1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
|
# Owner(s): ["module: tests"]
import torch
import numpy as np
import math
from typing import Dict, List, Sequence
import random
from functools import partial
from itertools import product, combinations, permutations
import warnings
from torch._six import inf, nan
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, get_all_math_dtypes, integral_types, complex_types, floating_types_and,
integral_types_and, floating_and_complex_types_and, all_types_and, all_types,
)
from torch.testing._internal.common_utils import (
TestCase, run_tests, skipIfNoSciPy, slowTest, torch_to_numpy_dtype_dict,
IS_WINDOWS)
from torch.testing._internal.common_device_type import (
OpDTypes, expectedFailureMeta, instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA, dtypesIfCPU,
onlyNativeDeviceTypes, onlyCUDA, largeTensorTest, ops, precisionOverride)
from torch.testing._internal.common_methods_invocations import (
ReductionOpInfo, reduction_ops, reference_masked_ops)
# TODO: replace with make_tensor
def _generate_input(shape, dtype, device, with_extremal):
if shape == ():
x = torch.tensor((), dtype=dtype, device=device)
else:
if dtype.is_floating_point or dtype.is_complex:
# work around torch.randn not being implemented for bfloat16
if dtype == torch.bfloat16:
x = torch.randn(*shape, device=device) * random.randint(30, 100)
x = x.to(torch.bfloat16)
else:
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
x[torch.randn(*shape) > 0.5] = 0
if with_extremal and dtype.is_floating_point:
# Use extremal values
x[torch.randn(*shape) > 0.5] = float('nan')
x[torch.randn(*shape) > 0.5] = float('inf')
x[torch.randn(*shape) > 0.5] = float('-inf')
elif with_extremal and dtype.is_complex:
x[torch.randn(*shape) > 0.5] = complex('nan')
x[torch.randn(*shape) > 0.5] = complex('inf')
x[torch.randn(*shape) > 0.5] = complex('-inf')
elif dtype == torch.bool:
x = torch.zeros(shape, dtype=dtype, device=device)
x[torch.randn(*shape) > 0.5] = True
else:
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
return x
# TODO: replace with make_tensor
def _rand_shape(dim, min_size, max_size):
shape = []
for i in range(dim):
shape.append(random.randint(min_size, max_size))
return tuple(shape)
def _reduced_shape(shape, dim=None, keepdim=False):
"""Computes the expected reduced shape given dim and keepdim
Args:
shape: The shape to reduce
dim : The dimensions to reduce
keepdim: If true, reduced dimensions have size 1 in the reduced shape,
otherwise they are removed from the reduced shape.
Returns:
The reduced shape
"""
if dim is None:
return [1] * len(shape) if keepdim else []
# Wrap negative dims
dim = dim if isinstance(dim, Sequence) else [dim]
dim = set(i if i >= 0 else len(shape) + i for i in dim)
result = []
for i, size in enumerate(shape):
if i not in dim:
result.append(size)
elif keepdim:
result.append(1)
return result
class TestReductions(TestCase):
###########################################################################
# ReductionOpInfo unit tests
###########################################################################
def _test_dim_keepdim(self, op: ReductionOpInfo, device, *, ndim, **dim_keepdim):
"""Tests output shape for input with ndim and dim and keepdim kwargs"""
shape = torch.randint(2, 5, (ndim,)).tolist()
t = make_tensor(shape, dtype=torch.float, device=device)
args, kwargs = next(op.generate_args_kwargs(t, **dim_keepdim))
result = op(t, *args, **dim_keepdim, **kwargs)
expected_shape = _reduced_shape(shape, **dim_keepdim)
self.assertEqual(result.shape, expected_shape, f"""
expected output shape to be {expected_shape} but got {list(result.shape)}
for input shape {shape} and {dim_keepdim}
""")
# TODO(@heitorschueroff) combine cases with and without keepdim once
# there's support for a @parametrize decorator.
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_default(self, device, op: ReductionOpInfo):
"""Tests that the default dim reduces all dimensions."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_default_keepdim(self, device, op: ReductionOpInfo):
"""Tests that the default dim, when keepdim=True, reduces all dimensions to size 1."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim, keepdim=True)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_none(self, device, op: ReductionOpInfo):
"""Tests that dim=None reduces all dimensions."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim, dim=None)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_none_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=None, when keepdim=True, reduces all dimensions to size 1."""
for ndim in range(3):
self._test_dim_keepdim(op, device, ndim=ndim, dim=None, keepdim=True)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_single(self, device, op: ReductionOpInfo):
"""Tests that dim=i reduces dimension i."""
self._test_dim_keepdim(op, device, ndim=0, dim=0)
self._test_dim_keepdim(op, device, ndim=1, dim=0)
self._test_dim_keepdim(op, device, ndim=2, dim=-1)
self._test_dim_keepdim(op, device, ndim=3, dim=1)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_single_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=i, when keepdim=True, reduces dimension i to size 1."""
self._test_dim_keepdim(op, device, ndim=0, dim=0, keepdim=True)
self._test_dim_keepdim(op, device, ndim=1, dim=0, keepdim=True)
self._test_dim_keepdim(op, device, ndim=2, dim=-1, keepdim=True)
self._test_dim_keepdim(op, device, ndim=3, dim=1, keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_empty(self, device, op: ReductionOpInfo):
"""Tests that dim=[] is a no-op"""
self._test_dim_keepdim(op, device, ndim=0, dim=[])
self._test_dim_keepdim(op, device, ndim=2, dim=[])
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_empty_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=[], when keepdim=True, is a no-op"""
self._test_dim_keepdim(op, device, ndim=0, dim=[], keepdim=True)
self._test_dim_keepdim(op, device, ndim=2, dim=[], keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi(self, device, op: ReductionOpInfo):
"""Tests that dim=[i, j, ...] reduces dimensions i, j, ...."""
self._test_dim_keepdim(op, device, ndim=1, dim=[0])
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 2])
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_keepdim(self, device, op: ReductionOpInfo):
"""Tests that dim=[i, j, ...], when keepdim=True, reduces dimensions i, j, .... to size 1."""
self._test_dim_keepdim(op, device, ndim=1, dim=[0], keepdim=True)
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 2], keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_unsorted(self, device, op: ReductionOpInfo):
"""Tests that operator correctly handles unsorted dim list."""
self._test_dim_keepdim(op, device, ndim=4, dim=[3, 0, 2])
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_unsorted_keepdim(self, device, op: ReductionOpInfo):
"""Tests that operator correctly handles unsorted dim list when keepdim=True."""
self._test_dim_keepdim(op, device, ndim=4, dim=[3, 0, 2], keepdim=True)
@ops(filter(lambda op: op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_duplicate(self, device, op: ReductionOpInfo):
"""Tests that an error is raised if dim has duplicate entries."""
with self.assertRaises(RuntimeError):
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 1, 1, 2])
@ops(filter(lambda op: not op.supports_multiple_dims, reduction_ops), dtypes=OpDTypes.none)
def test_dim_multi_unsupported(self, device, op: ReductionOpInfo):
"""Tests that ops claiming to not support multi dim actually don't."""
with self.assertRaises(TypeError):
self._test_dim_keepdim(op, device, ndim=3, dim=[0, 2])
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_offbounds(self, device, op: ReductionOpInfo):
"""Tests that passing an off-bounds dim throws"""
with self.assertRaises(IndexError):
self._test_dim_keepdim(op, device, ndim=2, dim=2)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_dim_ndim_limit(self, device, op: ReductionOpInfo):
"""Tests that an exception is raised when reducing a tensor with more
than 64 dims along some specific dimensions. dim=None is ok"""
t = make_tensor([1] * 65, dtype=torch.float, device=device)
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(t, dim=0)
@ops(filter(lambda op: op.identity is not None, reduction_ops), dtypes=OpDTypes.supported)
def test_identity(self, device, dtype, op: ReductionOpInfo):
"""Tests that the identity value is an identity for the operator"""
t = make_tensor((10,), dtype=dtype, device=device)
t[1::2] = op.identity
args, kwargs = next(op.generate_args_kwargs(t))
result = op(t[::2], *args, **kwargs)
result_with_identity = op(t, *args, **kwargs)
self.assertEqual(result, result_with_identity, """
Adding identity value to the input tensor should not change the result.
""")
# TODO(@heitorschueroff) Update these to use the nan_policy kwarg once
# it is added to reduction operators.
@ops(filter(lambda op: op.nan_policy == 'propagate', reduction_ops), dtypes=OpDTypes.supported,
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16))
def test_nan_policy_propagate(self, device, dtype, op: ReductionOpInfo):
"""Tests that nan is propagated to the output by default"""
t = make_tensor((5,), dtype=dtype, device=device)
t[2] = torch.nan
args, kwargs = next(op.generate_args_kwargs(t))
result = op(t, *args, **kwargs)
self.assertTrue(result.isnan())
@ops(filter(lambda op: op.nan_policy == 'omit', reduction_ops), dtypes=OpDTypes.supported,
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.float16))
def test_nan_policy_omit(self, device, dtype, op: ReductionOpInfo):
"""Tests that NaN values do not affect the result."""
t = make_tensor((10,), dtype=dtype, device=device)
t[1::2] = torch.nan
args, kwargs = next(op.generate_args_kwargs(t))
result = op(t[::2], *args, **kwargs)
result_with_nan = op(t, *args, **kwargs)
self.assertEqual(result, result_with_nan)
@ops(reduction_ops, dtypes=OpDTypes.supported)
def test_result_dtype(self, device, dtype, op: ReductionOpInfo):
"""Tests that the result has the correct dtype"""
t = make_tensor((5,), dtype=dtype, device=device)
args, kwargs = next(op.generate_args_kwargs(t))
result: torch.Tensor = op(t, *args, **kwargs)
is_integral = dtype in integral_types_and(torch.bool)
if op.promotes_int_to_float and is_integral:
self.assertTrue(torch.is_floating_point(result))
elif op.promotes_int_to_int64 and is_integral:
self.assertEqual(result.dtype, torch.int64)
elif op.result_dtype is not None:
self.assertEqual(result.dtype, op.result_dtype)
elif op.complex_to_real:
_complex_to_real_dtype_map = {
torch.complex128: torch.float64,
torch.complex64: torch.float32,
torch.complex32: torch.float16,
}
self.assertEqual(result.dtype, _complex_to_real_dtype_map.get(dtype, dtype))
else:
self.assertEqual(result.dtype, dtype)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_empty_tensor_empty_slice(self, device, op: ReductionOpInfo):
"""Tests for consistent behavior when reducing over an empty slice.
