File: test_python_dispatch.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1686 lines) | stat: -rw-r--r-- 66,559 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
# Owner(s): ["module: __torch_dispatch__"]

import tempfile
import torch
from copy import deepcopy
from torch.library import Library
from torch.cuda.jiterator import _create_jit_fn
import unittest
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, IS_WINDOWS
from torch.utils._mode_utils import no_dispatch, all_same_mode
from torch.testing._internal.logging_tensor import LoggingTensor, LoggingTensorReentrant, LoggingTensorMode, \
    log_input, capture_logs, capture_logs_with_logging_tensor_mode
from torch.utils._pytree import tree_map, tree_map_only
from torch.utils._python_dispatch import TorchDispatchMode, _get_current_dispatch_mode, _get_current_dispatch_mode_stack

import logging


class TestPythonRegistration(TestCase):
    def test_override_aten_ops_with_multiple_libraries(self) -> None:
        x = torch.tensor([1, 2])
        my_lib1 = Library("aten", "IMPL")
        my_lib2 = Library("aten", "IMPL")

        # Example 1
        def my_neg(*args, **kwargs):
            return args[0]._neg_view()

        # Now we are secretly making the operator a view op so autograd needs to know how
        # to handle it
        my_lib1.impl('neg', my_neg, "AutogradCPU")

        self.assertTrue(torch.neg(x).is_neg())

        # RuntimeError: impl("aten::neg", ...):
        # Explicitly provided namespace (aten) in operator name does not match ...
        with self.assertRaisesRegex(RuntimeError, "operator name does not match namespace"):
            my_lib3 = Library("foo", "DEF")
            my_lib3.define("neg(Tensor self) -> Tensor")
            my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU")
            del my_lib3

        # Example 2
        def my_mul(*args, **kwargs):
            return torch.zeros_like(args[0])

        # torch.ops.aten.mul.Tensor
        my_lib2.impl("aten::mul.Tensor", my_mul, "ZeroTensor")

        y = torch._efficientzerotensor(2)
        self.assertFalse(torch.mul(x, y)._is_zerotensor())

        # Assert that a user can't override the behavior of a (ns, op, dispatch_key)
        # combination if someone overrided the behavior for the same before them
        with self.assertRaisesRegex(RuntimeError, 'already a kernel registered from python'):
            my_lib2.impl(torch.ops.aten.mul.Tensor, my_mul, "ZeroTensor")

        del my_lib1

        # Validate that lib2 is not affected by removing lib1
        self.assertFalse(torch.mul(x, y)._is_zerotensor())

        del my_lib2

        # Validate that the old behavior is restored for neg and mul
        self.assertFalse(torch.neg(x).is_neg())
        self.assertTrue(torch.mul(x, y)._is_zerotensor())

    def test_error_if_fn_not_callable(self):
        with self.assertRaisesRegex(TypeError, "Input function is required to be a callable"):
            my_lib = Library("aten", "IMPL")
            my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU")

    def test_override_cpu_sum(self) -> None:
        # Example 1
        run = [False]

        def my_sum(*args, **kwargs):
            run[0] = True
            return args[0]

        my_lib1 = Library("aten", "IMPL")
        my_lib1.impl('aten::sum', my_sum, "CPU")
        x = torch.tensor([1, 2])
        self.assertEqual(torch.sum(x), x)
        self.assertTrue(run[0])
        del my_lib1
        # Validate that the old behavior is restored for sum
        self.assertEqual(torch.sum(x), torch.tensor(3))

    def test_override_cuda_with_jiterator(self) -> None:
        def override_where_cuda() -> None:
            # Example 1: Invert the behavior of where's condition input
            not_where_code_string = '''
            template <typename T> T inverted_where(bool cond, T a, T b){
                return !cond ? a : b;
            }
            '''
            jitted_where = _create_jit_fn(not_where_code_string)

            CALLED = [False]

            def inverted_where(*args, **kwargs):
                CALLED[0] = True
                return jitted_where(*args, **kwargs)

            # overriding where's cuda kernel with Jiterator generated kernel
            my_lib = Library("aten", "IMPL")
            my_lib.impl('aten::where.self', inverted_where, "CUDA")

            device = 'cuda'
            cond = torch.tensor([True, True, False], device=device, dtype=torch.bool)
            x = torch.tensor([1, 2, 3], device=device)
            y = torch.tensor([-1, -2, -3], device=device)

            self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3]))
            self.assertTrue(CALLED[0])
            del my_lib

            # behavior restored after deregistration
            self.assertEqual(torch.where(cond, x, y), torch.tensor([1, 2, -3]))

        def override_gelu_cuda() -> None:
            # Example 2: Use relu to approximate gelu for faster compute
            fastest_gelu_code_string = '''
            template <typename T> T fast_gelu(T a){
                return a > 0 ? a : 0;
            }
            '''
            jitted_gelu = _create_jit_fn(fastest_gelu_code_string)

            CALLED = [False]

            def fast_gelu(*args, **kwargs):
                CALLED[0] = True
                return jitted_gelu(*args, **kwargs)

            # overriding gelu's cuda kernel with Jiterator generated relu kernel
            my_lib = Library("aten", "IMPL")
            my_lib.impl('aten::gelu', fast_gelu, "CUDA")

            x = torch.rand([3, 3], device='cuda', dtype=torch.float)
            self.assertEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x))
            self.assertTrue(CALLED[0])
            del my_lib

            # behavior restored after deregistration
            self.assertNotEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x))

        def override_exp_cuda() -> None:
            # Example 3: Preventing exp from exploding for float16
            clipped_exp_code_string = '''
            template <typename T> T clipped_exp(T a){
                return a > T(10.0) ? T(22026.4657948) : exp(a);
            }
            '''
            jitted_exp = _create_jit_fn(clipped_exp_code_string)

            CALLED = [False]

            def clipped_exp(*args, **kwargs):
                CALLED[0] = True
                return jitted_exp(*args, **kwargs)

            # overriding exp's cuda kernel with clipped_exp kernel
            my_lib = Library("aten", "IMPL")
            my_lib.impl('aten::exp', clipped_exp, "CUDA")

            x = torch.tensor([0.0, 100.0], device='cuda', dtype=torch.float16)
            self.assertEqual(torch.exp(x), torch.tensor([1.0, 22026.4657948], dtype=torch.float16))
            self.assertTrue(CALLED[0])
            del my_lib

