File: test_prims.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1002 lines) | stat: -rw-r--r-- 38,515 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
# Owner(s): ["module: primTorch"]

from functools import partial
from itertools import product
import warnings
from warnings import catch_warnings
import unittest

import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import parametrize, run_tests, TestCase, TEST_SCIPY, skipCUDAMemoryLeakCheckIf
from torch.testing._internal.common_device_type import (
    instantiate_device_type_tests,
    onlyCUDA,
    skipCUDAIfRocm,
    dtypes,
    OpDTypes,
)
from torch.testing._internal.common_methods_invocations import (
    op_db,
)
from torch.testing._internal.common_device_type import (
    ops,
)

from torch.testing._internal.logging_tensor import LoggingTensor, capture_logs, log_input
import torch._prims as prims
from torch._prims.executor import make_traced
import torch._refs as refs
from torch.fx.experimental.proxy_tensor import make_fx


if TEST_SCIPY:
    import scipy.special

NVPRIM_ATEN_FALLBACK_WARNING = "fallback to aten executor"
GET_ISOLATED_GRAPHMODULE_ERROR = "get_isolated_graphmodule failed on decomposition"

class TestPrims(TestCase):
    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float32)
    def test_broadcast_in_dim(self, device, dtype):
        def _wrapper(a, b, broadcast_dimensions):
            return prims.broadcast_in_dim(a, b.shape, broadcast_dimensions)

        traced = make_traced(_wrapper)
        make_arg = partial(make_tensor, device=device, dtype=dtype)

        for executor in ('aten', 'strictly_nvfuser'):
            fn = partial(traced, executor=executor)
            # Same shape
            shape = (5, 5)
            a = make_arg(shape)
            b = make_arg(shape, low=0.0, high=0.0)
            result = fn(a, b, (0, 1))

            self.assertEqual(result.shape, a.shape)
            self.assertTrue(result.is_contiguous)
            self.assertEqual(a, result)

            # Error input: reordering dims
            with self.assertRaises(Exception):
                result = fn(a, b, (1, 0))

            # Adding outermost dimensions
            a = make_arg((5, 5))
            b = make_arg((3, 3, 5, 5), low=0.0, high=0.0)
            result = fn(a, b, (2, 3))

            self.assertEqual(result.shape, b.shape)
            self.assertEqual(a.broadcast_to(b.shape), result)

            # Expands
            a = make_arg((1, 5, 1))
            b = make_arg((3, 5, 7), low=0.0, high=0.0)
            result = fn(a, b, (0, 1, 2))

            self.assertEqual(result.shape, b.shape)
            self.assertEqual(a.expand_as(result), result)

            # Unsqueezes
            a = make_arg((1, 2, 3))
            b = make_arg((1, 2, 1, 3), low=0.0, high=0.0)
            result = fn(a, b, (0, 1, 3))

            self.assertEqual(result.shape, b.shape)
            self.assertEqual(a.unsqueeze(2), result)

            # FIXME: This test exposes an issue in nvfuser
            # Adds outermost, expands, and unsqueezes
            """
            a = make_arg((1, 2, 3))
            b = make_arg((4, 1, 7, 2, 3, 3), low=0.0, high=0.0)
            result = fn(a, b, (1, 3, 4))

            self.assertEqual(result.shape, b.shape)
            a.unsqueeze_(3)
            a.unsqueeze_(1)
            a.unsqueeze_(0)
            self.assertEqual(a.expand_as(result), result)
            """

    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float32)
    def test_broadcast_in_dim_sum(self, device, dtype):
        def _wrapper(a):
            a_sum = prims.sum(a, [0, 1])
            a_bc = prims.broadcast_in_dim(a_sum, [], [])
            return a_bc

        traced = make_traced(_wrapper)
        make_arg = partial(make_tensor, device=device, dtype=dtype)

        for executor in ('aten', 'strictly_nvfuser'):
            fn = partial(traced, executor=executor)
            shape = (5, 5)
            a = make_arg(shape)
            result = fn(a)

            self.assertEqual(result.shape, ())
            self.assertTrue(result.is_contiguous)
            self.assertEqual(_wrapper(a), result)

