1].message))
def test_nvprims(self, device):
# This test is to ensure that nvfuser specific prims are exposed
# and can be traced with make_fx
from torch.fx.experimental.proxy_tensor import make_fx
def func(a):
return torch.ops.nvprims.add(a, a)
a = torch.randn(3, 4, device=device)
gm = make_fx(func)(a)
for node in gm.graph.nodes:
if node.op == "call_function":
self.assertTrue(node.name == "add")
self.assertTrue(node.target == torch.ops.nvprims.add.default)
self.assertFalse(node.target == torch.ops.prims.add.default)
self.assertFalse(node.target == torch.ops.aten.add.default)
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float32, torch.float64)
def test_native_batch_norm_nvprims(self, device, dtype):
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch._prims.executor import execute
# This test verifies that native_batch_norm is translated into nvprims
# and can be executed with nvFuser
from torch.fx.experimental.proxy_tensor import make_fx
from torch.testing._internal.common_methods_invocations import (
sample_inputs_native_batch_norm,
)
samples = sample_inputs_native_batch_norm(
None, device, dtype, requires_grad=False
)
batch_norms = [
torch.native_batch_norm,
torch.ops.aten.native_batch_norm,
torch.ops.aten.native_batch_norm.default,
torch.ops.nvprims.native_batch_norm.default,
]
for sample, batch_norm in product(samples, batch_norms):
if sample.input.numel() == 0:
continue
def func(
input, weight, bias, running_mean, running_var, training, momentum, eps
):
return batch_norm(
input,
weight,
bias,
running_mean,
running_var,
training,
momentum,
eps,
)
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(sample.input, *sample.args)
call_function_nodes = list(
filter(lambda n: n.op == "call_function", gm.graph.nodes)
)
includes_aten_batch_norm = any(
torch.ops.aten.native_batch_norm.default == node.target
for node in call_function_nodes
)
self.assertFalse(includes_aten_batch_norm)
includes_nvprims_batch_norm = any(
torch.ops.nvprims.native_batch_norm.default == node.target
for node in call_function_nodes
)
self.assertTrue(includes_nvprims_batch_norm)
# Check that the graph can be executed with nvFuser
out = execute(gm, sample.input, *sample.args, executor="strictly_nvfuser")
self.assertEqual(out, gm(sample.input, *sample.args))
# decomposition of native_batch_norm_backward uses a casting, which prevents nvprim lowering on CPU build
@onlyCUDA
@dtypes(torch.float32, torch.float16)
def test_batch_norm_backward_nvprims(self, device, dtype):
# This test verifies that the backward pass of batch norm is correctly decomposed into nvprims
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch.testing._internal.common_methods_invocations import sample_inputs_batch_norm
samples_iter = sample_inputs_batch_norm(None, device, dtype, requires_grad=True)
sample = next(samples_iter)
grad = torch.randn_like(sample.input)
def func(grad, input, weight, rm, rv, eps, train):
return torch.ops.aten.native_batch_norm_backward.default(
grad, input, weight, rm, rv, rm, rv, train, eps, [True, True, True]
)
args = sample.args
kwargs = sample.kwargs
all_args = [grad, sample.input, args[2], args[0], args[1], kwargs['eps'], kwargs['training']]
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(*all_args)
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
includes_batch_norm_backward = any(
torch.ops.aten.native_batch_norm_backward.default == node.target
for node in call_function_nodes
)
self.assertFalse(includes_batch_norm_backward)
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float32)
@parametrize("correction", [0, 1])
def test_var(self, device, dtype, correction):
def _wrapper(a):
return prims.var(a, [0, 1], correction=correction)
traced = make_traced(_wrapper)
make_arg = partial(make_tensor, device=device, dtype=dtype)
for executor in ('aten', 'strictly_nvfuser'):
fn = partial(traced, executor=executor)
shape = (5, 5)
a = make_arg(shape)
result = fn(a)
self.assertEqual(result.shape, ())
self.assertTrue(result.is_contiguous)
self.assertEqual(_wrapper(a), result)
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float16, torch.float32)
@parametrize("correction", [0, 1])
@parametrize("keepdim", [True, False])
def test_var_mean(self, device, dtype, correction, keepdim):
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsNvfuserCapabilityMode
def _wrapper(a):
return torch.var_mean(a, [0, 1], correction=correction, keepdim=keepdim)
make_arg = partial(make_tensor, device=device, dtype=dtype)
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(_wrapper)(make_arg((5, 5)))
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
includes_nvprims_var_mean = any(
torch.ops.nvprims.var_mean.main == node.target
for node in call_function_nodes
)
self.assertTrue(includes_nvprims_var_mean)