            # behavior restored after deregistration
            self.assertEqual(torch.exp(x), torch.tensor([1.0, torch.inf], dtype=torch.float16))

        def override_add_cuda() -> None:
            # Example 4: simulate a hardware bug, where the adder is always off by 1
            buggy_add_code_string = '''
            template <typename T> T buggy_add(T a, T b){
                return a + b + T(1);
            }
            '''
            jitted_add = _create_jit_fn(buggy_add_code_string)

            CALLED = [False]

            def buggy_add(*args, **kwargs):
                CALLED[0] = True
                return jitted_add(*args, **kwargs)

            my_lib = Library("aten", "IMPL")
            my_lib.impl('aten::add.Tensor', buggy_add, "CUDA")

            x_cpu = torch.rand([3, 3], device='cpu')
            y_cpu = torch.rand([3], device='cpu')

            x_cuda = x_cpu.cuda()
            y_cuda = y_cpu.cuda()

            self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1)
            self.assertTrue(CALLED[0])
            del my_lib

            # behavior restored after deregistration
            self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu)

        if torch.cuda.is_available() and not TEST_WITH_ROCM:
            override_where_cuda()
            override_gelu_cuda()
            override_exp_cuda()
            override_add_cuda()

    def test_extend_library_with_dispatch_key_arg(self):
        def my_sum(*args, **kwargs):
            return args[0]
        my_lib1 = Library("aten", "IMPL", dispatch_key="CPU")

        # RuntimeError: Explicitly provided dispatch key (Conjugate) is
        # inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block
        with self.assertRaisesRegex(RuntimeError, "inconsistent with the dispatch key"):
            my_lib1.impl('sum', my_sum, "Conjugate")
        my_lib1.impl('aten::sum', my_sum)
        x = torch.tensor([1, 2])
        self.assertEqual(torch.sum(x), x)
        del my_lib1

    def test_create_new_library(self) -> None:
        my_lib1 = Library("foo", "DEF")

        my_lib1.define("sum(Tensor self) -> Tensor")

        # Example 1
        @torch.library.impl(my_lib1, "sum", "CPU")
        def my_sum(*args, **kwargs):
            return args[0]

        x = torch.tensor([1, 2])
        self.assertEqual(torch.ops.foo.sum(x), x)

        my_lib2 = Library("foo", "IMPL")

        # Example 2
        @torch.library.impl(my_lib2, torch.ops.foo.sum.default, "ZeroTensor")
        def my_sum_zt(*args, **kwargs):
            if args[0]._is_zerotensor():
                return torch._efficientzerotensor(args[0].shape)
            else:
                return args[0]

        y = torch._efficientzerotensor(3)
        self.assertTrue(torch.ops.foo.sum(y)._is_zerotensor())
        self.assertEqual(torch.ops.foo.sum(x), x)

        del my_lib2
        del my_lib1

    @unittest.skipIf(IS_WINDOWS, "Skipped under Windows")
    def test_alias_analysis(self):
        def test_helper(alias_analysis=""):
            my_lib1 = Library("foo", "DEF")

            called = [0]

            @torch.library.define(my_lib1, "_op() -> None", alias_analysis=alias_analysis)
            def _op(*args, **kwargs):
                called[0] += 1

            @torch.jit.script
            def _test():
                torch.ops.foo._op()

            assert "foo::_op" in str(_test.graph)

        with self.assertRaises(AssertionError):
            test_helper("")  # alias_analysis="FROM_SCHEMA"

        test_helper("CONSERVATIVE")

    def test_error_for_unsupported_ns_or_kind(self) -> None:
        with self.assertRaisesRegex(ValueError, "Unsupported kind"):
            my_lib1 = Library("myns", "BLA")

        with self.assertRaisesRegex(ValueError, "reserved namespace"):
            my_lib1 = Library("prim", "DEF")

class TestPythonDispatch(TestCase):
    def test_basic(self) -> None:
        with capture_logs() as logs:
            x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
            log_input("x", x)
            y = x * x
            saved_x = y.grad_fn._saved_self
            grad_y = LoggingTensor(torch.tensor([1.0]))
            log_input("grad_y", grad_y)
            g, = torch.autograd.grad((y,), (x,), (grad_y,))

        self.assertEqual(g.elem, torch.tensor([6.0]))
        with torch.no_grad():
            self.assertEqual(saved_x, x)
            self.assertEqual(saved_x._version, x._version)
            x.add_(2)
            self.assertEqual(saved_x, x)
            # TODO: figure out why broken
            # self.assertEqual(saved_x._version, x._version)
        self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.mul.Tensor($0, $0)
$2 = input('grad_y')
True = torch._ops.aten.is_same_size.default($1, $2)
$3 = torch._ops.aten.mul.Tensor($2, $0)
$4 = torch._ops.aten.mul.Tensor($2, $0)
$5 = torch._ops.aten.add.Tensor($4, $3)''')

    def test_out(self) -> None:
        with capture_logs() as logs:
            x = LoggingTensor(torch.ones(1))
            y = LoggingTensor(torch.zeros(1))
            log_input("x", x)
            log_input("y", y)
            torch.abs(x, out=y)

        self.assertEqual(y.elem, torch.ones(1))
        # TODO: arguably this shouldn't pass and we should complain
        # that out isn't a kwarg
        self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = torch._ops.aten.abs.out($0, out=$1)''')

    def test_kwarg_only(self) -> None:
        with capture_logs() as logs:
            x = LoggingTensor(torch.ones(1))
            y = LoggingTensor(torch.ones(1, 1))
            z = LoggingTensor(torch.ones(1))
            log_input("x", x)
            log_input("y", y)
            log_input("z", z)
            torch.addmv(x, y, z)
            torch.addmv(x, y, z, beta=1)
            torch.addmv(x, y, z, beta=2)
            torch.addmv(x, y, z, alpha=2)
            torch.addmv(x, y, z, beta=2, alpha=2)