The rules for reducing over an empty slice are as follows:
- Return the identity value if the operator has one
- Otherwise, return NaN if the operator promotes integral dtype to
floating point dtypes.
- Otherwise, raise an error
See discussion here https://github.com/pytorch/pytorch/issues/61901
"""
t = make_tensor((0, 2, 3), dtype=torch.float, device=device)
for dim in [0] + [[0, 2]] if op.supports_multiple_dims else []:
args, kwargs = next(op.generate_args_kwargs(t, dim=dim))
if op.identity is not None:
# Reducing along empty slice should return identity
result = op(t, *args, dim=dim, **kwargs)
self.assertEqual(result, torch.full_like(result, op.identity))
elif op.promotes_int_to_float:
# Reducing along empty slice should return NaN
result = op(t, *args, dim=dim, **kwargs)
self.assertEqual(result, torch.full_like(result, torch.nan))
else:
# Reducing along empty slice should raise an error
with self.assertRaises(IndexError):
op(t, *args, dim=dim, **kwargs)
@ops(reduction_ops, dtypes=OpDTypes.none)
def test_empty_tensor_nonempty_slice(self, device, op: ReductionOpInfo):
"""Tests that reducing a nonempty slice of an empty tensor returns an
empty tensor with the dimensions reduced."""
t = make_tensor((0, 2, 3), dtype=torch.float, device=device)
for dim in [1] + [[1, 2]] if op.supports_multiple_dims else []:
args, kwargs = next(op.generate_args_kwargs(t, dim=dim))
result = op(t, *args, dim=dim, **kwargs)
self.assertEqual(result.shape, _reduced_shape(t.shape, dim))
def _test_noncontiguous(self, op: ReductionOpInfo, t: torch.Tensor, **reduction_kwargs):
"""Helper method to test noncontiguous input tensors."""
assert not t.is_contiguous()
t_contig = t.contiguous()
for args, kwargs in op.generate_args_kwargs(t_contig, **reduction_kwargs):
kwargs.update(reduction_kwargs)
result = op(t, *args, **kwargs)
expected = op(t_contig, *args, **kwargs)
self.assertEqual(result, expected)
@ops(reduction_ops)
def test_noncontiguous_innermost(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing along noncontiguous innermost dimension."""
t = make_tensor((10, 10), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t[:, ::2], dim=1)
@ops(reduction_ops)
def test_noncontiguous_outermost(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing along noncontiguous outermost dimension."""
t = make_tensor((10, 10), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t[::2, :], dim=0)
@ops(reduction_ops)
def test_noncontiguous_all(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing all dimensions of a noncontiguous tensor."""
t = make_tensor((5, 5, 5), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t[::2, ::3, 1:-1:2])
@ops(reduction_ops)
def test_noncontiguous_transposed(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing a transposed tensor."""
t = make_tensor((5, 5), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t.T)
@ops(reduction_ops)
def test_noncontiguous_expanded(self, device, dtype, op: ReductionOpInfo):
"""Tests reducing a tensor with expanded singleton dimensions."""
t = make_tensor((2, 3), dtype=dtype, device=device, low=-1, high=1)
self._test_noncontiguous(op, t.unsqueeze(1).expand(-1, 5, -1))
# NumPy does not support BFloat16 so we don't test that against reference
# implementations. We also don't compare dtypes or test for different
# keepdim because we already have other tests covering those.
# The test_reference_testing in test_ops.py only uses the samples from
# sample_inputs_func which do not test as exhaustively as these tests.
def _test_ref(self, op: ReductionOpInfo, t: torch.Tensor, **reduction_kwargs):
"""Compares op against op.ref for the given input and reduction kwargs"""
for args, kwargs in op.generate_args_kwargs(t, **reduction_kwargs):
kwargs.update(reduction_kwargs)
result = op(t, *args, **kwargs)
expected = op.ref(t.detach().cpu().numpy(), *args, **kwargs)
self.assertEqual(result, expected, exact_dtype=False)
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=all_types_and_complex_and(torch.half, torch.bool))
def test_ref_scalar_input(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for scalar input tensors"""
self._test_ref(op, make_tensor([], dtype=dtype, device=device))
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=all_types_and_complex_and(torch.half, torch.bool))
def test_ref_small_input(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for small input tensors"""
t = make_tensor((5, 3, 4, 2), dtype=dtype, device=device, low=-2, high=2, exclude_zero=True)
self._test_ref(op, t)
for dim in [0, 1, 3] + ([[0, 2], [1, 3]] if op.supports_multiple_dims else []):
self._test_ref(op, t, dim=dim)
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float64])
def test_ref_large_input_1D(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for a large 1D input tensor to check stability"""
self._test_ref(op, make_tensor((2 ** 20,), dtype=dtype, device=device, low=-1, high=1, exclude_zero=True))
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float64])
def test_ref_large_input_2D(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for a large 2D input tensor to test parallelism"""
t = make_tensor((32, 2 ** 16), dtype=dtype, device=device, low=-1, high=1, exclude_zero=True)
self._test_ref(op, t, dim=1)
@largeTensorTest("8gb")
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float64])
def test_ref_large_input_64bit_indexing(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for a very large input tensor that requires 64 bit indexing"""
self._test_ref(op, make_tensor((275000000,), dtype=dtype, device=device, low=-1, high=1, exclude_zero=True))
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=all_types_and_complex_and(torch.half, torch.bool))
def test_ref_duplicate_values(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for input tensors with duplicate values"""
t = make_tensor((4, 4), dtype=dtype, device=device, low=-2, high=2, exclude_zero=True)
t[::2, ::2] = t[1::2, 1::2]
self._test_ref(op, t)
self._test_ref(op, t, dim=0)
self._test_ref(op, t, dim=1)
@ops(filter(lambda op: op.ref is not None, reduction_ops),
allowed_dtypes=[torch.float32, torch.complex64])
def test_ref_extremal_values(self, device, dtype, op: ReductionOpInfo):
"""Compares op against reference for input tensors with extremal values"""
t = make_tensor((5,), dtype=dtype, device=device, exclude_zero=True)
extremals = [0, 1, nan, inf, -inf]
for extremal in extremals:
t[2] = extremal
self._test_ref(op, t)
###########################################################################
# TODO: Legacy tests - port to ReductionOpInfo
###########################################################################
def test_var_unbiased(self, device):
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.var(0), tensor.var(0, unbiased=True))
self.assertEqual(tensor.var(), tensor.var(unbiased=True))
self.assertEqual(tensor.var(unbiased=False), tensor.var(0, unbiased=False))
tensor = torch.tensor([1.0, 2.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 0.5)
self.assertEqual(tensor.var(unbiased=False), 0.25)
tensor = torch.tensor([1.0, 2.0, 3.0], device=device)
self.assertEqual(tensor.var(unbiased=True), 1.0)
self.assertEqual(tensor.var(unbiased=False), 2.0 / 3.0)
tensor = torch.randn(100, device=device)
self.assertEqual(tensor.std(0), tensor.std(0, unbiased=True))
self.assertEqual(tensor.std(), tensor.std(unbiased=True))
self.assertEqual(tensor.std(unbiased=False), tensor.std(0, unbiased=False))
def test_var_stability(self, device):
tensor = torch.tensor([2281.5, 2281.25], device=device)
self.assertEqual(tensor.var(dim=0), 0.03125)
self.assertEqual(tensor.var(), 0.03125)
def test_sum_dim_reduction_uint8_overflow(self, device):
example = [[-1, 2, 1], [5, 3, 6]]
x = torch.tensor(example, dtype=torch.uint8, device=device)
self.assertEqual(x.sum(dtype=torch.uint8).item(), 16)
self.assertEqual(x.sum(0, dtype=torch.uint8), torch.tensor([4, 5, 7], dtype=torch.uint8, device=device))
self.assertEqual(x.sum(1, dtype=torch.uint8), torch.tensor([2, 14], dtype=torch.uint8, device=device))
y = torch.tensor(example, dtype=torch.uint8, device=device)
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0, dtype=torch.uint8), y)
def test_dim_reduction_less_than_64(self, device):
sizes = [1] * 65
x = torch.randn(sizes, device=device)