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float32, torch.float16)
def test_cpu_tensor(self, device, dtype):
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch._prims.executor import execute
def _wrapper(t0, t1, cpu_scalar):
return t0 + t1 + cpu_scalar
make_arg = partial(make_tensor, device=device, dtype=dtype)
a = make_arg((12, 1))
b = make_arg((12, 12))
c = torch.tensor(0.5)
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(_wrapper)(a, b, c)
with warnings.catch_warnings(record=True) as caught:
actual = execute(gm, a, b, c, executor="nvfuser")
# cpu scalar tensor is handled by nvfuser codegen, so it shouldn't fallback
self.assertFalse(any(NVPRIM_ATEN_FALLBACK_WARNING in str(w.message) for w in caught))
expected = execute(gm, a, b, c, executor="aten")
self.assertEqual(expected, actual)
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
includes_aten_add = any(
torch.ops.aten.add.default == node.target
for node in call_function_nodes
)
self.assertFalse(includes_aten_add)
with warnings.catch_warnings(record=True) as caught:
nvprim_aten_fallback = execute(gm, a.cpu(), b.cpu(), c, executor="nvfuser")
# cpu tensor is handled by nvprim aten fallback, assert that it's indeed in warning
self.assertTrue(any(NVPRIM_ATEN_FALLBACK_WARNING in str(w.message) for w in caught))
self.assertEqual(expected, nvprim_aten_fallback)
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float32)
def test_pytree_input_output(self, device, dtype):
@make_traced
def fn(a, b_dict):
b = b_dict["b"]
d = {}
d["c"] = torch.add(a, b)
return (d, torch.add(a, d["c"]))
make_arg = partial(make_tensor, device=device, dtype=dtype)
a = make_arg((5, 5))
b = make_arg((1, 5))
b_dict = {"b": b}
result_aten = fn(a, b_dict, executor="aten")
result_nvfuser = fn(a, b_dict, executor="strictly_nvfuser")
self.assertEqual(result_aten, result_nvfuser)
@dtypes(torch.float32)
def test_memory_format_strides(self, device, dtype):
shapes = (
(),
(0,),
(1,),
(5),
(1, 0),
(1, 1),
(3, 7),
(3, 0, 2),
(1, 1, 2),
(4, 1, 1),
(7, 8, 9),
)
channels_last_shapes = (
(0, 0, 0, 0),
(1, 0, 3, 0),
(0, 2, 3, 5),
(2, 2, 2, 0),
(5, 4, 3, 2),
(8, 8, 7, 2),
(9, 1, 3, 1),
(4, 5, 8, 7)
)
channels_last_3d_shapes = (
(0, 8, 7, 9, 2),
(5, 0, 7, 9, 2),
(5, 0, 7, 9, 0),
(5, 8, 7, 9, 2),
(5, 1, 7, 9, 2),
(5, 1, 7, 9, 1),
)
pairs = (
(shapes, torch.contiguous_format),
(channels_last_shapes, torch.contiguous_format),
(channels_last_3d_shapes, torch.contiguous_format),
(channels_last_shapes, torch.channels_last),
(channels_last_3d_shapes, torch.channels_last_3d),
)
for shapes, memory_format in pairs:
for shape in shapes:
# tests empty
expected = torch.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
actual = refs.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests clone
a = torch.testing.make_tensor(shape, device=device, dtype=dtype)
expected = torch.clone(a, memory_format=memory_format)
actual = torch.clone(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
# tests contiguous
a = torch.testing.make_tensor(shape, device=device, dtype=dtype, noncontiguous=True)
expected = a.contiguous(memory_format=memory_format)
actual = refs.contiguous(a, memory_format=memory_format)
self.assertEqual(expected.stride(), actual.stride())
@dtypes(torch.float32)
def test_reshape_view_method(self, device, dtype):
make_arg = partial(make_tensor, device=device, dtype=dtype)
a = make_arg((5, 5))
new_shape = 1, 5, 1, 5
result_eager = a.reshape(*new_shape)
result_refs = refs.reshape(a, *new_shape)
self.assertEqual(result_eager, result_refs)
result_eager = a.view(*new_shape)
result_refs = refs.view(a, *new_shape)
self.assertEqual(result_eager, result_refs)
class TestPrimsBasic(TestCase):
def test_torch_ops(self):
r = make_tensor((2,), device='cpu', dtype=torch.float)
self.assertEqual(torch.ops.prims.sin(r), torch.sin(r))
r = LoggingTensor(r)
with capture_logs() as logs:
log_input("input", r)
prims.sin(r)
self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.prims.sin.default($0)""")
def test_mul_complex(self):
prims.mul(torch.randn(2), 1 + 1j)
instantiate_device_type_tests(TestPrims, globals())
class TestRefs(TestCase):
@dtypes(torch.float32)
def test_constant_pad_nd_memory_format(self, device, dtype):
# Test memory format is preserved in unambiguous cases
for mf, ndim in (
(torch.channels_last, 4),
(torch.contiguous_format, 4),
(torch.channels_last_3d, 5),
(torch.contiguous_format, 5),
):
a = torch.zeros([2] * ndim).to(memory_format=mf)
res = refs.constant_pad_nd(a, pad=[1] * (2 * ndim))
self.assertTrue(res.is_contiguous(memory_format=mf))