        # The expectation is that beta/alpha don't show up when they're
        # defaulted.  This is even if the user explicitly specified it.
        self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = input('z')
$3 = torch._ops.aten.addmv.default($0, $1, $2)
$4 = torch._ops.aten.addmv.default($0, $1, $2)
$5 = torch._ops.aten.addmv.default($0, $1, $2, beta=2)
$6 = torch._ops.aten.addmv.default($0, $1, $2, alpha=2)
$7 = torch._ops.aten.addmv.default($0, $1, $2, beta=2, alpha=2)''')

    def test_kwarg_only_and_positional_default(self) -> None:
        with capture_logs() as logs:
            x = LoggingTensor(torch.ones(1))
            log_input("x", x)
            torch.ops.aten._foobar(x)
            torch.ops.aten._foobar(x, False)
            torch.ops.aten._foobar(x, arg3=False)
            torch.ops.aten._foobar(x, False, arg3=False)

        # What we are testing here is that we omit arg2
        # if it is defaulted, even if a kwarg is set
        self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten._foobar.default($0)
$2 = torch._ops.aten._foobar.default($0, False)
$3 = torch._ops.aten._foobar.default($0, arg3=False)
$4 = torch._ops.aten._foobar.default($0, False, arg3=False)''')

    def test_produce_real_type(self) -> None:
        with capture_logs() as logs:
            x = LoggingTensor(torch.ones(2, 2))
            log_input("x", x)
            x.to(dtype=torch.double)  # non-optional dtype
            torch.cumprod(x, 0, dtype=torch.double)  # optional dtype
            x[:, 1].contiguous(memory_format=torch.contiguous_format)  # optional memory format
            # There doesn't appear to be any layout signatures which are
            # triggerable using tensor subclasses (need to use a mode)

        self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten._to_copy.default($0, dtype=torch.float64)
$2 = torch._ops.aten.cumprod.default($0, 0, dtype=torch.float64)
$3 = torch._ops.aten.slice.Tensor($0, 0, 0, 9223372036854775807)
$4 = torch._ops.aten.select.int($3, 1, 1)
$5 = torch._ops.aten.clone.default($4, memory_format=torch.contiguous_format)''')

    def test_list_ret(self) -> None:
        # test all sequence types are permissible returns
        for list_type in (list, tuple):
            class A(torch._C._TensorBase):
                @staticmethod
                def __new__(cls, elem):
                    return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

                @classmethod
                def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                    if func.overloadpacket == torch.ops.aten.split:
                        with no_dispatch():
                            return list_type(torch.split(*args))
                    else:
                        raise AssertionError(f"unrecognized func: {func}")

            self.assertEqual(
                torch.split(A(torch.tensor([0, 1])), 2),
                torch.split(torch.tensor([0, 1]), 2)
            )

    def test_invalid_ret(self) -> None:
        # test invalid return gets reasonable error message
        class A(torch._C._TensorBase):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                return "arf"

        # Wobbles depending on NDEBUG mode of pybind11
        self.assertRaisesRegex(
            RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(),
        )
        self.assertRaisesRegexp(
            RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).detach(),
        )

    def test_detach_appears_twice_when_called_once(self) -> None:
        with capture_logs() as logs:
            x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
            log_input("x", x)
            x.detach()
        # FIXME: We actually want this to emit a single detach. However,
        # it currently emits two, for reasons unclear to us. Leaving
        # this test here to make sure we don't regress even further (it
        # would be bad if calling .detach() once emits 3+ detaches).
        self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.detach.default($0)
$2 = torch._ops.aten.detach.default($1)''')

    def test_storage(self) -> None:
        # For now, just make sure it doesn't crash.  Ideally, we should
        # return some virtual storage that is safe to work with
        x = LoggingTensor(torch.ones(1))
        self.assertRaises(RuntimeError, lambda: x.storage())

    def test_make_wrapper_subclass_noalloc(self) -> None:
        # This is ludicrously big (8TB) and this should pass because wrapper
        # subclasses don't allocate
        torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,))

    def test_version(self) -> None:
        x = LoggingTensor(torch.ones(1))
        prev_vc = x._version
        x.detach().add_(2)
        cur_vc = x._version
        self.assertNotEqual(prev_vc, cur_vc)
        x.data.add_(2)
        self.assertEqual(cur_vc, x._version)

    def test_subclass_priority(self) -> None:
        class ErrorA(RuntimeError):
            pass

        class ErrorB(RuntimeError):
            pass

        # The big tests for code coverage are test_precedence_semantics in
        # test_overrides.py; this is just to make sure it is wired up at all
        # correctly for __torch_dispatch__
        class A(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                raise ErrorA

        class B(A):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                raise ErrorB

        self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1))))
        self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1))))
        self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1))))
        self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1))))

    def test_format(self) -> None:
        x = LoggingTensor(torch.ones(1))
        s1 = str(x)
        s2 = repr(x)
        s3 = f"{x}"
        self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""")
        self.assertEqual(s1, s2)
        self.assertEqual(s1, s3)

    def test_custom_autograd(self) -> None:
        escape = [None]

        class Square(torch.autograd.Function):
            @staticmethod
            def forward(ctx, x):
                y = x ** 2
                ctx.save_for_backward(x)
                return y

            @staticmethod
            def backward(ctx, grad_output):
                assert isinstance(grad_output, LoggingTensor)
                x, = ctx.saved_tensors
                assert isinstance(x, LoggingTensor)
                escape[0] = x
                return grad_output * 2 * x

        with capture_logs() as logs:
            x = LoggingTensor(torch.ones(1), requires_grad=True)
            log_input("x", x)
            x.grad = LoggingTensor(torch.zeros(1))
            log_input("x.grad", x.grad)
            y = Square.apply(x)
            grad_output = LoggingTensor(torch.ones(1))
            log_input("grad_output", grad_output)
            y.backward(grad_output)

        with torch.no_grad():
            self.assertEqual(escape[0], x)
            self.assertEqual(escape[0]._version, x._version)
            # TODO: figure out why x.requires_grad = False doesn't
            # trigger an error for LoggingTensor
            x.add_(2)
            self.assertEqual(escape[0], x)
            # TODO: figure out why this is broken
            # self.assertEqual(escape[0]._version, x._version)

        self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('x.grad')
$2 = torch._ops.aten.pow.Tensor_Scalar($0, 2)
$3 = input('grad_output')
True = torch._ops.aten.is_same_size.default($2, $3)
$4 = torch._ops.aten.mul.Tensor($3, 2)
$5 = torch._ops.aten.mul.Tensor($4, $0)
$6 = torch._ops.aten.add_.Tensor($1, $5)''')

    def test_subclass_creation(self):
        # Make sure these statements runs without error
        # In particular checking that when internal detach returns
        # subclasses, these are cleanly overwritten.
        class Foo(torch.Tensor):
            pass

        err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor"
        with self.assertRaisesRegex(RuntimeError, err_msg):
            a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2)))
        with self.assertRaisesRegex(RuntimeError, err_msg):
            b = LoggingTensor(torch.rand(2)).as_subclass(Foo)
        with self.assertRaisesRegex(RuntimeError, err_msg):
            Foo(LoggingTensor(torch.rand(2)))

        with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"):
            torch.Tensor._make_wrapper_subclass(Foo, (2, 2))

    def test_new_ones(self) -> None:
        class MyTensor(torch.Tensor):
            __torch_function__ = torch._C._disabled_torch_function_impl