ops = [torch.mean, torch.sum, torch.nansum, torch.std, torch.logsumexp, torch.std, torch.var,
torch.norm]
for op in ops:
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, 64)
with self.assertRaisesRegex(RuntimeError, "only tensors with up to 64 dims are supported"):
op(x, -1)
@onlyCPU
@dtypes(torch.float, torch.bfloat16)
def test_dim_reduction_lastdim(self, device, dtype):
x = torch.randn(3, 5, 40, device=device, dtype=dtype)
x = x[:, :, 0:40:2]
x2 = x.contiguous()
ops = [torch.norm, torch.argmax, torch.argmin]
for op in ops:
y = op(x, dim=-1)
y2 = op(x2, dim=-1)
self.assertEqual(y, y2)
@skipIfNoSciPy
def test_logsumexp(self, device):
from scipy.special import logsumexp
a = torch.randn(5, 4, device=device)
a[0, 0] = inf
a[1, :] = -inf
actual = a.logsumexp(1)
expected = logsumexp(a.cpu().numpy(), 1)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
# check that out is actually inplace
b = torch.zeros(5, 2, device=device)
c = b[:, 0]
torch.logsumexp(a, 1, out=c)
self.assertEqual(expected, b[:, 0])
# check integral inputs is promoted to floating point
e = torch.randint(-100, 100, [5, 4], device=device)
actual = e.logsumexp(1).to(torch.float64)
expected = logsumexp(e.cpu().numpy(), 1)
self.assertEqual(expected.shape, actual.shape)
self.assertEqual(expected, actual)
@onlyCPU
def test_sum_parallel(self, device):
# To use parallel branches we'll need to compare on tensors
# that are relatively large. Even if this is run on a single
# core machine these tests will still give you signal on
# the correctness
def _run_test(size):
for dim in range(len(size) + 1):
nv = np.round(np.random.rand(*size)) # 0s and 1s
tv = torch.from_numpy(nv)
# Parallelisim is only used if numel is
# larger than grainsize defined in Parallel.h
self.assertTrue(tv.numel() > 32768)
if dim == len(size):
nvs = nv.sum()
tvs = tv.sum()
else:
nvs = nv.sum(dim)
tvs = tv.sum(dim)
diff = np.abs(nvs - tvs.numpy()).sum()
self.assertEqual(diff, 0)
_run_test([2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3])
_run_test([4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
_run_test([1, 32 * 8 * 32 * 8])
_run_test([1, 32770])
# TODO: kill map2_ (and similar) uses and update to compare with NumPy
# only works on CPU since this uses map2_, which is only supported on CPU
def _testCSelection(self, torchfn, mathfn):
# Two tensors
size = (100, 100)
a = torch.rand(*size)
b = torch.rand(*size)
c = torchfn(a, b)
expected_c = torch.zeros(*size)
expected_c.map2_(a, b, lambda _, a, b: mathfn(a, b))
self.assertEqual(expected_c, c, atol=0, rtol=0)
@onlyCPU
def test_max_elementwise(self, device):
self._testCSelection(torch.max, max)
@onlyCPU
def test_min_elementwise(self, device):
self._testCSelection(torch.min, min)
def test_all_any(self, device):
def test(size):
x = torch.ones(*size, device=device).byte()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = 0
self.assertFalse(x.all())
self.assertTrue(x.any())
x.zero_()
self.assertFalse(x.all())
self.assertFalse(x.any())
x.fill_(2)
self.assertTrue(x.all())
self.assertTrue(x.any())
x = torch.ones(*size, device=device).bool()
self.assertTrue(x.all())
self.assertTrue(x.any())
x[3] = False
self.assertFalse(x.all())
self.assertTrue(x.any())
test((10,))
test((5, 5))
def test_all_any_with_dim(self, device):
def test(x):
r1 = x.prod(dim=0, keepdim=False).byte()
r2 = x.all(dim=0, keepdim=False)
self.assertEqual(r1.shape, r2.shape)
self.assertTrue((r1 == r2).all())
r3 = x.sum(dim=1, keepdim=True).clamp(0, 1).byte()
r4 = x.any(dim=1, keepdim=True)
self.assertEqual(r3.shape, r4.shape)
self.assertTrue((r3 == r4).all())
test(torch.tensor([[0, 0, 0],
[0, 0, 1],
[0, 1, 1],
[1, 1, 1]], device=device, dtype=torch.uint8))
def test_numpy_named_args(self, device):
x1 = torch.randn(10, device=device)
x2 = torch.randn(10, device=device)
res1 = torch.add(input=x1, other=x2)
res2 = torch.add(x1=x1, x2=x2)
self.assertEqual(res1, res2)
x1 = torch.randn(10, 10, 10, device=device)
res1 = x1.sum(dim=(0, 2), keepdim=True)
res2 = x1.sum(axis=(0, 2), keepdims=True)
self.assertEqual(res1, res2)
# TODO: kill this ane replace with common creation ops
def _make_tensors(self, shape, val_range=(-100, 100), use_floating=True, use_integral=True,
use_complex=False) -> Dict[str, List[torch.Tensor]]:
float_types = [torch.double,
torch.float]
int_types = [torch.int64,
torch.int32,
torch.int16]
complex_types = [torch.complex64,
torch.complex128]
def make_contiguous(shape, dtype) -> torch.Tensor:
if dtype in float_types:
val = torch.randn(shape, dtype=dtype)
val = val * ((val_range[1] - val_range[0]) / (math.pi * 2.0))
val = val + ((val_range[1] - val_range[0]) / 2.0)
val = torch.clamp(val, min=val_range[0], max=val_range[1])
return val
result = torch.zeros(shape, dtype=dtype)
result.apply_(lambda x: random.randint(val_range[0], val_range[1]))
return result
def make_non_contiguous(shape, dtype) -> torch.Tensor:
contig = make_contiguous(shape, dtype)
non_contig = torch.empty(shape + (2, 2), dtype=dtype)[..., 0]
non_contig = non_contig.select(-1, -1)
non_contig.copy_(contig)
self.assertFalse(non_contig.is_contiguous())
return non_contig
def make_contiguous_slice(size, dtype) -> torch.Tensor:
contig = make_contiguous((1, size), dtype)
non_contig = contig[:1, 1:size - 1]
self.assertTrue(non_contig.is_contiguous())
return contig
types = []
if use_floating:
types += float_types
if use_integral:
types += int_types
if use_complex:
types += complex_types
tensors: Dict[str, List[torch.Tensor]] = {"cont": [], "noncont": [], "slice": []}
for dtype in types:
tensors["cont"].append(make_contiguous(shape, dtype))
tensors["noncont"].append(make_non_contiguous(shape, dtype))
tensors["slice"].append(make_contiguous_slice(sum(list(shape)), dtype))
return tensors
# TODO: refactor this to use comparators from common_utils
def _assert_matches_numpy(self, t, n):
self.assertEqual(n.shape, t.shape)
if t.dtype == torch.float:
self.assertEqual(n, t, rtol=1e-03, atol=1e-05, equal_nan=True)
else:
self.assertEqual(n, t, equal_nan=True)
# TODO: update this and tests that use it to use the device argument properly
def _test_dim_ops(self, pytorch_op, numpy_op,
use_floating=True, use_integral=True, use_complex=False):
def do_one(tensors_dict, dim):
for category, tensors in tensors_dict.items():
if category == "slice":
dim = 0
for tensor in tensors:
# we have no control over NumPy warnings...
with warnings.catch_warnings():
warnings.simplefilter("ignore")
expected = numpy_op(tensor.cpu().numpy(), dim)
actual = pytorch_op(tensor, dim)
self._assert_matches_numpy(actual, expected)
if torch.cuda.is_available():
self._assert_matches_numpy(pytorch_op(tensor.cuda(), dim).cpu(), expected)
do_one(self._make_tensors((5, 400000), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((3, 5, 7), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((100000, ), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), -1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 0)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 1)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), 2)
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (1, -1))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2))
do_one(self._make_tensors((50, 50, 50), use_floating=use_floating,
use_integral=use_integral, use_complex=use_complex), (0, 2, 1))
@slowTest
@onlyCPU
def test_sum_dim(self, device):
self._test_dim_ops(
lambda t, d: t.sum(d),
lambda n, d: n.sum(d),
use_floating=True, use_integral=True, use_complex=True)
@onlyCPU
def test_mean_dim(self, device):
self._test_dim_ops(
lambda t, d: t.mean(d),
lambda n, d: n.mean(d),
use_integral=False,
use_complex=True)
@onlyCPU
def test_std_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.std(d, unbiased=unbiased),
lambda n, d: n.std(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
def test_var_dim(self, device):
for unbiased in [False, True]:
self._test_dim_ops(
lambda t, d: t.var(d, unbiased=unbiased),
lambda n, d: n.var(d, ddof=1 if unbiased else 0),
use_integral=False)
@onlyCPU
@skipIfNoSciPy
def test_logsumexp_dim(self, device):
from scipy.special import logsumexp
self._test_dim_ops(
lambda t, d: t.logsumexp(d),
lambda n, d: logsumexp(n, d),
use_integral=False)
@onlyCPU
def test_mean_int_with_optdtype(self, device):
a = make_tensor((3, 4, 5), dtype=torch.int64, device=device)