# Ambiguous cases
# is_channels_last_ and is_contiguous_, results in channels_last output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 1, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous(memory_format=torch.channels_last))
# is_channels_last_contiguous_ but not is_channels_last_, results in
# contiguous output
a = torch.empty_strided((2, 1, 2, 2), stride=(4, 4, 2, 1))
self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
self.assertTrue(a.is_contiguous())
actual = refs.constant_pad_nd(a, pad=[1] * 8)
expect = torch.constant_pad_nd(a, pad=[1] * 8)
self.assertEqual(actual.stride(), expect.stride())
self.assertTrue(actual.is_contiguous())
instantiate_device_type_tests(TestRefs, globals())
class TestDecomp(TestCase):
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float16, torch.float32)
def test_decomposition_type_promotion_nvprim_amp(self, device, dtype):
x = torch.rand(5, device=device).to(dtype)
y = torch.rand(5, device=device).to(dtype)
from torch._prims.context import TorchRefsNvfuserCapabilityMode, _is_func_unsupported_nvfuser
from torch.fx.experimental.proxy_tensor import make_fx
op = torch.ops.aten.leaky_relu_backward.default
op_decomp = torch._decomp.decomposition_table.get(op)
def fn0(*arg):
return _is_func_unsupported_nvfuser(TorchRefsNvfuserCapabilityMode(), op, op_decomp, arg, {})
def fn1(x):
x = x * 2
x = x @ x
x = x * 2
return x
self.assertFalse(fn0(x, y, 0.3, False))
with TorchRefsNvfuserCapabilityMode():
# Autocast context has C++ level ATen calls that are hidden from
# TorchRefsNvfuserCapabilityMode that works only on Python level.
# The first call to make_fx records autocast C++ calls directly and
# doesn't have the chance to translate to nvprims. After the first
# call, "gm" contains explicit calls to torch.ops.aten and nothing
# is hidden, so the second call to make_fx actually translates
# recorded autocast dtype conversions to nvprims.
with torch.autocast("cuda"):
gm = make_fx(fn1)(x)
gm = make_fx(gm)(x)
call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
includes_aten_to_copy = any(
torch.ops.aten._to_copy.default == node.target
for node in call_function_nodes
)
self.assertFalse(includes_aten_to_copy)
@onlyCUDA
@skipCUDAIfRocm
@dtypes(torch.float16, torch.float32)
def test_masked_fill_decomposition_under_nvprim_context(self, device, dtype):
# masked_fill decomposition extracts cpu scalar tensor value when
# filling out a cuda tensor. This triggers data-dependent control flow
# on TorchRefsNvfuser speculative lowering.
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsNvfuserCapabilityMode
x = torch.empty(2, 3, device=device).to(dtype=dtype)
mask = torch.ones_like(x).bool()
y = torch.tensor(0.3) # cpu scalar tensor
def func(x, mask, y):
return torch.masked_fill(x, mask, y)
# mimics real use-case for TorchRefsNvfuserCapabilityMode context
gm = make_fx(func, decomposition_table={})(x, mask, y)
with warnings.catch_warnings(record=True) as caught:
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(gm)(x, mask, y)
# masked_fill decomposition fails inside `get_isolated_graphmodule`
self.assertTrue(any(GET_ISOLATED_GRAPHMODULE_ERROR in str(w.message) for w in caught))
@ops([op for op in op_db if op.supports_varargs], dtypes=OpDTypes.any_one)
def test_decomposition_method_vararg(self, device, dtype, op):
# some ops have vararg variants for the methods. this tests it.
# we don't have tests for varargs in OpInfo, so we need to
# improvise this a bit.
# The rule for general functions (the special cases being e.g. tensor
# creation functions taking shapes) is that things can be vararg
# if the method has only one argument of sequence type.
# e.g. permute can be called on a 3d tensor t as t.permute(0, 2, 1)
# as well as t.permute([0, 2, 1])
# when the signature in native_functions.yaml
# shows arguments Tensor self, IntList dims
# we might need to adjust things for the factory functions or
# have them do their own test
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.context import TorchRefsMode
# filter out empty tuple as that cannot be the varargs
sample_inputs = (si for si in op.sample_inputs(device, dtype, requires_grad=False)
if (si.args[-1] if si.args else si.input))
# just run one test, we assume there is a suitable one in the tests
sample_input = next(sample_inputs)
all_args = (sample_input.input,) + sample_input.args
# in general, the methods take varargs and not (always?) the function
# variants, the exception to this rule are the factory functions
if op.is_factory_function:
fn = op.op
else:
fn = op.method_variant
with TorchRefsMode():
gm = make_fx(fn)(*all_args[:-1], *all_args[-1])
# in case we add random factory functions
torch.manual_seed(1)
res = gm(*all_args[:-1], *all_args[-1])
torch.manual_seed(1)
expected = fn(*all_args[:-1], *all_args[-1])
self.assertEqual(res, expected)
instantiate_device_type_tests(TestDecomp, globals())
if __name__ == "__main__":
run_tests()
|