    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    @dtypes(torch.float64, torch.long)
    def test_cbrt_prim(self, device, dtype):
        make_arg = partial(make_tensor, device=device, dtype=dtype)
        batches = [(), (1,), (2,), (0, 1), (1, 1), (2, 2)]
        shapes = [(), (0,), (1,), (5,)]

        try:
            # Sets the default dtype to NumPy's default dtype of double
            cur_default = torch.get_default_dtype()
            torch.set_default_dtype(torch.double)

            # Tested here, as this OP is not currently exposed or tested in ATen
            for b, s in product(batches, shapes):
                x = make_arg(b + s)
                y = prims.cbrt(x)

                x_np = x.cpu().numpy()
                y_np = scipy.special.cbrt(x_np)

                self.assertEqual(y, y_np, exact_device=False)
        finally:
            torch.set_default_dtype(cur_default)

    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_impl_is_used(self, device):
        # This test is to ensure that when the nvfuser implementation exists it is used
        # Assuming one-to-one mapping between prims and nvfuser implementations
        # This test is not intended to test the correctness of the nvfuser implementation
        from torch._C._nvfuser import FusionDefinition as fd

        prim_nvfuser_ops = set(torch._prims.__all__).intersection(dir(fd.ops))
        ops_without_nvfuser_impl = {
            name
            for name in prim_nvfuser_ops
            if getattr(torch.ops.nvprims, name, None) is None
        }
        assert (
            len(ops_without_nvfuser_impl) == 0
        ), (f"The following prims do not have 'impl_nvfuser' defined: {ops_without_nvfuser_impl} ",
            "while there exists nvfuser implementations for them.")

    def test_skip_ops_nvfuser_prims_mode(self, device):
        # This test verifies that the NvfuserPrimsMode skips the specified
        # functions. Skipping a function means that it's not converted into
        # nvprims counterparts.
        from torch._prims.context import NvfuserPrimsMode

        a = make_tensor(5, 5, device=device, dtype=torch.float32)

        def func(a):
            return torch.ops.prims.sin.default(a)

        skip_ops = {"prims.sin.default", }
        with NvfuserPrimsMode(skip_ops=skip_ops):
            gm = make_fx(func)(a)

        includes_any_prims_sin = any(
            node.target == torch.ops.prims.sin.default for node in gm.graph.nodes
        )
        self.assertTrue(includes_any_prims_sin)
        include_any_nvprims_sin = any(
            node.target == torch.ops.nvprims.sin.default for node in gm.graph.nodes
        )
        self.assertFalse(include_any_nvprims_sin)

    def test_skip_ops_nvfuser_capability_mode(self, device):
        # This test verifies that the NvfuserCapabilityMode skips the specified
        # functions. Skipping a function means that specific
        # reference/decomposition is not traced and there's no attempt to lower
        # it to nvprims.
        from torch._prims.context import TorchRefsNvfuserCapabilityMode

        a = make_tensor(5, 5, device=device, dtype=torch.float32)

        def func(a):
            return torch.sin(a)

        skip_ops = {"torch.sin", }
        with TorchRefsNvfuserCapabilityMode(skip_ops=skip_ops):
            gm = make_fx(func)(a)

        includes_any_aten_sin = any(
            node.target == torch.ops.aten.sin.default for node in gm.graph.nodes
        )
        self.assertTrue(includes_any_aten_sin)
        include_any_nvprims_sin = any(
            node.target == torch.ops.nvprims.sin.default for node in gm.graph.nodes
        )
        self.assertFalse(include_any_nvprims_sin)

    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_empty_fusion(self, device):
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.executor import execute

        a = torch.randn(3, 3, device=device)

        def func(a, b, c):
            return (a, b, c)

        gm = make_fx(func)(a, a, a)

        with self.assertRaisesRegex(AssertionError, "Graph must contain at least one call_function node"):
            execute(gm, a, a, a, executor="strictly_nvfuser")

        # Should pass with partitioned executor
        out = execute(gm, a, a, a, executor="nvfuser")
        self.assertEqual(out, (a, a, a))

    @onlyCUDA
    @dtypes(torch.float16, torch.uint8)
    def test_nvprim_convert_element_type(self, device, dtype):
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.executor import execute
        from torch._prims.context import TorchRefsNvfuserCapabilityMode
        from torch._prims_common import _torch_dtype_to_nvfuser_dtype_map