# If the optional desired output type is given, the input
# is internally cast.
a_float = a.to(torch.float32)
self.assertEqual(a_float.mean(), a.mean(dtype=torch.float32))
# TODO: update this and tests that use it to handle device properly
def _test_reduce_integer_upcast(self, fn, has_out=True, test_complex=True):
shape = (3, 4, 5)
reduced_shape = fn(torch.ones(shape)).shape
def _test_out(dtype, other_dtype):
out = torch.ones(reduced_shape, dtype=dtype)
result = fn(x, out=out)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
result = fn(x, out=out, dtype=dtype)
self.assertIs(out.dtype, result.dtype)
self.assertEqual(fn(x.to(dtype)), result, exact_dtype=False)
# 'out' is favored over dtype, check error
self.assertRaises(RuntimeError, lambda: fn(x, out=out, dtype=other_dtype))
for dtype in [dtype for dtype in get_all_math_dtypes('cpu') if dtype != torch.float16]:
x = torch.ones(shape, dtype=dtype)
expected_dtype = dtype if dtype.is_floating_point or dtype.is_complex else torch.int64
self.assertIs(expected_dtype, fn(x).dtype)
self.assertEqual(fn(x.to(expected_dtype)), fn(x))
if dtype.is_floating_point:
other_dtype = torch.float32 if dtype == torch.float64 else torch.float64
elif dtype.is_complex:
other_dtype = torch.complex64 if dtype == torch.complex128 else torch.complex128
else:
other_dtype = torch.int32 if dtype != torch.int32 else torch.int16
self.assertIs(other_dtype, fn(x, dtype=other_dtype).dtype)
self.assertEqual(fn(x.to(other_dtype)), fn(x, dtype=other_dtype), exact_dtype=False)
# test mixed int/float/complex
if dtype.is_floating_point:
mixed_dtypes = [torch.int32, torch.complex64]
elif dtype.is_complex:
mixed_dtypes = [torch.int32, torch.float32]
else:
mixed_dtypes = [torch.float32, torch.complex64]
for mixed_dtype in mixed_dtypes:
self.assertIs(mixed_dtype, fn(x, dtype=mixed_dtype).dtype)
self.assertEqual(fn(x.to(mixed_dtype)), fn(x, dtype=mixed_dtype), exact_dtype=False)
if has_out:
_test_out(dtype, other_dtype)
_test_out(dtype, mixed_dtype)
@onlyCPU
def test_sum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.sum(x, 0, **kwargs))
@onlyCPU
def test_prod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, **kwargs), False)
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.prod(x, 0, **kwargs))
@onlyCPU
def test_cumsum_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumsum(x, 0, **kwargs))
@onlyCPU
def test_cumprod_integer_upcast(self, device):
self._test_reduce_integer_upcast(lambda x, **kwargs: torch.cumprod(x, 0, **kwargs))
@dtypes(*all_types())
def test_mode(self, device, dtype):
SIZE = 10
x = torch.arange(1., SIZE * SIZE + 1, device=device, dtype=dtype).clone().resize_(SIZE, SIZE)
x[:2] = 1
x[:, :2] = 1
x0 = x.clone()
# Pre-calculated results.
res1val = torch.ones(SIZE, device=device, dtype=dtype)
# The indices are the position of the last appearance of the mode element.
res1ind = torch.ones(SIZE, device=device, dtype=torch.long)
res1ind[0] = SIZE - 1
res1ind[1] = SIZE - 1
res2val, res2ind = torch.mode(x, keepdim=False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test use of result tensor
res2val = torch.tensor((), device=device, dtype=dtype)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.mode(x, keepdim=False, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# Test non-default dim
res2val, res2ind = torch.mode(x, 0, False)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# input unchanged
self.assertEqual(x, x0, atol=0, rtol=0)
def _test_mode_intervals(self, shape, intervals, device, dtype, v=1):
x = torch.arange(0, shape[1], device=device, dtype=dtype).expand(shape)
x = x.contiguous()
x[:, v] = intervals[0][0]
# Set the value of each interval to the mode "v"
for (beg, end) in intervals:
x[:, beg:end] = v
values, indices = torch.mode(x, -1, False)
# Check whether the returned indices correspond to the returned values
self.assertTrue((x.gather(1, indices.unsqueeze(1)).t() == values).all())
# Check whether the returned values are the mode
self.assertTrue((values == v).all().item())
@onlyCUDA
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_mode_large(self, device, dtype):
# i should be less than (d - 2) / 2
def testset_for_shape(shape, i):
d = shape[-1]
# Mode only in the middle.
self._test_mode_intervals(shape, [(i, d - i)], device, dtype)
# Mode in discontiguous parts of the input.
self._test_mode_intervals(shape, [(0, i), (i + 1, d - i - 1), (d - i, d)], device, dtype)
# More than one line of (65535) thread blocks
testset_for_shape((65536, 10), 3)
# Max slice size (2048)
testset_for_shape((10, 2048), 10)
# Naive kernel for big slice sizes (> 2048)
testset_for_shape((10, 4096), 10)
def test_mode_boolean(self, device):
shapes = [
(10, 10),
(4, 2048),
(1, 4096),
]
for shape in shapes:
a = torch.zeros(shape, device=device, dtype=torch.bool)
a[:, (shape[1] - 1) // 2:] = True
values, indices = a.mode(-1)
self.assertEqual(values, torch.ones(shape[0], dtype=torch.bool))
print(indices)
indexed = a.gather(1, indices.unsqueeze(1)).squeeze(1)
self.assertEqual(values, indexed)
a.fill_(False)
a[:, shape[1] // 2 + 1:] = True
values, indices = a.mode(-1)
print(indices)
self.assertEqual(values, torch.zeros(shape[0], dtype=torch.bool))
indexed = a.gather(1, indices.unsqueeze(1)).squeeze(1)
self.assertEqual(values, indexed)
@expectedFailureMeta # mode only supports CPU and CUDA device type
@onlyNativeDeviceTypes
def test_mode_wrong_dtype(self, device):
def test_for_dtypes(x_ty, v_ty, i_ty, message):
x = torch.ones(10, device=device, dtype=x_ty)
v = torch.ones(10, device=device, dtype=v_ty)
i = torch.ones(10, device=device, dtype=i_ty)
with self.assertRaisesRegex(RuntimeError, message):
torch.mode(x, -1, True, out=(v, i))
err_msg = "expected scalar type .* but got .* for "
values_err = err_msg + "values"
indices_err = err_msg + "indices"
test_for_dtypes(torch.uint8, torch.int8, torch.long, values_err)
test_for_dtypes(torch.int8, torch.int16, torch.long, values_err)
test_for_dtypes(torch.int32, torch.float32, torch.long, values_err)
test_for_dtypes(torch.float32, torch.float64, torch.long, values_err)
test_for_dtypes(torch.uint8, torch.uint8, torch.int8, indices_err)
test_for_dtypes(torch.int8, torch.int8, torch.int16, indices_err)
test_for_dtypes(torch.int32, torch.int32, torch.float32, indices_err)
test_for_dtypes(torch.float32, torch.float32, torch.float64, indices_err)
@onlyCUDA
def test_mode_wrong_device(self, device):
# CPU Input Tensor
x = torch.ones(2)
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for values"):
values = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(values, torch.tensor([], dtype=torch.long)))
with self.assertRaisesRegex(RuntimeError,
"expected device .* but got .* for indices"):
indices = torch.tensor([], device=device)
torch.mode(x, -1, True, out=(torch.tensor([]), indices))
# TODO: make work on CUDA, too
@onlyCPU
def test_accreal_type(self, device) -> None:
x = torch.ones(2, 3, 4)
self.assertIsInstance(x.double().sum().item(), float)
self.assertIsInstance(x.float().sum().item(), float)
self.assertIsInstance(x.long().sum().item(), int)
self.assertIsInstance(x.int().sum().item(), int)
self.assertIsInstance(x.short().sum().item(), int)
self.assertIsInstance(x.char().sum().item(), int)
self.assertIsInstance(x.byte().sum().item(), int)
def test_var_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
# TODO: this should be a generic opinfo test
def test_all_any_empty(self, device):
x = torch.ByteTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
x = torch.BoolTensor().to(device)
self.assertTrue(x.all())
self.assertFalse(x.any())
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.bfloat16, torch.float, torch.double)
def test_max_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.max(a, dim=1).values == inf).item())
self.assertTrue(torch.all(torch.amax(a, dim=1) == inf).item())
self.assertTrue(torch.max(a).item() == inf)
self.assertTrue(torch.amax(a).item() == inf)
@dtypesIfCUDA(torch.half, torch.bfloat16, torch.float, torch.double)
@dtypes(torch.half, torch.float, torch.bfloat16, torch.double)
def test_min_with_inf(self, device, dtype):
a = torch.tensor([[-inf, -inf, inf, 3], [inf, inf, -inf, -1]], dtype=dtype, device=device)
self.assertTrue(torch.all(torch.min(a, dim=1).values == (-inf)).item())
self.assertTrue(torch.all(torch.amin(a, dim=1) == (-inf)).item())
self.assertTrue(torch.min(a).item() == -inf)
self.assertTrue(torch.amin(a).item() == -inf)
def _test_minmax_helper(self, torchfn, reffn, device, dtype, skip_indices=False):
def create_input(shape, device, dtype):
if dtype.is_floating_point:
return torch.randn(*shape, device=device, dtype=dtype)
else:
low = 0 if dtype == torch.bool else -1000
high = 2 if dtype == torch.bool else 1000
return torch.randint(low, high, shape, device=device, dtype=dtype)
x = create_input((100, 100), device, dtype)
self.compare_with_numpy(torchfn, reffn, x)
# non contiguous
x = create_input((10, 10, 10), device, dtype)
x = x[:, 4]
self.compare_with_numpy(torchfn, reffn, x)
def get_values(x):
if isinstance(x, tuple):
return x[0]
return x
# indices
if not skip_indices:
size = 5
x = create_input((size, size), device, dtype)
inputs = (x, x.t())
dims = (0, 1)
for xinp, d in product(inputs, dims):
self.compare_with_numpy(lambda x: get_values(torchfn(x, d, False)), lambda x: reffn(x, d, keepdims=False), xinp)
result = torchfn(xinp, d, False)
if isinstance(result, tuple):
v, i = result
if d == 1:
self.assertEqual(xinp[torch.arange(size), i], v, atol=0, rtol=0)
else:
self.assertEqual(xinp[i, torch.arange(size)], v, atol=0, rtol=0)
# nan
if dtype.is_floating_point:
for index in (0, 4, 99):
x = create_input((100,), device, dtype)
x[index] = nan
if not skip_indices:
result = torchfn(x, 0)
v = get_values(result)
self.assertEqual(v, nan)
if isinstance(result, tuple):
i = result[1]
self.assertEqual(i, index)
self.assertEqual(torchfn(x), nan)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_max(self, device, dtype):
self._test_minmax_helper(torch.max, np.amax, device, dtype)
@dtypesIfCPU(torch.float, torch.double, torch.long, torch.bool, torch.half)
@dtypesIfCUDA(torch.half, torch.float, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_min(self, device, dtype):
self._test_minmax_helper(torch.min, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.half, torch.float, torch.double)
def test_amin(self, device, dtype):
self._test_minmax_helper(torch.amin, np.amin, device, dtype)
@dtypesIfCPU(torch.half, torch.float, torch.double, torch.int, torch.long, torch.bool)
@dtypesIfCUDA(torch.half, torch.float, torch.int, torch.long, torch.bool)
@dtypes(torch.float, torch.double)
def test_amax(self, device, dtype):
self._test_minmax_helper(torch.amax, np.amax, device, dtype)
@onlyNativeDeviceTypes
@dtypes(torch.float, torch.double)
@dtypesIfCUDA(torch.half, torch.float, torch.bfloat16)
def test_aminmax(self, device, dtype):
def _amin_wrapper(x, dim=None, keepdims=False):
with self.assertWarnsOnceRegex(UserWarning, "_aminmax is deprecated"):
if dim is None:
return torch._aminmax(x)[0]
else:
return torch._aminmax(x, dim, keepdims)[0]
def _amax_wrapper(x, dim=None, keepdims=False):
with self.assertWarnsOnceRegex(UserWarning, "_aminmax is deprecated"):
if dim is None:
return torch._aminmax(x)[1]
else:
return torch._aminmax(x, dim, keepdims)[1]
self._test_minmax_helper(_amin_wrapper, np.amin, device, dtype)
self._test_minmax_helper(_amax_wrapper, np.amax, device, dtype)