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                return MyTensor(3)

        self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor)

    def test_like(self) -> None:
        class MyTensor(torch.Tensor):
            __torch_function__ = torch._C._disabled_torch_function_impl

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                return MyTensor(3)

        for f in ["empty", "ones", "rand", "randn", "zeros"]:
            f_name = f + "_like"
            self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor)

        self.assertEqual(type(torch.full_like(MyTensor(2), 1.)), MyTensor)
        self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor)

    def test_make_wrapper_subclass_propagates_metadata(self) -> None:
        class WrapperTensor(torch.Tensor):
            elem: torch.Tensor

            __slots__ = ['elem']

            @staticmethod
            def __new__(cls, elem, *args, **kwargs):
                r = torch.Tensor._make_wrapper_subclass(  # type: ignore[attr-defined]
                    cls, elem.size(),
                    dtype=elem.dtype, layout=elem.layout,
                    device=elem.device, requires_grad=elem.requires_grad,
                    strides=elem.stride(), storage_offset=elem.storage_offset())
                r.elem = elem
                return r

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                raise RuntimeError("NYI")

        # non-contiguous strides, non-zero storage offset
        x = torch.randn(4, 6).t().diagonal(offset=2)
        y = WrapperTensor(x)
        self.assertEqual(y.size(), x.size())
        self.assertEqual(y.stride(), x.stride())
        self.assertEqual(y.storage_offset(), x.storage_offset())

    def test_wrapper_subclass_serializes(self) -> None:
        with tempfile.TemporaryFile() as f:
            x = LoggingTensor(torch.randn(3))
            torch.save(x, f)
            f.seek(0)
            x_loaded = torch.load(f)
            self.assertTrue(type(x_loaded) is type(x))
            self.assertEqual(x.elem, x_loaded.elem)
            self.assertFalse(x is x_loaded)

    def test_deepcopy_wrapper_subclass(self) -> None:
        x = LoggingTensor(torch.randn(3))
        x_copy = deepcopy(x)
        self.assertTrue(type(x_copy) is type(x))
        self.assertEqual(x.elem, x_copy.elem)
        self.assertFalse(x is x_copy)

    def test_deepcopy_wrapper_subclass_with_clone_returning_different_type(self) -> None:

        class MyWrapperTensor(torch.Tensor):
            elem: torch.Tensor

            __slots__ = ['elem']

            @staticmethod
            def __new__(cls, elem, *args, **kwargs):
                r = torch.Tensor._make_wrapper_subclass(  # type: ignore[attr-defined]
                    cls, elem.size(),
                    dtype=elem.dtype, layout=elem.layout,
                    device=elem.device, requires_grad=elem.requires_grad,
                    strides=elem.stride(), storage_offset=elem.storage_offset())
                r.elem = elem
                return r

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                if func.overloadpacket.__name__ == "clone":
                    # Return a plain tensor from clone().
                    return args[0].elem.clone()
                raise RuntimeError("NYI")

            # NB: The default Tensor.__torch_function__ implementation called for deepcopy
            # disables __torch_function__ by the time we get to clone(), so there is no need to
            # explicitly disable __torch_function__ for this subclass.

        x = MyWrapperTensor(torch.randn(3))
        with self.assertRaisesRegex(RuntimeError,
                                    "for which cloning returns another instance of the same subclass"):
            x_copy = deepcopy(x)

    def test_deepcopy_non_wrapper_subclass(self) -> None:

        # Ensure correct error is thrown for common error cases.
        class SubTensorError1(torch.Tensor):
            # Default implementation of new_empty() returns a plain tensor.
            pass

        class SubTensorError2(torch.Tensor):
            # new_empty() incorrectly returns a different type (i.e. a plain tensor).
            def new_empty(self, shape):
                return torch.Tensor(shape)

        for error_cls in [SubTensorError1, SubTensorError2]:
            x = error_cls(3)
            with self.assertRaisesRegex(RuntimeError,
                                        "for which that function returns another instance of the same subclass"):
                x_copy = deepcopy(x)

        # Ensure a correctly implemented new_empty() causes deepcopy() to work.
        class SubTensorSuccess(torch.Tensor):
            def new_empty(self, shape):
                return type(self)(shape)

        x = SubTensorSuccess(3)
        x_copy = deepcopy(x)
        self.assertIs(type(x_copy), type(x))

    def test_index_put_where_only_index_is_subclass(self) -> None:
        called_funcs = []

        class MyTensor(torch.Tensor):
            __torch_function__ = torch._C._disabled_torch_function_impl
            elem: torch.Tensor
            __slots__ = ['elem']

            @staticmethod
            def __new__(cls, elem, *args, **kwargs):
                r = torch.Tensor._make_wrapper_subclass(
                    cls, elem.size(),
                    dtype=elem.dtype, layout=elem.layout,
                    device=elem.device, requires_grad=elem.requires_grad
                )
                r.elem = elem
                return r