        # initialize input as float32, which is different from `dtype` in the argument.
        # this ensures that tracing will have a _to_copy node.
        a = torch.randn(3, 3, device=device, dtype=torch.float32)

        def func(x, dtype):
            return x.to(dtype).to(x.dtype)

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(func)(a, dtype)
            execute(gm, a, dtype, executor="nvfuser")

        call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
        includes_aten_to_copy = any(
            torch.ops.aten._to_copy.default == node.target
            for node in call_function_nodes
        )
        includes_nvprim_convert_element_type = any(
            torch.ops.nvprims.convert_element_type.default == node.target
            for node in call_function_nodes
        )
        nvprim_support_flag = _torch_dtype_to_nvfuser_dtype_map.get(dtype) is not None
        self.assertEqual(includes_aten_to_copy, not nvprim_support_flag)
        self.assertEqual(includes_nvprim_convert_element_type, nvprim_support_flag)

    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_rand_like_fusion(self, device):
        from torch._prims.context import TorchRefsNvfuserCapabilityMode
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.executor import execute

        a = torch.randn(3, 3, device=device)

        def func(a):
            return torch.rand_like(a)

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(func)(a)

        out = execute(gm, a, executor="strictly_nvfuser")
        self.assertEqual(out.size(), a.size())

    @skipCUDAMemoryLeakCheckIf(True)  # https://github.com/pytorch/pytorch/issues/84529
    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_no_args(self, device):
        from torch._prims.context import TorchRefsNvfuserCapabilityMode
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.executor import execute
        from torch._prims.nvfuser_executor import make_nvfuser_fusion

        a = torch.randn(3, 3, device=device)

        def func():
            return torch.sigmoid(a)

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(func)()

        with warnings.catch_warnings(record=True) as caught:
            execute(gm, executor="strictly_nvfuser")
        # fusion execute with no cuda input is handled by nvprim aten fallback
        self.assertTrue(any(NVPRIM_ATEN_FALLBACK_WARNING in str(w.message) for w in caught))

        with self.assertRaisesRegex(AssertionError, "There must be at least one argument"):
            make_nvfuser_fusion(gm)

        with self.assertRaisesRegex(AssertionError, "Number of placeholder nodes in the graph must match"):
            execute(gm, a, executor="strictly_nvfuser")

        # Should pass with partitioned executor
        out = execute(gm, executor="nvfuser")
        self.assertEqual(out, func())

    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_constant_tensors(self, device):
        from torch._prims.context import TorchRefsNvfuserCapabilityMode
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.executor import execute

        a = torch.randn(3, 3, device=device)
        b = torch.randn(3, 3, device=device)

        def func(b):
            return a + b

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(func)(b)

        with self.assertRaisesRegex(AssertionError, "not supported yet"):
            execute(gm, b, executor="strictly_nvfuser")

        # Should pass with partitioned executor
        out = execute(gm, b, executor="nvfuser")
        self.assertEqual(out, gm(b))

    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_executor_cached_noncontiguous(self, device):
        # This test is to ensure that nvfuser computes correct results for noncontiguous tensors
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsMode
        from torch._prims.executor import execute

        a = torch.randn(3, 3, device=device)

        def func(a):
            return torch.sigmoid(a)

        with TorchRefsMode():
            gm = make_fx(func)(a)

        # First run to create the cache
        execute(gm, a, executor="nvfuser")

        # a.mT is noncontiguous, but it shouldn't affect correctness
        expected = execute(gm, a.mT, executor="aten")
        actual = execute(gm, a.mT, executor="nvfuser")
        self.assertEqual(expected, actual)

    def test_nvfuser_capability_context(self, device):
        # This test is to ensure that the torch calls are replaced with refs
        # based on the nvfuser+prims capability
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsNvfuserCapabilityMode

        # It's assumed that digamma is not supported by nvfuser
        # If it's ever supported, this test will need to be updated
        self.assertTrue(getattr(torch.ops.nvprims, "digamma", None) is None)

        a = torch.randn(3, 3, device=device)

        def func(a):
            return torch.digamma(a)

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(func)(a)

        # Check that the torch.digamma is not replaced with torch.ops.prims.digamma
        call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
        includes_aten_digamma = any(
            torch.ops.aten.digamma.default == node.target
            for node in call_function_nodes
        )
        includes_prims_digamma = any(
            torch.ops.prims.digamma.default == node.target
            for node in call_function_nodes
        )
        self.assertTrue(includes_aten_digamma)
        self.assertFalse(includes_prims_digamma)

