1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
# Owner(s): ["module: pytree"]
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten, TreeSpec, LeafSpec
from torch.utils._pytree import _broadcast_to_and_flatten, tree_map_only, tree_all
from torch.utils._pytree import tree_any, tree_all_only, tree_any_only
from collections import namedtuple, OrderedDict
from torch.testing._internal.common_utils import parametrize, subtest, instantiate_parametrized_tests
class TestPytree(TestCase):
def test_treespec_equality(self):
self.assertTrue(LeafSpec() == LeafSpec())
self.assertTrue(TreeSpec(list, None, []) == TreeSpec(list, None, []))
self.assertTrue(TreeSpec(list, None, [LeafSpec()]) == TreeSpec(list, None, [LeafSpec()]))
self.assertFalse(TreeSpec(tuple, None, []) == TreeSpec(list, None, []))
self.assertTrue(TreeSpec(tuple, None, []) != TreeSpec(list, None, []))
def test_flatten_unflatten_leaf(self):
def run_test_with_leaf(leaf):
values, treespec = tree_flatten(leaf)
self.assertEqual(values, [leaf])
self.assertEqual(treespec, LeafSpec())
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, leaf)
run_test_with_leaf(1)
run_test_with_leaf(1.)
run_test_with_leaf(None)
run_test_with_leaf(bool)
run_test_with_leaf(torch.randn(3, 3))
def test_flatten_unflatten_list(self):
def run_test(lst):
expected_spec = TreeSpec(list, None, [LeafSpec() for _ in lst])
values, treespec = tree_flatten(lst)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, lst)
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, lst)
self.assertTrue(isinstance(unflattened, list))
run_test([])
run_test([1., 2])
run_test([torch.tensor([1., 2]), 2, 10, 9, 11])
def test_flatten_unflatten_tuple(self):
def run_test(tup):
expected_spec = TreeSpec(tuple, None, [LeafSpec() for _ in tup])
values, treespec = tree_flatten(tup)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, list(tup))
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, tup)
self.assertTrue(isinstance(unflattened, tuple))
run_test(())
run_test((1.,))
run_test((1., 2))
run_test((torch.tensor([1., 2]), 2, 10, 9, 11))
def test_flatten_unflatten_odict(self):
def run_test(odict):
expected_spec = TreeSpec(
OrderedDict,
list(odict.keys()),
[LeafSpec() for _ in odict.values()])
values, treespec = tree_flatten(odict)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, list(odict.values()))
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, odict)
self.assertTrue(isinstance(unflattened, OrderedDict))
od = OrderedDict()
run_test(od)
od['b'] = 1
od['a'] = torch.tensor(3.14)
run_test(od)
def test_flatten_unflatten_namedtuple(self):
Point = namedtuple('Point', ['x', 'y'])
def run_test(tup):
expected_spec = TreeSpec(namedtuple, Point, [LeafSpec() for _ in tup])
values, treespec = tree_flatten(tup)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, list(tup))
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, tup)
self.assertTrue(isinstance(unflattened, Point))
run_test(Point(1., 2))
run_test(Point(torch.tensor(1.), 2))
@parametrize("op", [
subtest(torch.max, name='max'),
subtest(torch.min, name='min'),
])
def test_flatten_unflatten_return_type(self, op):
x = torch.randn(3, 3)
expected = op(x, dim=0)
values, spec = tree_flatten(expected)
# Check that values is actually List[Tensor] and not (ReturnType(...),)
for value in values:
self.assertTrue(isinstance(value, torch.Tensor))
result = tree_unflatten(values, spec)
self.assertEqual(type(result), type(expected))
self.assertEqual(result, expected)
def test_flatten_unflatten_dict(self):
def run_test(tup):
expected_spec = TreeSpec(dict, list(tup.keys()),
[LeafSpec() for _ in tup.values()])
values, treespec = tree_flatten(tup)
self.assertTrue(isinstance(values, list))
self.assertEqual(values, list(tup.values()))
self.assertEqual(treespec, expected_spec)
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, tup)
self.assertTrue(isinstance(unflattened, dict))
run_test({})
run_test({'a': 1})
run_test({'abcdefg': torch.randn(2, 3)})
run_test({1: torch.randn(2, 3)})
run_test({'a': 1, 'b': 2, 'c': torch.randn(2, 3)})
def test_flatten_unflatten_nested(self):
def run_test(pytree):
values, treespec = tree_flatten(pytree)
self.assertTrue(isinstance(values, list))
self.assertEqual(len(values), treespec.num_leaves)