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                called_funcs.append(func)
                return MyTensor(torch.tensor(3))

        x = torch.randn(3, 3)
        idxs = (MyTensor(torch.tensor(0)),)
        v = torch.randn(1)
        res = x.index_put_(idxs, v)
        self.assertEqual(called_funcs, [torch.ops.aten.index_put_.default])

    def test_torch_dispatch_mode_basic(self) -> None:
        with capture_logs(is_mode=True) as logs:
            with LoggingTensorMode():
                torch.empty([])
        self.assertExpectedInline('\n'.join(logs), """\
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""")

    def test_torch_dispatch_mode_unrelated_tensors(self) -> None:
        x = torch.randn([])
        y = torch.randn([])
        with capture_logs(is_mode=True) as logs:
            with LoggingTensorMode():
                x + y
        self.assertExpectedInline('\n'.join(logs), """\
$2 = torch._ops.aten.add.Tensor($0, $1)""")

    def test_nested_push_logging_tensor_mode(self):
        x = torch.randn([])
        y = torch.randn([])
        with capture_logs(is_mode=True) as logs:
            with LoggingTensorMode():
                with LoggingTensorMode():
                    torch.empty([])
                    x + y

        self.assertExpectedInline('\n'.join(logs), """\
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)
$3 = torch._ops.aten.add.Tensor($1, $2)
$3 = torch._ops.aten.add.Tensor($1, $2)""")

    def test_capture_logs_with_torch_dispatch_mode(self):
        x = torch.randn([])
        y = torch.randn([])
        with capture_logs_with_logging_tensor_mode() as logs:
            torch.empty([])
            x + y
        self.assertExpectedInline('\n'.join(logs), """\
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)
$3 = torch._ops.aten.add.Tensor($1, $2)""")

        x = torch.randn([])
        y = torch.randn([])

        with capture_logs_with_logging_tensor_mode() as logs1:
            with capture_logs_with_logging_tensor_mode() as logs2:
                torch.empty([])
                x + y

        self.assertExpectedInline('\n'.join(logs2), """\
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)
$3 = torch._ops.aten.add.Tensor($1, $2)
$3 = torch._ops.aten.add.Tensor($1, $2)""")

        self.assertEqual(logs1, logs2)

    def test_torch_dispatch_mode_subclass_priority(self) -> None:
        class ErrorA(RuntimeError):
            pass

        class ErrorB(RuntimeError):
            pass

        class A(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                with AMode():
                    raise ErrorA

        class B(A):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                with BMode():
                    func(*args, **kwargs)

        class AMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                raise ErrorA

        class BMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                raise ErrorB

        a = A(torch.empty(1))
        b = B(torch.empty(1))
        with self.assertRaises(ErrorA):
            a + a
        with self.assertRaises(ErrorB):
            a + b

        # B has precedence over A due to the subclass relationship yet
        # modes take precedence over arguments
        with self.assertRaises(ErrorA):
            with AMode():
                b + b
        with self.assertRaises(ErrorB):
            with BMode():
                a + a
        with self.assertRaises(ErrorB):
            with BMode():
                a + b

    def test_mode_with_make_subclass(self):
        class SubTensor(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

        class BasicMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                return func(*args, **kwargs)

        x = torch.randn(3)
        with BasicMode():
            y = SubTensor(x)
        self.assertIsInstance(y, SubTensor)

    def test_torch_dispatch_mode_respects_no_dispatch(self) -> None:
        with capture_logs(is_mode=True) as logs1:
            with LoggingTensorMode():
                torch.ones([2, 3])
                with no_dispatch():
                    torch.ones([2, 3])
        with capture_logs(is_mode=True) as logs2:
            with LoggingTensorMode():
                torch.ones([2, 3])
        self.assertEqual(logs1, logs2)

    def test_shallow_copy_and_detach(self) -> None:
        seen = set()
        test_case = self

        class TestMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                tree_map_only(torch.Tensor, lambda t: test_case.assertIn(t, seen), (args, kwargs))
                if kwargs is None:
                    kwargs = {}
                r = func(*args, **kwargs)
                tree_map_only(torch.Tensor, lambda t: seen.add(t), r)
                return r

        with TestMode():
            x = torch.randn(3, requires_grad=True)
            loss = (x * x).sum()
            loss.backward()

    def test_exception_handling(self):
        class A(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

        class AMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                if func.__name__ == 'randn.default':
                    raise RuntimeError()
                return A(torch.zeros(()))

        with AMode():
            try:
                torch.randn(())
            except RuntimeError:
                pass
            self.assertTrue(isinstance(torch.zeros(()), A))

    def test_with_mode_created_separately(self):
        class ErrorA(RuntimeError):
            pass

        class A(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                raise ErrorA()

        x = A()
        with self.assertRaises(ErrorA):
            with x:
                torch.empty([])

    def test_with_nested_modes(self):
        class ErrorA(RuntimeError):
            def __init__(self, msg):
                return super().__init__(msg)

        class A(TorchDispatchMode):
            def __init__(self, msg):
                self.msg = msg

            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                raise ErrorA(self.msg)

        with self.assertRaisesRegex(ErrorA, "layer2"):
            with A("layer1"):
                with A("layer2"):
                    torch.empty([])

    def test_make_subclass_with_modes(self):
        class ModeTensor(torch.Tensor):
            def __new__(cls, elem, mode):
                r = torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
                r.elem = elem
                r.mode = mode
                return r

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                raise NotImplementedError("Shouldn't be here")

        class Mode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                def unwrap(e):
                    if isinstance(e, ModeTensor):
                        return e.elem
                    else:
                        return e

                def wrap(t):
                    if isinstance(t, torch.Tensor):
                        return ModeTensor(t, self)
                    else:
                        return t

                return wrap(func(*tuple(unwrap(a) for a in args), **kwargs))

        class BasicMode(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                return func(*args, **kwargs)

        x = torch.tensor(4.)
        with Mode():
            y = x + x
            z = y + y
        self.assertIsInstance(y, ModeTensor)
        self.assertIsInstance(z, ModeTensor)

        with Mode():
            with BasicMode():  # we can't nest two modes that call make_subclass because it only accepts vanilla tensors
                y = x + x
                z = y + y
        self.assertIsInstance(y, ModeTensor)
        self.assertIsInstance(z, ModeTensor)

        assert self.assertRaisesRegex(RuntimeError, "subclass Mode but.* associated to a python object of type Mode")

    def test_notimplemented_mode(self):
        sub_count = 0

        class PoliteMode(TorchDispatchMode):
            def __init__(self):
                self.pre_count = 0
                self.post_count = 0

            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                self.pre_count += 1
                if any(t is not torch.Tensor for t in types):
                    return NotImplemented
                self.post_count += 1
                return func(*args, **kwargs)

        class SubTensor(torch.Tensor):
            def __new__(cls, elem):
                r = torch.Tensor._make_wrapper_subclass(cls, elem.shape)
                r.elem = elem
                return r

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                nonlocal sub_count
                sub_count += 1

                def unwrap(t):
                    if isinstance(t, SubTensor):
                        return t.elem
                    else:
                        return t

                return func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs))