        # Check mixed case, sigmoid is replaced with refs, but digamma is not
        def func(a):
            return torch.sigmoid(torch.digamma(a))

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(func)(a)

        call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
        includes_aten_sigmoid = any(
            torch.ops.aten.sigmoid.default == node.target
            for node in call_function_nodes
        )
        includes_prims_digamma = any(
            torch.ops.prims.digamma.default == node.target
            for node in call_function_nodes
        )
        includes_nvprims_exp = any(
            torch.ops.nvprims.exp.default == node.target
            for node in call_function_nodes
        )
        self.assertFalse(includes_aten_sigmoid)
        self.assertFalse(includes_prims_digamma)
        self.assertTrue(includes_nvprims_exp)


    def test_aten_overload_to_prims(self, device):
        # This test is to ensure that the torch.ops.aten calls are replaced with refs
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsMode

        a = torch.randn(3, 3, device=device)

        def func(a):
            return torch.ops.aten.sigmoid.default(torch.ops.aten.digamma.default(a))

        with TorchRefsMode():
            gm = make_fx(func)(a)

        # Check that all call_function nodes are prims
        call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
        all_prims_namespace = all(
            node.target.name().startswith("prims") for node in call_function_nodes
        )
        self.assertTrue(all_prims_namespace)


    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_executor_parameters(self, device):
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.executor import execute

        a = torch.randn(3, 4, device=device)

        def func(a):
            return torch.ops.nvprims.add(a, a)

        gm = make_fx(func)(a)

        expected = execute(gm, a, executor="aten")
        # Shouldn't raise an error because unuseful parameters are ignored
        params_dicts = [None, {}, {"none": None}]
        for params in params_dicts:
            actual = execute(gm, a, executor="nvfuser", executor_parameters=params)
            self.assertEqual(expected, actual)

        # Check caching parameter
        for use_cache in [True, False]:
            params = {"use_python_fusion_cache": use_cache}
            actual = execute(gm, a, executor="nvfuser", executor_parameters=params)
            self.assertEqual(expected, actual)

        # Check allow_single_op_fusion parameter
        for allow_single_op_fusion in [True, False]:
            params = {"allow_single_op_fusion": allow_single_op_fusion}
            actual = execute(gm, a, executor="nvfuser", executor_parameters=params)
            self.assertEqual(expected, actual)


    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_executor_partitioned(self, device):
        # This test is to ensure that nvfuser partitioned executor works correctly
        # It's assumed that digamma is not supported by nvfuser
        # If it's ever supported, this test will need to be updated
        self.assertTrue(getattr(torch.ops.nvprims, "digamma", None) is None)

        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsMode
        from torch._prims.executor import execute

        a = torch.randn(3, 4, device=device)
        b = torch.rand(3, 1, device=device)
        c = torch.rand(3, 4, device=device)

        def func(a, b, c):
            aa = torch.digamma(a)  # not supported by nvfuser
            d = torch.add(b, c)
            dd = torch.sqrt(d)
            return torch.mul(aa, dd.digamma())

        with TorchRefsMode():
            gm = make_fx(func)(a, b, c)

        expected = execute(gm, a, b, c, executor="aten")
        actual = execute(gm, a, b, c, executor="nvfuser")
        self.assertEqual(expected, actual)

    @onlyCUDA
    @skipCUDAIfRocm
    def test_nvfuser_executor_partitioned_no_partitions_error(self, device):
        # This test is to ensure that nvfuser partitioned executor works correctly
        # It's assumed that digamma is not supported by nvfuser
        # If it's ever supported, this test will need to be updated
        self.assertTrue(getattr(torch.ops.nvprims, "digamma", None) is None)