# TODO: bincount isn't a classic reduction -- maybe this test suite is
# reductions and summary ops?
def test_bincount(self, device):
# negative input throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([1, -1], device=device))
# n-d input, with n > 1 throws
with self.assertRaisesRegex(RuntimeError, '1-d non-negative integral'):
torch.bincount(torch.tensor([[1, 2], [3, 4]], device=device))
# floating input type throws
with self.assertRaisesRegex(RuntimeError, 'not implemented'):
torch.bincount(torch.tensor([1., 0.3], device=device))
# minlength < 0 throws
with self.assertRaisesRegex(RuntimeError, 'minlength should be >= 0'):
torch.bincount(torch.tensor([1, 3], device=device),
torch.tensor([.2, .2], device=device),
minlength=-1)
# n-d weights, with n > 1 throws
with self.assertRaisesRegex(RuntimeError, '1-d'):
torch.bincount(torch.tensor([1, 0], device=device),
torch.tensor([[1., 0.3], [1., 0.3]], device=device))
# input and weights dim mismatch
with self.assertRaisesRegex(RuntimeError, 'same length'):
torch.bincount(torch.tensor([1, 0], device=device),
torch.tensor([1., 0.3, 0.5], device=device))
# 1-d input with no elements and default minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long)),
torch.zeros(0, dtype=torch.long, device=device))
# 1-d input with no elements and specified minlength
self.assertEqual(torch.bincount(torch.tensor([], device=device, dtype=torch.long), minlength=10),
torch.zeros(10, dtype=torch.long, device=device))
# test tensor method without weights
long_counts = torch.tensor(
[0, 3, 2, 1, 3], dtype=torch.uint8, device=device).bincount()
self.assertEqual(
torch.tensor([1, 1, 1, 2], dtype=torch.int64, device=device),
long_counts)
# test avoiding overflow for uint8 (#76979)
count_uint8 = torch.tensor([0, 1, 2, 3, 255], dtype=torch.uint8, device=device).bincount()
count_int16 = torch.tensor([0, 1, 2, 3, 255], dtype=torch.int16, device=device).bincount()
self.assertEqual(count_uint8, count_int16)
# test minlength functionality
int_counts = torch.bincount(
torch.tensor([1, 1, 1, 1], device=device), minlength=5)
self.assertEqual(
torch.tensor([0, 4, 0, 0, 0], dtype=torch.int64, device=device),
int_counts)
# test weights
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([.1, .2, .3, .4, .5], device=device))
self.assertEqual(
torch.tensor([0.1, 0.9, 0, 0, 0.5], device=device), byte_counts)
byte_counts = torch.bincount(
torch.tensor([0, 1, 1, 1, 4], device=device),
torch.tensor([1, 2, 3, 4, 5], dtype=torch.int8, device=device))
self.assertEqual(
torch.tensor([1, 9, 0, 0, 5], device=device, dtype=torch.float64), byte_counts)
# test non-contiguous inputs and weights
inputs = torch.tensor([[0, 0], [3, 1], [2, 1], [1, 1], [3, 4]], device=device)
weights = torch.tensor([[.1, 1], [.2, 2], [.3, 3], [.4, 4], [.5, 5]], device=device)
for i in [0, 1]:
assert not inputs[:, i].is_contiguous(), "Inputs are supposed to be non-contiguous"
assert not weights[:, i].is_contiguous(), "Weights are supposed to be non-contiguous"
# inputs are non-contiguous but weights are contiguous
self.assertEqual(inputs[:, 0].bincount(), torch.tensor([1, 1, 1, 2]))
# inputs and weights are non-contiguous
self.assertEqual(
inputs[:, 1].bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# weights are non-contiguous but inputs are contiguous
self.assertEqual(inputs[:, 1].contiguous().bincount(weights[:, 1]),
torch.tensor([1, 9, 0, 0, 5], dtype=torch.float32))
# test bincount on non-contiguous slices
all0s = torch.zeros((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all0s[:, 0].bincount(), torch.tensor([32]))
all1s = torch.ones((32, 2), dtype=torch.int64, device=device)
self.assertEqual(all1s[:, 0].bincount(), torch.tensor([0, 32]))
# test large number of bins - global memory use
big_exp = torch.zeros(10000000, device=device)
big_exp[-1] = 50.0
big_w = torch.tensor([.5] * 100, device=device)
big_out = torch.tensor([9999999] * 100, device=device).bincount(big_w)
self.assertEqual(big_exp, big_out)
# test large input size
big_exp = torch.zeros(2, device=device, dtype=torch.int64)
big_exp[1] = 1000000
big_out = torch.ones(1000000, dtype=torch.int8, device=device).bincount()
self.assertEqual(big_exp, big_out)