            __torch_function__ = torch._C._disabled_torch_function_impl

        a = SubTensor(torch.randn(2))
        with PoliteMode() as mode:
            a.abs()

        self.assertEqual(mode.pre_count, 2)
        self.assertEqual(mode.post_count, 1)
        self.assertEqual(sub_count, 1)

        # make sure this doesn't error
        with PoliteMode():
            with PoliteMode():
                a.abs()

    def test_nesting_same_mode(self):
        # If the pushed mode is the same instance as the current mode, we allow pushing an already active mode.

        with capture_logs(is_mode=True) as logs:
            with LoggingTensorMode() as reenabled:
                with reenabled:
                    torch.empty([])
            self.assertExpectedInline('\n'.join(logs), """\
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)
$0 = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), pin_memory=False)""")


    def test_error_using_class_method_on_mode(self):
        class A(TorchDispatchMode):
            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                return func(args, kwargs)

        x = torch.tensor(5.)
        with self.assertRaisesRegex(RuntimeError, "should be a normal method not a class method"):
            with A():
                x + x

    def test_get_cur_mode(self):
        class A(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                pass

        self.assertEqual(_get_current_dispatch_mode(), None)

        with A() as mode1:
            self.assertEqual(_get_current_dispatch_mode(), mode1)

        with mode1:
            with A() as mode2:
                self.assertEqual(_get_current_dispatch_mode(), mode2)

    def test_get_mode_stack(self):
        class A(TorchDispatchMode):
            def __torch_dispatch__(self, func, types, args=(), kwargs=None):
                pass

        self.assertEqual(_get_current_dispatch_mode_stack(), [])

        with A() as mode1:
            self.assertEqual(_get_current_dispatch_mode_stack(), [mode1])

        with mode1:
            with A() as mode2:
                self.assertEqual(_get_current_dispatch_mode_stack(), [mode1, mode2])

    def test_all_same_mode(self):
        x = LoggingTensorMode()
        y = LoggingTensorMode()
        self.assertTrue(all_same_mode([x, x, x]))
        self.assertFalse(all_same_mode([x, None]))
        self.assertFalse(all_same_mode([x, y]))

    def test_tolist_numpy_with_torch_dispatch_mode(self) -> None:
        x = LoggingTensor(torch.tensor([2.0, 3.0]))
        with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
            x.tolist()
        with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
            x.numpy()
        with self.assertRaises(AssertionError):
            self.assertEqual(x, None)

    def test_subclass_autograd_device_check(self) -> None:
        class NonWrapperSubclass(torch.Tensor):
            elem: torch.Tensor

            __slots__ = ['elem']

            @staticmethod
            def __new__(cls, elem, *args, **kwargs):
                # Wrong device here!
                r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad)
                # ...the real tensor is held as an element on the tensor.
                r.elem = elem
                return r

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                def unwrap(e):
                    return e.elem if isinstance(e, NonWrapperSubclass) else e

                def wrap(e):
                    return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e

                rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
                logging.getLogger("NonWrapperSubclass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
                return rs

        x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True))
        y = torch.randn(2, requires_grad=True)
        z = x * y
        self.assertIsInstance(z, NonWrapperSubclass)
        z.sum().backward(torch.tensor(1))
        self.assertEqual(x.grad, y)
        self.assertEqual(y.grad, x)

    def test_none_wrapping(self):
        # A Tensor subclass that returns None when doing add
        # See LoggingTensor above for more details on the subclass
        class SubclassWithNone(torch.Tensor):
            @staticmethod
            def __new__(cls, elem, *args, **kwargs):
                r = torch.Tensor._make_wrapper_subclass(
                    cls, elem.size(),
                    dtype=elem.dtype, layout=elem.layout,
                    device=elem.device, requires_grad=elem.requires_grad
                )
                r.elem = elem
                return r

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                def unwrap(e):
                    return e.elem if isinstance(e, SubclassWithNone) else e

                def wrap(e):
                    return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e

                rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
                if func.overloadpacket.__name__ == "add":
                    return None
                else:
                    return rs

        x = SubclassWithNone(torch.rand(2))
        # Make sure both run without error
        self.assertIsInstance(x * 2, SubclassWithNone)
        self.assertIsNone(x + 2)

        x.requires_grad_()
        out = x.acos().sum()

        # The backward of acos does add then rsqrt so here we make sure that the
        # undefined Tensor generated by the user code is nicely handled.
        # If acos formula changes in the future, this can be replaced by any other
        # function that does add then something in the backward in a composite way
        with self.assertRaisesRegex(RuntimeError, "but got None"):
            out.backward()

    def test_storage_can_be_converted_to_python_object(self):
        s = torch.Storage()
        z = LoggingTensor(torch.empty([]))
        z.set_(s)

    def test_autograd_in_attr(self):
        # We want the wrapped Tensor to require gradients!
        true_t = torch.rand(2, requires_grad=True)
        t = LoggingTensorReentrant(true_t)

        out = t + 2

        self.assertFalse(out.requires_grad)
        self.assertIsNone(out.grad_fn)

        self.assertTrue(out.elem.requires_grad)
        self.assertIsNotNone(out.elem.grad_fn)

        with self.assertRaisesRegex(RuntimeError, "does not require grad"):
            out.sum().backward()

        out.elem.sum().backward()

        self.assertIsNone(t.grad)
        self.assertIsNotNone(t.elem.grad)

    def test_dispatch_super_call(self):
        called = []

        class SubTensor(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem)

            __torch_function__ = torch._C._disabled_torch_function_impl

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                called.append(func)
                return super().__torch_dispatch__(func, types, args, kwargs)

        x = torch.randn(2)
        y = torch.randn(2)
        self.assertEqual(SubTensor(x) + SubTensor(y), x + y)
        self.assertEqual(called, [torch.ops.aten.add.Tensor])

    def test_dispatch_super_call_list_arg(self):
        called = []

        class SubTensorWithListArg(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem)

            __torch_function__ = torch._C._disabled_torch_function_impl

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                called.append(func)
                return super().__torch_dispatch__(func, types, list(args), kwargs)

        x = torch.randn(2)
        self.assertEqual(SubTensorWithListArg(x).neg(), x.neg())
        self.assertEqual(called, [torch.ops.aten.neg.default])

    def test_dispatch_super_dont_autograd(self):
        called = []

        class SubTensor(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)