        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsMode
        from torch._prims.executor import execute

        a = torch.randn(3, 4, device=device)

        def func(a):
            return torch.digamma(a)  # not supported by nvfuser

        with TorchRefsMode():
            gm = make_fx(func)(a)

        with catch_warnings(record=True) as w:
            # Trigger warning
            execute(gm, a, executor="nvfuser")
            # Check warning occurs
            self.assertEqual(len(w), 1)
            self.assertTrue("is not supported by nvFuser" in str(w[-1].message))

    def test_nvprims(self, device):
        # This test is to ensure that nvfuser specific prims are exposed
        # and can be traced with make_fx
        from torch.fx.experimental.proxy_tensor import make_fx

        def func(a):
            return torch.ops.nvprims.add(a, a)

        a = torch.randn(3, 4, device=device)
        gm = make_fx(func)(a)

        for node in gm.graph.nodes:
            if node.op == "call_function":
                self.assertTrue(node.name == "add")
                self.assertTrue(node.target == torch.ops.nvprims.add.default)
                self.assertFalse(node.target == torch.ops.prims.add.default)
                self.assertFalse(node.target == torch.ops.aten.add.default)

    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float32, torch.float64)
    def test_native_batch_norm_nvprims(self, device, dtype):
        from torch._prims.context import TorchRefsNvfuserCapabilityMode
        from torch._prims.executor import execute

        # This test verifies that native_batch_norm is translated into nvprims
        # and can be executed with nvFuser
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch.testing._internal.common_methods_invocations import (
            sample_inputs_native_batch_norm,
        )

        samples = sample_inputs_native_batch_norm(
            None, device, dtype, requires_grad=False
        )
        batch_norms = [
            torch.native_batch_norm,
            torch.ops.aten.native_batch_norm,
            torch.ops.aten.native_batch_norm.default,
            torch.ops.nvprims.native_batch_norm.default,
        ]
        for sample, batch_norm in product(samples, batch_norms):
            if sample.input.numel() == 0:
                continue

            def func(
                input, weight, bias, running_mean, running_var, training, momentum, eps
            ):
                return batch_norm(
                    input,
                    weight,
                    bias,
                    running_mean,
                    running_var,
                    training,
                    momentum,
                    eps,
                )

            with TorchRefsNvfuserCapabilityMode():
                gm = make_fx(func)(sample.input, *sample.args)

            call_function_nodes = list(
                filter(lambda n: n.op == "call_function", gm.graph.nodes)
            )
            includes_aten_batch_norm = any(
                torch.ops.aten.native_batch_norm.default == node.target
                for node in call_function_nodes
            )
            self.assertFalse(includes_aten_batch_norm)

            includes_nvprims_batch_norm = any(
                torch.ops.nvprims.native_batch_norm.default == node.target
                for node in call_function_nodes
            )
            self.assertTrue(includes_nvprims_batch_norm)

            # Check that the graph can be executed with nvFuser
            out = execute(gm, sample.input, *sample.args, executor="strictly_nvfuser")
            self.assertEqual(out, gm(sample.input, *sample.args))

    # decomposition of native_batch_norm_backward uses a casting, which prevents nvprim lowering on CPU build
    @onlyCUDA
    @dtypes(torch.float32, torch.float16)
    def test_batch_norm_backward_nvprims(self, device, dtype):
        # This test verifies that the backward pass of batch norm is correctly decomposed into nvprims
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsNvfuserCapabilityMode
        from torch.testing._internal.common_methods_invocations import sample_inputs_batch_norm

        samples_iter = sample_inputs_batch_norm(None, device, dtype, requires_grad=True)
        sample = next(samples_iter)
        grad = torch.randn_like(sample.input)

        def func(grad, input, weight, rm, rv, eps, train):
            return torch.ops.aten.native_batch_norm_backward.default(
                grad, input, weight, rm, rv, rm, rv, train, eps, [True, True, True]
            )

        args = sample.args
        kwargs = sample.kwargs
        all_args = [grad, sample.input, args[2], args[0], args[1], kwargs['eps'], kwargs['training']]
        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(func)(*all_args)

        call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
        includes_batch_norm_backward = any(
            torch.ops.aten.native_batch_norm_backward.default == node.target
            for node in call_function_nodes
        )
        self.assertFalse(includes_batch_norm_backward)

    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float32)
    @parametrize("correction", [0, 1])
    def test_var(self, device, dtype, correction):
        def _wrapper(a):
            return prims.var(a, [0, 1], correction=correction)

        traced = make_traced(_wrapper)
        make_arg = partial(make_tensor, device=device, dtype=dtype)

        for executor in ('aten', 'strictly_nvfuser'):
            fn = partial(traced, executor=executor)
            shape = (5, 5)
            a = make_arg(shape)
            result = fn(a)

            self.assertEqual(result.shape, ())
            self.assertTrue(result.is_contiguous)
            self.assertEqual(_wrapper(a), result)