# NB: python basic data structures (dict list tuple) all have
# contents equality defined on them, so the following works for them.
unflattened = tree_unflatten(values, treespec)
self.assertEqual(unflattened, pytree)
cases = [
[()],
([],),
{'a': ()},
{'a': 0, 'b': [{'c': 1}]},
{'a': 0, 'b': [1, {'c': 2}, torch.randn(3)], 'c': (torch.randn(2, 3), 1)},
]
def test_treemap(self):
def run_test(pytree):
def f(x):
return x * 3
sm1 = sum(map(tree_flatten(pytree)[0], f))
sm2 = tree_flatten(tree_map(f, pytree))[0]
self.assertEqual(sm1, sm2)
def invf(x):
return x // 3
self.assertEqual(tree_flatten(tree_flatten(pytree, f), invf), pytree)
cases = [
[()],
([],),
{'a': ()},
{'a': 1, 'b': [{'c': 2}]},
{'a': 0, 'b': [2, {'c': 3}, 4], 'c': (5, 6)},
]
for case in cases:
run_test(case)
def test_tree_only(self):
self.assertEqual(tree_map_only(int, lambda x: x + 2, [0, "a"]), [2, "a"])
def test_tree_all_any(self):
self.assertTrue(tree_all(lambda x: x % 2, [1, 3]))
self.assertFalse(tree_all(lambda x: x % 2, [0, 1]))
self.assertTrue(tree_any(lambda x: x % 2, [0, 1]))
self.assertFalse(tree_any(lambda x: x % 2, [0, 2]))
self.assertTrue(tree_all_only(int, lambda x: x % 2, [1, 3, "a"]))
self.assertFalse(tree_all_only(int, lambda x: x % 2, [0, 1, "a"]))
self.assertTrue(tree_any_only(int, lambda x: x % 2, [0, 1, "a"]))
self.assertFalse(tree_any_only(int, lambda x: x % 2, [0, 2, "a"]))
def test_treespec_repr(self):
# Check that it looks sane
pytree = (0, [0, 0, 0])
_, spec = tree_flatten(pytree)
self.assertEqual(
repr(spec), 'TreeSpec(tuple, None, [*, TreeSpec(list, None, [*, *, *])])')
def test_broadcast_to_and_flatten(self):
cases = [
(1, (), []),
# Same (flat) structures
((1,), (0,), [1]),
([1], [0], [1]),
((1, 2, 3), (0, 0, 0), [1, 2, 3]),
({'a': 1, 'b': 2}, {'a': 0, 'b': 0}, [1, 2]),
# Mismatched (flat) structures
([1], (0,), None),
([1], (0,), None),
((1,), [0], None),
((1, 2, 3), (0, 0), None),
({'a': 1, 'b': 2}, {'a': 0}, None),
({'a': 1, 'b': 2}, {'a': 0, 'c': 0}, None),
({'a': 1, 'b': 2}, {'a': 0, 'b': 0, 'c': 0}, None),
# Same (nested) structures
((1, [2, 3]), (0, [0, 0]), [1, 2, 3]),
((1, [(2, 3), 4]), (0, [(0, 0), 0]), [1, 2, 3, 4]),
# Mismatched (nested) structures
((1, [2, 3]), (0, (0, 0)), None),
((1, [2, 3]), (0, [0, 0, 0]), None),
# Broadcasting single value
(1, (0, 0, 0), [1, 1, 1]),
(1, [0, 0, 0], [1, 1, 1]),
(1, {'a': 0, 'b': 0}, [1, 1]),
(1, (0, [0, [0]], 0), [1, 1, 1, 1]),
(1, (0, [0, [0, [], [[[0]]]]], 0), [1, 1, 1, 1, 1]),
# Broadcast multiple things
((1, 2), ([0, 0, 0], [0, 0]), [1, 1, 1, 2, 2]),
((1, 2), ([0, [0, 0], 0], [0, 0]), [1, 1, 1, 1, 2, 2]),
(([1, 2, 3], 4), ([0, [0, 0], 0], [0, 0]), [1, 2, 2, 3, 4, 4]),
]
for pytree, to_pytree, expected in cases:
_, to_spec = tree_flatten(to_pytree)
result = _broadcast_to_and_flatten(pytree, to_spec)
self.assertEqual(result, expected, msg=str([pytree, to_spec, expected]))
instantiate_parametrized_tests(TestPytree)
if __name__ == '__main__':
run_tests()
|