# TODO: how many var stability tests are there?
def test_var_stability2(self, device):
tensor = torch.FloatTensor([2281.5, 2281.25]).to(device)
# Stability for inner dim
self.assertEqual(tensor.var(0), 0.03125)
# General stability
self.assertEqual(tensor.var(), 0.03125)
# Stability for outer dimensions
tensor = tensor.unsqueeze(1)
self.assertEqual(tensor.var(0), 0.03125)
@onlyCPU
@dtypes(torch.bool, torch.double)
def test_sum_all(self, device, dtype) -> None:
def check_sum_all(tensor: torch.Tensor) -> None:
pylist = tensor.reshape(-1).tolist()
self.assertEqual(tensor.sum(), sum(pylist))
if dtype != torch.bool:
check_sum_all(torch.tensor([1, 2, 3, 4, 5], dtype=dtype, device=device))
check_sum_all(torch.randn(200000, dtype=dtype, device=device))
check_sum_all(torch.randn(2000, 2, dtype=dtype, device=device)[:, 0])
else:
check_sum_all(torch.tensor([True, False, True], dtype=torch.bool, device=device))
def _test_memory_format_transformations(self, device, input_generator_fn, transformation_fn,
memory_format, compare_data=True, default_is_preserve=False):
assert(memory_format == torch.channels_last or memory_format == torch.channels_last_3d)
# xc is a channels last tensor
xc = input_generator_fn(device)
# xc is not memory dense, but looks like channels last
if memory_format == torch.channels_last:
xc = xc[..., ::2, ::2]
else:
xc = xc[..., ::2, ::2, ::2]
clone = transformation_fn(xc, memory_format=torch.preserve_format)
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
self.assertFalse(xc.is_contiguous())
self.assertFalse(xc.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc, memory_format=torch.contiguous_format)
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
xc = input_generator_fn(device)
clone = transformation_fn(xc)
if default_is_preserve:
self.assertFalse(clone.is_contiguous())
self.assertTrue(clone.is_contiguous(memory_format=memory_format))
else:
self.assertTrue(clone.is_contiguous())
self.assertFalse(clone.is_contiguous(memory_format=memory_format))
if compare_data:
self.assertEqual(xc, clone.to(xc))
x = torch.randn((3, 4, 5, 6, 7, 8, 9), device=device)
for _ in range(10):
permutation = list(range(len(x.shape)))
random.shuffle(permutation)
x = x.permute(permutation)
self.assertEqual(x.stride(), transformation_fn(x, memory_format=torch.preserve_format).stride())
@onlyCPU
@dtypes(torch.double)
def test_sum_out(self, device, dtype: torch.dtype) -> None:
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.sum(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, 1, out=res2)
self.assertEqual(res1, res2)
x = torch.rand(100, 100, 100, dtype=dtype, device=device)
res1 = x.sum(2).sum(1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.sum(x, (2, 1), out=res2)
self.assertEqual(res1, res2)
@onlyCUDA
@dtypes(torch.float16, torch.float32)
def test_prod_gpu(self, device, dtype):
x = torch.tensor([2, 3, 6, 9, 8], dtype=dtype, device=device)
# Check all combinations: fp16 input - fp16 output, fp16 input - fp32
# output, fp32 input - fp16 output, fp32 input - fp32 output
for dtype_output in [torch.float16, torch.float32]:
result_expected = torch.tensor(2592, dtype=dtype_output, device=device)
output = torch.prod(x, dtype=dtype_output)
self.assertEqual(output, result_expected)
output = x.prod(dtype=dtype_output)
self.assertEqual(output, result_expected)
@onlyCPU
@dtypes(torch.float)
def test_prod(self, device, dtype):
x = torch.rand(100, 100, dtype=dtype, device=device)
res1 = torch.prod(x, 1)
res2 = torch.tensor((), dtype=dtype, device=device)
torch.prod(x, 1, out=res2)
self.assertEqual(res1, res2)
def test_prod_bool(self, device):
vals = [[True, True], [True, False], [False, False], []]
for val in vals:
result = torch.prod(torch.tensor(val, device=device), dtype=torch.bool).item()
expect = np.prod(np.array(val), dtype=np.bool)
self.assertEqual(result, expect)
result = torch.prod(torch.tensor(val, device=device)).item()
expect = np.prod(np.array(val))
self.assertEqual(result, expect)
@onlyCPU
def test_max_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.max(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amax(a, 0, out=values))
@onlyCPU
def test_min_mixed_devices(self, device):
a = torch.randn(10, device=device)
if torch.cuda.is_available():
values = torch.randn(10).cuda()
indices = torch.cuda.LongTensor()
self.assertRaises(RuntimeError,
lambda: torch.min(a, 0, out=(values, indices)))
self.assertRaises(RuntimeError,
lambda: torch.amin(a, 0, out=values))
# TODO: consider refactoring with bincount test
def test_bucketization(self, device):
values_1d = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9], device=device)
values_3d = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
# simple 1d boundary and 3d input value
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device)
expected_result = torch.tensor([[[0, 2, 4], [1, 3, 5]], [[0, 1, 2], [3, 4, 5]]], device=device)
output = torch.empty(2, 2, 3, device=device, dtype=torch.int64)
self.assertEqual(torch.bucketize(values_3d, boundaries), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output), expected_result)
expected_result = torch.tensor([[[1, 3, 5], [2, 4, 6]], [[1, 2, 3], [4, 5, 6]]], device=device)
self.assertEqual(torch.bucketize(values_3d, boundaries, right=True), expected_result)
self.assertEqual(torch.bucketize(values_3d, boundaries, out=output, right=True), expected_result)
# simple float 1d boundary and 1d input with output int32 type
for dtype in [torch.float32, torch.float16]:
values_1d_float = values_1d.to(dtype)
boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=dtype)
expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32)
self.assertEqual(torch.searchsorted(boundaries, values_1d_float, out_int32=True), expected_result)
self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result)
# multiple dimension input with 0 elements
boundaries = torch.tensor([1, 2, 3, 4, 5, 6], device=device, dtype=torch.int64)
values_0_el = torch.tensor([[[]]], device=device, dtype=torch.int64)
expected_result = values_0_el.to(torch.int64)
self.assertEqual(torch.searchsorted(boundaries, values_0_el), expected_result)
self.assertEqual(torch.bucketize(values_0_el, boundaries), expected_result)
# nan input
values_nan = torch.tensor([1.0, float('nan'), 2.0, float('nan')], device=device, dtype=torch.float64)
boundaries = torch.tensor([0.0, 1.0, 2.0, 3.0], device=device, dtype=torch.float64)
expected_result = torch.tensor([1, 4, 2, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan), expected_result)
expected_result = torch.tensor([2, 4, 3, 4], device=device)
self.assertEqual(torch.searchsorted(boundaries, values_nan, right=True), expected_result)
self.assertEqual(torch.searchsorted(boundaries, values_nan, side='right'), expected_result)
# type promotion and non contiguous tensors
values_3d_permute = values_3d.permute(2, 1, 0).to(torch.int32)
boundaries_permute = values_3d.permute(2, 1, 0).to(torch.float64)
expected_result = torch.tensor([[[0, 0], [0, 1]], [[2, 0], [0, 1]], [[2, 0], [0, 0]]], device=device)
if self.device_type != 'xla':
self.assertWarnsRegex(
UserWarning, "tensor is non-contiguous",
lambda: self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result))
else:
# All tensors in XLA is contiguous even doing permute, no warning msg will be generate in XLA
self.assertEqual(torch.searchsorted(boundaries_permute, values_3d_permute), expected_result)
# scalar type
boundaries = torch.tensor([1.5, 2.5, 3.5], device=device)
expected_result = torch.tensor(1, device=device)
self.assertEqual(torch.searchsorted(boundaries, 2), expected_result)
self.assertEqual(torch.bucketize(torch.tensor(2, device=device), boundaries), expected_result)
expected_result = torch.tensor(3, device=device)
scalar_tensor_nan = torch.tensor(float('nan'), device=device)
self.assertEqual(torch.searchsorted(boundaries, scalar_tensor_nan), expected_result)
self.assertEqual(torch.bucketize(float('nan'), boundaries, right=True), expected_result)
# invalid input dimensions
boundaries = torch.tensor([[1, 2, 3], [4, 5, 6]], device=device)
with self.assertRaisesRegex(
RuntimeError, "first N-1 dimensions of boundaries tensor and input value tensor must match"):
torch.searchsorted(boundaries, values_3d)
with self.assertRaisesRegex(
RuntimeError, "boundaries tensor must be 1 dimension"):
torch.bucketize(values_3d, boundaries)
with self.assertRaisesRegex(
RuntimeError, "only when boundaries tensor dimension is 1"):
torch.searchsorted(boundaries, 1)
# incompatiable output tensor's dtype
def test_output_dtype(dtype, is_int32):
output = values_1d.to(dtype)
with self.assertRaisesRegex(
RuntimeError, "output tensor's dtype is wrong"):
torch.searchsorted(values_1d, values_1d, out=output, out_int32=is_int32)
test_output_dtype(torch.float32, False)
test_output_dtype(torch.int32, False)
test_output_dtype(torch.int64, True)
# invalid side argument
with self.assertRaisesRegex(RuntimeError, "side can only be 'left' or 'right'"):
torch.searchsorted(values_1d, values_1d, side='bad')
# invalid sorter argument, wrong size
with self.assertRaisesRegex(RuntimeError, "boundary and sorter must have the same size"):
sequence = torch.rand_like(values_1d, dtype=torch.float)
_, sorted_idx = torch.sort(sequence)
torch.searchsorted(sequence, values_1d, sorter=sorted_idx[:-1])
# invalid sorter argument, is not dtype long
with self.assertRaisesRegex(RuntimeError, "sorter must be a tensor of long dtype"):
sequence = torch.rand_like(values_1d, dtype=torch.float)
_, sorted_idx = torch.sort(sequence)
torch.searchsorted(sequence, values_1d, sorter=sorted_idx.to(torch.float32))
# scalar type bfloat16
if self.device_type == 'cpu':
def test_dtype_bfloat16(values_bf16=False, boundaries_bf16=False):
values_1d_float = values_1d.to(torch.float32)
boundaries = torch.tensor([0.9, 1, 2, 2, 3, 3, 4, 4.1, 9, 9], device=device, dtype=torch.float32)
if values_bf16:
values_1d_float = values_1d_float.to(torch.bfloat16)
if boundaries_bf16:
boundaries = boundaries.to(torch.bfloat16)
expected_result = torch.tensor([1, 2, 4, 6, 8, 8, 8, 8, 8], device=device, dtype=torch.int32)
self.assertEqual(torch.bucketize(values_1d_float, boundaries, out_int32=True), expected_result)
test_dtype_bfloat16(True, False)
test_dtype_bfloat16(False, True)
test_dtype_bfloat16(True, True)
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_nansum(self, device, dtype):
args = product(
(True, False), # noncontiguous
(0, 1, None), # dim
)
zero = torch.zeros((), device=device, dtype=dtype)
for noncontiguous, dim in args:
# Randomly scale the values
scale = random.randint(10, 100)
x = make_tensor((17, 17), device=device, dtype=dtype,
low=-scale, high=scale, noncontiguous=noncontiguous)
if dtype.is_floating_point:
nan_mask = x < 0.2 * scale
x_nonan = torch.where(nan_mask, zero, x)
x[nan_mask] = np.nan
else:
x_nonan = x
dim_kwargs = {} if dim is None else {"dim": dim}
expect = torch.sum(x_nonan, **dim_kwargs)
actual = torch.nansum(x, **dim_kwargs)
self.assertEqual(expect, actual)
def _test_reduction_function_with_numpy(self, torch_func, np_func, device, dtype,
with_extremal=False, atol=None, rtol=None,
exact_dtype=True, with_keepdim=False):