    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float16, torch.float32)
    @parametrize("correction", [0, 1])
    @parametrize("keepdim", [True, False])
    def test_var_mean(self, device, dtype, correction, keepdim):
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsNvfuserCapabilityMode


        def _wrapper(a):
            return torch.var_mean(a, [0, 1], correction=correction, keepdim=keepdim)

        make_arg = partial(make_tensor, device=device, dtype=dtype)

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(_wrapper)(make_arg((5, 5)))

        call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
        includes_nvprims_var_mean = any(
            torch.ops.nvprims.var_mean.main == node.target
            for node in call_function_nodes
        )
        self.assertTrue(includes_nvprims_var_mean)

    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float32, torch.float16)
    def test_cpu_tensor(self, device, dtype):
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsNvfuserCapabilityMode
        from torch._prims.executor import execute

        def _wrapper(t0, t1, cpu_scalar):
            return t0 + t1 + cpu_scalar

        make_arg = partial(make_tensor, device=device, dtype=dtype)
        a = make_arg((12, 1))
        b = make_arg((12, 12))
        c = torch.tensor(0.5)

        with TorchRefsNvfuserCapabilityMode():
            gm = make_fx(_wrapper)(a, b, c)

        with warnings.catch_warnings(record=True) as caught:
            actual = execute(gm, a, b, c, executor="nvfuser")
        # cpu scalar tensor is handled by nvfuser codegen, so it shouldn't fallback
        self.assertFalse(any(NVPRIM_ATEN_FALLBACK_WARNING in str(w.message) for w in caught))

        expected = execute(gm, a, b, c, executor="aten")
        self.assertEqual(expected, actual)

        call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
        includes_aten_add = any(
            torch.ops.aten.add.default == node.target
            for node in call_function_nodes
        )
        self.assertFalse(includes_aten_add)

        with warnings.catch_warnings(record=True) as caught:
            nvprim_aten_fallback = execute(gm, a.cpu(), b.cpu(), c, executor="nvfuser")
        # cpu tensor is handled by nvprim aten fallback, assert that it's indeed in warning
        self.assertTrue(any(NVPRIM_ATEN_FALLBACK_WARNING in str(w.message) for w in caught))

        self.assertEqual(expected, nvprim_aten_fallback)

    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float32)
    def test_pytree_input_output(self, device, dtype):
        @make_traced
        def fn(a, b_dict):
            b = b_dict["b"]
            d = {}
            d["c"] = torch.add(a, b)
            return (d, torch.add(a, d["c"]))

        make_arg = partial(make_tensor, device=device, dtype=dtype)
        a = make_arg((5, 5))
        b = make_arg((1, 5))
        b_dict = {"b": b}

        result_aten = fn(a, b_dict, executor="aten")
        result_nvfuser = fn(a, b_dict, executor="strictly_nvfuser")
        self.assertEqual(result_aten, result_nvfuser)

    @dtypes(torch.float32)
    def test_memory_format_strides(self, device, dtype):
        shapes = (
            (),
            (0,),
            (1,),
            (5),
            (1, 0),
            (1, 1),
            (3, 7),
            (3, 0, 2),
            (1, 1, 2),
            (4, 1, 1),
            (7, 8, 9),
        )

        channels_last_shapes = (
            (0, 0, 0, 0),
            (1, 0, 3, 0),
            (0, 2, 3, 5),
            (2, 2, 2, 0),
            (5, 4, 3, 2),
            (8, 8, 7, 2),
            (9, 1, 3, 1),
            (4, 5, 8, 7)
        )

        channels_last_3d_shapes = (
            (0, 8, 7, 9, 2),
            (5, 0, 7, 9, 2),
            (5, 0, 7, 9, 0),
            (5, 8, 7, 9, 2),
            (5, 1, 7, 9, 2),
            (5, 1, 7, 9, 1),
        )

        pairs = (
            (shapes, torch.contiguous_format),
            (channels_last_shapes, torch.contiguous_format),
            (channels_last_3d_shapes, torch.contiguous_format),
            (channels_last_shapes, torch.channels_last),
            (channels_last_3d_shapes, torch.channels_last_3d),
        )

        for shapes, memory_format in pairs:
            for shape in shapes:
                # tests empty
                expected = torch.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
                actual = refs.empty(shape, device=device, dtype=dtype, memory_format=memory_format)
                self.assertEqual(expected.stride(), actual.stride())