            __torch_function__ = torch._C._disabled_torch_function_impl

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                called.append(func)
                # This argument still requires grad because it was passed
                # through directly...
                self.assertTrue(args[0].requires_grad)
                r = super().__torch_dispatch__(func, types, args, kwargs)
                # But the output better not require grad, because that means
                # you did autograd again in torch dispatch (oops)
                self.assertFalse(r.requires_grad)
                return r

        x = SubTensor(torch.randn(2, requires_grad=True))
        x.neg()
        self.assertEqual(called, [torch.ops.aten.neg.default])

    def test_set_data(self):
        called = 0

        class SubTensor(torch.Tensor):
            __torch_function__ = torch._C._disabled_torch_function_impl

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                nonlocal called
                called += 1
                return super().__torch_dispatch__(func, types, args, kwargs)

        x = SubTensor(torch.empty(2))
        x.data
        self.assertEqual(called, 1)
        x.data = torch.empty(2)
        self.assertEqual(called, 1)
        x.data
        self.assertEqual(called, 2)
        self.assertIs(type(x), SubTensor)
        x.set_(torch.empty(2))
        self.assertEqual(called, 3)
        x.data
        self.assertEqual(called, 4)
        self.assertIs(type(x), SubTensor)

    def test_construct_int_tensor(self):
        class SubTensor(torch.Tensor):
            pass
        # should not fail
        SubTensor(torch.zeros(2, dtype=torch.int))

    def test_multiple_ops_subclass(self):
        # This is a Direct Subclass, don't do that!
        class MySubclass(torch.Tensor):
            @staticmethod
            def __new__(cls, elem):
                r = torch.Tensor._make_subclass(cls, elem)
                return r

            __torch_function__ = torch._C._disabled_torch_function_impl

            @classmethod
            def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
                with no_dispatch():
                    return func(*args, **kwargs)

        x = MySubclass(torch.rand(2, 2, dtype=torch.complex64))
        y = x.conj()
        # Details of the bug that this tests for:
        # Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU}
        # There are a few calls to the dispatcher that are going to happen here:
        #  - call_exp: User calling exp on y
        #    - PythonTLSSnapshot: records the TLS on entry and redispatch
        #    - AutogradCPU: no input requires grad, so does nothing and redispatch
        #    - Conjugate: no special implementation for exp: use the fallback that
        #                 first clone the Tensor (to materialize the conj) then redispatch
        #      - call_clone: conjugate fallback calling clone on y
        #        - PythonTLSSnapshot: records the TLS on entry and redispatch
        #        - (AutogradCPU: skipped as autograd added itself to the exclude set above)
        #        - Conjugate: special implementation for clone: just skip this key
        #        - Python: Reset the TLS based on the snapshot above and call the user implementation (this
        #                  actually calls into the dispatcher again but since we disable both our keys
        #                  before, not detailed here)
        #        - exit Python: restore the TLS and exit
        #        - exit Conjugate: nothing was inplace so just exit
        #        - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty
        #    - Python: Reset the TLS again based on the snapshot. <- this used to fail
        #    - More steps....
        y.exp()

    @staticmethod
    def subclass_helper(cls, data, use_wrapper_subclass, **kwargs):
        if use_wrapper_subclass:
            kwargs["device"] = data.device
            kwargs["dtype"] = data.dtype
            kwargs["layout"] = data.layout
            kwargs["requires_grad"] = True
            return torch.Tensor._make_wrapper_subclass(cls, data.size(), **kwargs)  # type: ignore[attr-defined]
        else:
            return torch.Tensor._make_subclass(cls, data, True, **kwargs)

    def test_is_contiguous_slow_path(self):
        data = torch.randn(3, 3)
        contiguous_data = data.clone()
        not_contiguous_data = torch.as_strided(data.clone(), (2, 2), (1, 2))

        for use_wrapper_subclass in [True, False]:
            class ExampleTensor1(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    return NotImplemented

            class ExampleTensor2(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.aten.is_contiguous:
                        return contiguous_data.is_contiguous()
                    return NotImplemented

            class ExampleTensor3(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.aten.is_contiguous:
                        return not_contiguous_data.is_contiguous()
                    return NotImplemented

            err_msg = "no implementation found for 'torch.ops.aten.is_contiguous'"
            e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass)
            with self.assertRaisesRegex(TypeError, err_msg):
                e.is_contiguous()
            with self.assertRaisesRegex(TypeError, err_msg):
                e.contiguous()

            e = ExampleTensor2(torch.randn(3, 3), use_wrapper_subclass)
            self.assertEqual(e.is_contiguous(), True)
            e.contiguous()  # this will just return the original TensorImpl since is_contiguous = True

            err_msg = "no implementation found for"
            e = ExampleTensor3(torch.randn(3, 3), use_wrapper_subclass)
            self.assertEqual(e.is_contiguous(), False)
            with self.assertRaisesRegex(TypeError, err_msg):
                e.contiguous()

    def test_fancy_strides(self):
        calls = []

        class ExampleTensor(torch.Tensor):
            @staticmethod
            def __new__(cls, data):
                return TestPythonDispatch.subclass_helper(cls, data, False, dispatch_sizes_strides_policy="strides")

            @classmethod
            def __torch_dispatch__(cls, func, types, args, kwargs):
                if func in [
                    torch.ops.aten.is_contiguous.default,
                    torch.ops.aten.is_contiguous.memory_format,
                    torch.ops.aten.is_strides_like_format.default,
                    torch.ops.aten.is_non_overlapping_and_dense.default,
                    torch.ops.aten.stride.default
                ]:
                    calls.append((func, list(args)[1:]))
                    return None
                with no_dispatch():
                    return func(*args, **kwargs)

        e = ExampleTensor(torch.randn(2, 2))
        self.assertFalse(e.is_contiguous(memory_format=torch.channels_last))
        self.assertEqual(calls, [(torch.ops.aten.is_contiguous.memory_format, [torch.channels_last])])
        calls.clear()
        self.assertFalse(torch.ops.aten.is_strides_like_format.default(e, torch.channels_last))
        self.assertEqual(calls, [(torch.ops.aten.is_strides_like_format.default, [torch.channels_last])])
        calls.clear()
        self.assertTrue(torch.ops.aten.is_non_overlapping_and_dense.default(e))
        self.assertEqual(calls, [(torch.ops.aten.is_non_overlapping_and_dense.default, [])])

    def test_device_slowpath(self):
        for use_wrapper_subclass in [True]:
            class ExampleTensor1(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True)