# Test 0-d to 3-d tensors.
for ndims in range(0, 4):
shape = _rand_shape(ndims, min_size=5, max_size=10)
for n in range(ndims + 1):
for c in combinations(list(range(ndims)), n):
for count_dim in permutations(c):
# Generate Input.
x = _generate_input(shape, dtype, device, with_extremal)
if count_dim == ():
# Default `dims=None` case
self.compare_with_numpy(torch_func, np_func, x, device=None, dtype=None,
atol=atol, rtol=rtol, exact_dtype=exact_dtype)
else:
# With `dims: tuple of ints` case
if with_keepdim:
torch_func_partial = partial(torch_func, keepdim=True, dim=count_dim)
np_func_partial = partial(np_func, keepdims=True, axis=count_dim)
else:
torch_func_partial = partial(torch_func, dim=count_dim)
np_func_partial = partial(np_func, axis=count_dim)
self.compare_with_numpy(torch_func_partial, np_func_partial, x, device=None, dtype=None,
atol=atol, rtol=rtol, exact_dtype=exact_dtype)
@dtypes(*all_types_and_complex_and(torch.half))
def test_count_nonzero(self, device, dtype):
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype)
self._test_reduction_function_with_numpy(torch.count_nonzero, np.count_nonzero, device, dtype, True)
def _test_sum_reduction_vs_numpy(self, torch_fn, np_fn, device, dtype, with_keepdim=False, with_extremal=False):
def is_integral(dtype):
return dtype in integral_types()
# On Windows CI, the current version of `numpy` promotes all lower integers
# dtypes to int32 while `torch` promotes them to int64. Hence we skip on checking
# the exact dtype.
# Reference : https://dr.pytorch.org/api/view-log-full?build_id=122051580
# PR : https://github.com/pytorch/pytorch/pull/38628#issuecomment-655905370
exact_dtype = False if (IS_WINDOWS and is_integral(dtype)) else True
if dtype == torch.uint8:
with self.assertRaises(TypeError):
self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype, with_extremal=with_extremal)
else:
# TODO: Investigate why the output is not close to numpy.
if dtype == torch.float16:
atol = 0.4
rtol = 1e-2
elif dtype == torch.float32:
atol = 7e-05
rtol = 3e-06
else:
# Default values
atol = None
rtol = None
self._test_reduction_function_with_numpy(torch_fn, np_fn, device, dtype,
atol=atol, rtol=rtol, exact_dtype=exact_dtype,
with_keepdim=with_keepdim, with_extremal=with_extremal)
@onlyNativeDeviceTypes
@dtypes(*all_types_and(torch.half))
def test_sum_vs_numpy(self, device, dtype):
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype)
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype, with_extremal=True)
self._test_sum_reduction_vs_numpy(torch.sum, np.sum, device, dtype, with_keepdim=True)
@onlyNativeDeviceTypes
@dtypes(*all_types_and(torch.half))
def test_nansum_vs_numpy(self, device, dtype):
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype)
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype, with_extremal=True)
self._test_sum_reduction_vs_numpy(torch.nansum, np.nansum, device, dtype, with_keepdim=True)
@dtypes(*complex_types())
def test_nansum_complex(self, device, dtype):
x = torch.randn((3, 3, 3), device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "nansum does not support complex inputs"):
torch.nansum(x)
@dtypes(*all_types_and(torch.half))
def test_nansum_out_dtype(self, device, dtype):
out_dtype = dtype
inp_dtypes = all_types_and(torch.half) if out_dtype.is_floating_point else integral_types()
for inp_dtype in inp_dtypes:
shape = _rand_shape(random.randint(2, 5), min_size=5, max_size=10)
x = _generate_input(shape, inp_dtype, device, with_extremal=False)
torch_fn = partial(torch.nansum, dtype=out_dtype)
np_out_dtype = torch_to_numpy_dtype_dict[out_dtype]
np_fn = partial(np.nansum, dtype=np_out_dtype)
self.compare_with_numpy(torch_fn, np_fn, x, device=None, dtype=None)
@dtypes(*all_types_and(torch.half))
def test_argminmax_multiple(self, device, dtype):
# Case: All Ones
t = torch.ones(3, 3, device=device, dtype=dtype)
self.compare_with_numpy(torch.argmax, np.argmax, t)
self.compare_with_numpy(torch.argmin, np.argmin, t)
# Case: With single `nan` present.
if dtype in floating_types_and(torch.half, torch.bfloat16):
t[2, 2] = float('nan')
self.compare_with_numpy(torch.argmax, np.argmax, t)
self.compare_with_numpy(torch.argmin, np.argmin, t)
# Case: Randomly Generated Tensors
for ndims in range(1, 5):
shape = _rand_shape(ndims, min_size=5, max_size=10)
for with_extremal in [False, True]:
for contiguous in [False, True]:
# Generate Input.
x = _generate_input(shape, dtype, device, with_extremal)
if dtype == torch.half:
max_val = torch.max(x.to(torch.float))
min_val = torch.min(x.to(torch.float))
else:
max_val = torch.max(x)
min_val = torch.min(x)
mask = torch.randn(x.shape) > 0.5
x[mask] = torch.tensor(max_val + 1, dtype=dtype)
mask = torch.randn(x.shape) > 0.5
x[mask] = torch.tensor(min_val - 1, dtype=dtype)
if not contiguous:
x = x.T
self.compare_with_numpy(torch.argmax, np.argmax, x, device=None, dtype=None)
self.compare_with_numpy(torch.argmin, np.argmin, x, device=None, dtype=None)
# Verify indices returned by max and min.
if dtype != torch.half:
rand_dim = random.randint(0, ndims - 1)
self.compare_with_numpy(lambda x: torch.max(x, dim=rand_dim)[1],
lambda x: np.argmax(x, axis=rand_dim), x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.min(x, dim=rand_dim)[1],
lambda x: np.argmin(x, axis=rand_dim), x, device=None, dtype=None)
def verify_against_numpy(t):
# Argmax
torch_fn = partial(torch.argmax, dim=1)
np_fn = partial(np.argmax, axis=1)
self.compare_with_numpy(torch_fn, np_fn, t)
# Non-contiguous input
self.compare_with_numpy(torch_fn, np_fn, t.T)
# Verify indices returned by max.
if dtype != torch.half:
self.compare_with_numpy(lambda x: torch.max(x, dim=1)[1], np_fn, x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.max(x, dim=1)[1], np_fn, x.T, device=None, dtype=None)
# Argmin
torch_fn = partial(torch.argmin, dim=1)
np_fn = partial(np.argmin, axis=1)
self.compare_with_numpy(torch_fn, np_fn, t)
# Non-contiguous input
self.compare_with_numpy(torch_fn, np_fn, t.T)
# Verify indices returned by min.
if dtype != torch.half:
self.compare_with_numpy(lambda x: torch.min(x, dim=1)[1], np_fn, x, device=None, dtype=None)
self.compare_with_numpy(lambda x: torch.min(x, dim=1)[1], np_fn, x.T, device=None, dtype=None)
# Case: Sample from issue: https://github.com/pytorch/pytorch/issues/41998
t = torch.tensor([[1, 5],
[2, 10],
[3, 3]], device=device, dtype=dtype)
verify_against_numpy(t)
# Case: Sample from issue: https://github.com/pytorch/pytorch/issues/41998
t = torch.tensor([[1, 5],
[2, 10],
[0, 0]], device=device, dtype=dtype)
verify_against_numpy(t)
@dtypes(*all_types_and_complex_and(torch.half, torch.bool))
def test_all_any_vs_numpy(self, device, dtype):
# Note [all, any uint8 compatibility]: However for compatibility reason,
# for `uint8`, they return Tensor of same dtype `uint8`.
# Reference: https://github.com/pytorch/pytorch/pull/47878#issuecomment-747108561
exact_dtype = True if dtype != torch.uint8 else False
def _test_all_any(x):
self.compare_with_numpy(torch.all, np.all, x)
self.compare_with_numpy(torch.any, np.any, x)
def _test_all_any_with_dim(x, dim):
torch_fn = partial(torch.all, dim=dim)
np_fn = partial(np.all, axis=dim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
torch_fn = partial(torch.any, dim=dim)
np_fn = partial(np.any, axis=dim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
def _test_out_variant(x, dim):
out = torch.empty_like(x)
if dtype == torch.bool or dtype == torch.uint8:
expected = torch.all(x, dim)
torch.all(x, dim, out=out)
self.assertEqual(expected, out)
expected = torch.any(x, dim)
torch.any(x, dim, out=out)
self.assertEqual(expected, out)
else:
with self.assertRaisesRegex(RuntimeError, "all only supports bool tensor for result, got"):
torch.all(x, dim, out=out)
with self.assertRaisesRegex(RuntimeError, "any only supports bool tensor for result, got"):
torch.any(x, dim, out=out)
def _test_all_any_with_dim_keepdim(x, dim, keepdim):
torch_fn = partial(torch.all, dim=dim, keepdim=keepdim)
np_fn = partial(np.all, axis=dim, keepdims=keepdim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
torch_fn = partial(torch.any, dim=dim, keepdim=keepdim)
np_fn = partial(np.any, axis=dim, keepdims=keepdim)
self.compare_with_numpy(torch_fn, np_fn, x, exact_dtype=exact_dtype)
def _test_output_dtype(x):