                # tests clone
                a = torch.testing.make_tensor(shape, device=device, dtype=dtype)
                expected = torch.clone(a, memory_format=memory_format)
                actual = torch.clone(a, memory_format=memory_format)
                self.assertEqual(expected.stride(), actual.stride())

                # tests contiguous
                a = torch.testing.make_tensor(shape, device=device, dtype=dtype, noncontiguous=True)
                expected = a.contiguous(memory_format=memory_format)
                actual = refs.contiguous(a, memory_format=memory_format)
                self.assertEqual(expected.stride(), actual.stride())

    @dtypes(torch.float32)
    def test_reshape_view_method(self, device, dtype):
        make_arg = partial(make_tensor, device=device, dtype=dtype)
        a = make_arg((5, 5))
        new_shape = 1, 5, 1, 5
        result_eager = a.reshape(*new_shape)
        result_refs = refs.reshape(a, *new_shape)
        self.assertEqual(result_eager, result_refs)

        result_eager = a.view(*new_shape)
        result_refs = refs.view(a, *new_shape)
        self.assertEqual(result_eager, result_refs)


class TestPrimsBasic(TestCase):
    def test_torch_ops(self):
        r = make_tensor((2,), device='cpu', dtype=torch.float)
        self.assertEqual(torch.ops.prims.sin(r), torch.sin(r))

        r = LoggingTensor(r)
        with capture_logs() as logs:
            log_input("input", r)
            prims.sin(r)
        self.assertExpectedInline('\n'.join(logs), """\
$0 = input('input')
$1 = torch._ops.prims.sin.default($0)""")

    def test_mul_complex(self):
        prims.mul(torch.randn(2), 1 + 1j)


instantiate_device_type_tests(TestPrims, globals())


class TestRefs(TestCase):
    @dtypes(torch.float32)
    def test_constant_pad_nd_memory_format(self, device, dtype):
        # Test memory format is preserved in unambiguous cases
        for mf, ndim in (
                (torch.channels_last, 4),
                (torch.contiguous_format, 4),
                (torch.channels_last_3d, 5),
                (torch.contiguous_format, 5),
        ):
            a = torch.zeros([2] * ndim).to(memory_format=mf)
            res = refs.constant_pad_nd(a, pad=[1] * (2 * ndim))
            self.assertTrue(res.is_contiguous(memory_format=mf))

        # Ambiguous cases

        # is_channels_last_ and is_contiguous_, results in channels_last output
        a = torch.empty_strided((2, 1, 2, 2), stride=(4, 1, 2, 1))
        self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
        self.assertTrue(a.is_contiguous())
        actual = refs.constant_pad_nd(a, pad=[1] * 8)
        expect = torch.constant_pad_nd(a, pad=[1] * 8)
        self.assertEqual(actual.stride(), expect.stride())
        self.assertTrue(actual.is_contiguous(memory_format=torch.channels_last))

        # is_channels_last_contiguous_ but not is_channels_last_, results in
        # contiguous output
        a = torch.empty_strided((2, 1, 2, 2), stride=(4, 4, 2, 1))
        self.assertTrue(a.is_contiguous(memory_format=torch.channels_last))
        self.assertTrue(a.is_contiguous())
        actual = refs.constant_pad_nd(a, pad=[1] * 8)
        expect = torch.constant_pad_nd(a, pad=[1] * 8)
        self.assertEqual(actual.stride(), expect.stride())
        self.assertTrue(actual.is_contiguous())


instantiate_device_type_tests(TestRefs, globals())


class TestDecomp(TestCase):
    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float16, torch.float32)
    def test_decomposition_type_promotion_nvprim_amp(self, device, dtype):
        x = torch.rand(5, device=device).to(dtype)
        y = torch.rand(5, device=device).to(dtype)

        from torch._prims.context import TorchRefsNvfuserCapabilityMode, _is_func_unsupported_nvfuser
        from torch.fx.experimental.proxy_tensor import make_fx
        op = torch.ops.aten.leaky_relu_backward.default
        op_decomp = torch._decomp.decomposition_table.get(op)

        def fn0(*arg):
            return _is_func_unsupported_nvfuser(TorchRefsNvfuserCapabilityMode(), op, op_decomp, arg, {})

        def fn1(x):
            x = x * 2
            x = x @ x
            x = x * 2
            return x

        self.assertFalse(fn0(x, y, 0.3, False))
        with TorchRefsNvfuserCapabilityMode():