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    return NotImplemented

            class ExampleTensor2(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True)

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.prim.device:
                        return torch.device('meta')
                    return NotImplemented

            class ExampleTensor3(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_device=True)

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.prim.device:
                        return torch.device('meta')
                    return NotImplemented

            err_msg = "no implementation found for 'torch.ops.prim.device'"
            with self.assertRaisesRegex(TypeError, err_msg):
                e = ExampleTensor1(torch.randn(3, 3), use_wrapper_subclass)
                e.device()

            ten = torch.rand([1])
            e = ExampleTensor2(torch.randn(3, 3, device='cpu'), use_wrapper_subclass)
            self.assertEqual(e.device.type, 'meta')
            self.assertEqual(ten.type_as(e).device.type, 'meta')

            e = ExampleTensor3(torch.randn(3, 3, device='cpu'), use_wrapper_subclass)
            self.assertEqual(e.device.type, 'meta')
            self.assertEqual(ten.type_as(e).device.type, 'meta')

    def test_dim_slowpath(self):
        data = torch.randn(3, 3)

        for use_wrapper_subclass in [True, False]:
            class DimNotImplementedTensor(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    return NotImplemented

            class DimImplementedTensor(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.aten.dim:
                        return data.dim()
                    return NotImplemented

            err_msg = "no implementation found for 'torch.ops.aten.dim'"
            e = DimNotImplementedTensor(torch.randn(3, 3), use_wrapper_subclass)
            with self.assertRaisesRegex(TypeError, err_msg):
                e.dim()

            t = DimImplementedTensor(torch.randn(3, 3), use_wrapper_subclass)
            self.assertEqual(t.dim(), 2)

    def test_maybe_tuple_bug(self):
        class T(torch.Tensor):
            @classmethod
            def __torch_function__(cls, *args, **kwargs):
                pass
        a = torch.rand(3)

        a[[T(), T()]]

    def test_standard_is_not_subclass(self):
        # https://github.com/pytorch/pytorch/issues/79079
        self.assertFalse(torch._C._dispatch_isTensorSubclassLike(torch.empty(0)))

    def test_strides_slow_path(self):
        for use_wrapper_subclass in [True, False]:
            class StridesNotImplemented(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    return NotImplemented

            class StridesCustomReturn(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func == torch.ops.aten.sym_stride.default:
                        return (4, 2)
                    return NotImplemented

            class StridesDefaultReturn(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="strides")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func == torch.ops.aten.sym_stride.default:
                        return None
                    return NotImplemented

            err_msg = "no implementation found for 'torch.ops.aten.sym_stride'"
            e = StridesNotImplemented(torch.randn(3, 3), use_wrapper_subclass)
            with self.assertRaisesRegex(RuntimeError, err_msg):
                e.stride()

            e = StridesCustomReturn(torch.randn(3, 3), use_wrapper_subclass)
            self.assertEqual(e.stride(), (4, 2))

            e = StridesDefaultReturn(torch.randn(6, 2), use_wrapper_subclass)
            self.assertEqual(e.stride(), (2, 1))

    def test_sizes_slow_path(self):
        for use_wrapper_subclass in [True, False]:
            data = torch.randn(6, 2)

            class SizesNotImplemented(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.aten.dim:
                        return data.dim()
                    return NotImplemented

            class SizesCustomReturn(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.aten.dim:
                        return data.dim()
                    if func.overloadpacket == torch.ops.aten.sym_size:
                        return (5, 3)
                    return NotImplemented

            class SizesDefaultReturn(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_sizes_strides_policy="sizes")

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.aten.dim:
                        return data.dim()
                    if func.overloadpacket == torch.ops.aten.sym_size:
                        return None
                    return NotImplemented

            err_msg = "no implementation found for 'torch.ops.aten.sym_size'"
            e = SizesNotImplemented(torch.randn(3, 3), use_wrapper_subclass)
            with self.assertRaisesRegex(RuntimeError, err_msg):
                e.size()

            e = SizesCustomReturn(torch.randn(3, 3), use_wrapper_subclass)
            self.assertEqual(e.size(), (5, 3))

            e = SizesDefaultReturn(torch.randn(4, 2), use_wrapper_subclass)
            self.assertEqual(e.size(), (4, 2))

    def test_layout_slow_path(self):
        for use_wrapper_subclass in [True, False]:
            data = torch.randn(6, 2)

            class LayoutNotImplemented(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True)

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    return NotImplemented

            class LayoutCustomReturn(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True)

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.prim.layout:
                        return torch.sparse_csr
                    return NotImplemented

            class LayoutDefaultReturn(torch.Tensor):
                @staticmethod
                def __new__(cls, data, wrapper):
                    return TestPythonDispatch.subclass_helper(cls, data, wrapper, dispatch_layout=True)

                @classmethod
                def __torch_dispatch__(cls, func, types, args, kwargs):
                    if func.overloadpacket == torch.ops.prim.layout:
                        return data.layout
                    return NotImplemented

            err_msg = "no implementation found for 'torch.ops.prim.layout'"
            e = LayoutNotImplemented(torch.randn(3, 3), use_wrapper_subclass)
            with self.assertRaisesRegex(TypeError, err_msg):
                e.layout

            e = LayoutCustomReturn(torch.randn(3, 3), use_wrapper_subclass)
            self.assertEqual(e.layout, torch.sparse_csr)

            e = LayoutDefaultReturn(torch.randn(4, 2), use_wrapper_subclass)
            self.assertEqual(e.layout, torch.strided)

class TestPythonDispatcher(TestCase):
    def test_basic(self):
        x = torch.randn(2, requires_grad=True)
        r = torch._C._EnablePythonDispatcher()
        torch.add(x, x)

    def test_lstsq(self):
        a = torch.randn(4, 3)
        b = torch.rand(4, 3)
        expected_shape = torch.linalg.lstsq(a, b).solution.shape
        r = torch._C._EnablePythonDispatcher()
        python_disp_shape = torch.linalg.lstsq(a, b).solution.shape
        self.assertEqual(expected_shape, python_disp_shape)

if __name__ == '__main__':
    run_tests()