            # Autocast context has C++ level ATen calls that are hidden from
            # TorchRefsNvfuserCapabilityMode that works only on Python level.
            # The first call to make_fx records autocast C++ calls directly and
            # doesn't have the chance to translate to nvprims. After the first
            # call, "gm" contains explicit calls to torch.ops.aten and nothing
            # is hidden, so the second call to make_fx actually translates
            # recorded autocast dtype conversions to nvprims.
            with torch.autocast("cuda"):
                gm = make_fx(fn1)(x)
            gm = make_fx(gm)(x)
            call_function_nodes = list(filter(lambda n: n.op == "call_function", gm.graph.nodes))
            includes_aten_to_copy = any(
                torch.ops.aten._to_copy.default == node.target
                for node in call_function_nodes
            )
            self.assertFalse(includes_aten_to_copy)

    @onlyCUDA
    @skipCUDAIfRocm
    @dtypes(torch.float16, torch.float32)
    def test_masked_fill_decomposition_under_nvprim_context(self, device, dtype):
        # masked_fill decomposition extracts cpu scalar tensor value when
        # filling out a cuda tensor. This triggers data-dependent control flow
        # on TorchRefsNvfuser speculative lowering.
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsNvfuserCapabilityMode

        x = torch.empty(2, 3, device=device).to(dtype=dtype)
        mask = torch.ones_like(x).bool()
        y = torch.tensor(0.3)  # cpu scalar tensor

        def func(x, mask, y):
            return torch.masked_fill(x, mask, y)

        # mimics real use-case for TorchRefsNvfuserCapabilityMode context
        gm = make_fx(func, decomposition_table={})(x, mask, y)

        with warnings.catch_warnings(record=True) as caught:
            with TorchRefsNvfuserCapabilityMode():
                gm = make_fx(gm)(x, mask, y)
        # masked_fill decomposition fails inside `get_isolated_graphmodule`
        self.assertTrue(any(GET_ISOLATED_GRAPHMODULE_ERROR in str(w.message) for w in caught))

    @ops([op for op in op_db if op.supports_varargs], dtypes=OpDTypes.any_one)
    def test_decomposition_method_vararg(self, device, dtype, op):
        # some ops have vararg variants for the methods. this tests it.
        # we don't have tests for varargs in OpInfo, so we need to
        # improvise this a bit.
        # The rule for general functions (the special cases being e.g. tensor
        # creation functions taking shapes) is that things can be vararg
        # if the method has only one argument of sequence type.
        # e.g. permute can be called on a 3d tensor t as t.permute(0, 2, 1)
        #      as well as t.permute([0, 2, 1])
        #      when the signature in native_functions.yaml
        #      shows arguments Tensor self, IntList dims
        # we might need to adjust things for the factory functions or
        # have them do their own test
        from torch.fx.experimental.proxy_tensor import make_fx
        from torch._prims.context import TorchRefsMode

        # filter out empty tuple as that cannot be the varargs
        sample_inputs = (si for si in op.sample_inputs(device, dtype, requires_grad=False)
                         if (si.args[-1] if si.args else si.input))

        # just run one test, we assume there is a suitable one in the tests
        sample_input = next(sample_inputs)
        all_args = (sample_input.input,) + sample_input.args

        # in general, the methods take varargs and not (always?) the function
        # variants, the exception to this rule are the factory functions
        if op.is_factory_function:
            fn = op.op
        else:
            fn = op.method_variant
        with TorchRefsMode():
            gm = make_fx(fn)(*all_args[:-1], *all_args[-1])

        # in case we add random factory functions
        torch.manual_seed(1)
        res = gm(*all_args[:-1], *all_args[-1])
        torch.manual_seed(1)
        expected = fn(*all_args[:-1], *all_args[-1])
        self.assertEqual(res, expected)


instantiate_device_type_tests(TestDecomp, globals())


if __name__ == "__main__":
    run_tests()