# This test will fail once the functions return bool output
# for uint8 input.
expected_dtype = torch.uint8 if dtype == torch.uint8 else torch.bool
self.assertEqual(torch.all(x).dtype, expected_dtype)
self.assertEqual(torch.any(x).dtype, expected_dtype)
self.assertEqual(torch.all(x, dim=0).dtype, expected_dtype)
self.assertEqual(torch.any(x, dim=0).dtype, expected_dtype)
for ndim in range(5):
shape = _rand_shape(ndim, 1, 5)
x = _generate_input(shape, dtype, device, with_extremal=False)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = _generate_input(shape, dtype, device, with_extremal=True)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = torch.zeros_like(x)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
x = torch.ones_like(x)
_test_all_any(x)
_test_all_any(x.T)
_test_all_any(x[..., ::2])
_test_output_dtype(x)
for dim in range(ndim):
x = _generate_input(shape, dtype, device, with_extremal=False)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = _generate_input(shape, dtype, device, with_extremal=True)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = torch.zeros_like(x)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
x = torch.ones_like(x)
_test_all_any_with_dim(x, dim)
_test_all_any_with_dim(x.T, dim)
_test_all_any_with_dim(x[..., ::2], dim)
_test_out_variant(x, dim)
_test_all_any_with_dim_keepdim(x, dim, keepdim=True)
_test_all_any_with_dim_keepdim(x, dim, keepdim=False)
# TODO: part of this test covers torch.norm, with should be covered by test_linalg
@onlyNativeDeviceTypes
def test_repeated_dim(self, device):
ops = [torch.mean, torch.sum, torch.nansum, torch.std, torch.logsumexp, torch.std, torch.var,
torch.norm]
x = torch.randn(3, 3, 3, 3, device=device)
error_msg = r'appears multiple times in the list of dims'
norm_error_msg = r'Expected dims to be different, got'
for op in ops:
for dim in [(0, 0), (0, -4)]:
e_msg = norm_error_msg if op == torch.norm else error_msg
with self.assertRaisesRegex(RuntimeError, e_msg):
op(x, dim=dim)
# TODO: update this test to comapre against NumPy
@onlyCUDA
def test_var(self, device):
cpu_tensor = torch.randn(2, 3, 3)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
self.assertEqual(device_tensor.var(1), cpu_tensor.var(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
self.assertEqual(device_tensor.std(), cpu_tensor.std())
self.assertEqual(device_tensor.std(1), cpu_tensor.std(1))
self.assertEqual(device_tensor.var(2), cpu_tensor.var(2))
cpu_tensor = torch.randn(100)
device_tensor = cpu_tensor.to(device)
self.assertEqual(device_tensor.var(), cpu_tensor.var())
# TODO: update this test to compare against NumPy
@onlyCUDA
def test_var_large_input(self, device):
# Large, not-nice input
cpu_tensor = torch.randn(2 * 32 * 1024 + 1, 2, 67)
device_tensor = cpu_tensor.to(device)
self.assertEqual(cpu_tensor.var(2), device_tensor.var(2))
# TODO: update this to compare against NumPy instead of CPU
@onlyCUDA
@dtypes(torch.double)
def test_sum_noncontig(self, device, dtype):
x = torch.randn(1, 75, 57, 20, dtype=dtype, device=device).permute(0, 3, 1, 2)
y = x.cpu()
self.assertEqual(x.sum().cpu(), y.sum())
self.assertEqual(x.sum(dim=(-1, -2)).cpu(), y.sum(dim=(-1, -2)))
self.assertEqual(x.sum(dim=(1, 3)).cpu(), y.sum(dim=(1, 3)))
# TODO: update this to compare against NumPy instead of CPU
@onlyCUDA
def test_min_max_nan(self, device):
tests = [(lambda x: x.min(), 'min'),
(lambda x: x.max(), 'max'),
(lambda x: x.amin(), 'amin'),
(lambda x: x.amax(), 'amax'),
(lambda x: x.min(0).values, 'min_dim'),
(lambda x: x.max(0).values, 'max_dim'),
(lambda x: x.amin(0), 'amin_dim'),
(lambda x: x.amax(0), 'amax_dim')]
for f, name in tests:
a = torch.arange(25.0).view(5, 5)
a[2, 2] = nan
actual = f(a.to(device)).cpu()
expected = f(a).cpu()
self.assertEqual(torch.isnan(actual), torch.isnan(expected), msg='nans for {}'.format(name))
self.assertEqual(actual[~torch.isnan(actual)],
expected[~torch.isnan(expected)], msg='nans for {}'.format(name))
# TODO: make this test generic using OpInfos
@onlyCUDA
def test_sum_cpu_device_mismatch(self, device):
x = torch.randn(20, dtype=torch.float32, device=device)
y = torch.randn(1, dtype=torch.float32)
err_string = f"Expected out tensor to have device {device}, but got cpu instead"
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# tests half to float promotion
if self.device_type == 'cuda':
x = x.half()
with self.assertRaisesRegex(RuntimeError, err_string):
torch.sum(x, dim=[0], dtype=torch.float32, out=y)
# Assert for illegal dtype would not be raised on XLA
@onlyNativeDeviceTypes
def test_minmax_illegal_dtype(self, device):
x = torch.randn(5, 5, dtype=torch.float32, device=device)
valid_values = torch.empty(5, dtype=torch.float32, device=device)
valid_indices = torch.empty(5, dtype=torch.long, device=device)
illegal_values = torch.empty(5, dtype=torch.int, device=device)
illegal_indices = torch.empty(5, dtype=torch.double, device=device)
torch.max(x, dim=0, out=(valid_values, valid_indices))
torch.min(x, dim=0, out=(valid_values, valid_indices))
torch.amax(x, dim=0, out=valid_values)
torch.amin(x, dim=0, out=valid_values)
rmsg = r'scalar type|dtype'
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(illegal_values, valid_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(illegal_values, valid_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(valid_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(valid_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.max(x, dim=0, out=(illegal_values, illegal_indices))
with self.assertRaisesRegex(RuntimeError, rmsg):
torch.min(x, dim=0, out=(illegal_values, illegal_indices))
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_dim_arg_reduction_scalar(self, device, dtype):
example = 4.0
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmax().item(), 0)
self.assertEqual(x.argmax(dim=None).item(), 0)
self.assertEqual(x.argmax(dim=0).item(), 0)
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.argmin().item(), 0)
self.assertEqual(x.argmin(dim=None).item(), 0)
self.assertEqual(x.argmin(dim=0).item(), 0)
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor(0, dtype=torch.int64))
@precisionOverride({torch.float16: 1e-2, torch.bfloat16: 1e-2})
@dtypes(*set(all_types_and(torch.half, torch.bfloat16)) - {torch.uint8})
def test_dim_reduction(self, device, dtype):
example = [[-1, 2, 1], [5, 3, 6]]
sum_dtype = {
torch.bfloat16: torch.bfloat16,
torch.double: torch.double,
torch.float: torch.float,
torch.half: torch.half,
torch.int64: torch.int64,
torch.int32: torch.int64,
torch.int16: torch.int64,
torch.int8: torch.int64
}
# This won't test for 256bit instructions, since we usually
# only work on 1 cacheline (512bit) at a time and these
# examples aren't big enough to trigger that.
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.sum().item(), 16)
self.assertEqual(x.sum(0), torch.tensor([4, 5, 7], dtype=sum_dtype[dtype]))
self.assertEqual(x.sum(1), torch.tensor([2, 14], dtype=sum_dtype[dtype]))
y = torch.tensor(example, device=device, dtype=sum_dtype[dtype])
torch.sum(x, 0, out=y)
self.assertEqual(x.sum(0), y)
# Mean not supported for Int types
if dtype in [torch.float16, torch.bfloat16, torch.float32, torch.float64]:
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.mean().item(), 16.0 / 6)
self.assertEqual(x.mean(0), torch.tensor([2.0, 2.5, 7.0 / 2], dtype=dtype))
self.assertEqual(x.mean(1), torch.tensor([2.0 / 3, 14.0 / 3], dtype=dtype))
self.assertEqual(x.mean(), x.mean((0, 1)))
prod_dtype = {
torch.bfloat16: torch.bfloat16,
torch.double: torch.double,
torch.float: torch.float,
torch.float16: torch.float16,
torch.int64: torch.int64,
torch.int32: torch.int64,
torch.int16: torch.int64,
torch.int8: torch.int64,
}
# prod is not supported for float16 & bfloat16 on CPU
if not (self.device_type == 'cpu' and dtype in [torch.float16, torch.bfloat16]):
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.prod().item(), -180)
self.assertEqual(x.prod(0), torch.tensor([-5, 6, 6], dtype=prod_dtype[dtype]))
self.assertEqual(x.prod(1), torch.tensor([-2, 90], dtype=prod_dtype[dtype]))
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.min().item(), -1)
self.assertEqual(x.argmin().item(), 0)
# TODO: torch.min does not support the same operation as argmin
# for the same case, should we enable it?
self.assertEqual(x.argmin(dim=None).item(), 0)
self.assertEqual(x.min(0), (torch.tensor([-1, 2, 1], dtype=dtype),
torch.tensor([0, 0, 0], dtype=torch.int64)))
self.assertEqual(x.amin(0), torch.tensor([-1, 2, 1], dtype=dtype))
self.assertEqual(x.argmin(0), torch.tensor([0, 0, 0], dtype=torch.int64))
self.assertEqual(x.min(dim=0, keepdim=True), (torch.tensor([[-1, 2, 1]], dtype=dtype),
torch.tensor([[0, 0, 0]], dtype=torch.int64)))
self.assertEqual(x.amin(dim=0, keepdim=True), torch.tensor([[-1, 2, 1]], dtype=dtype))
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.tensor([[0, 0, 0]], dtype=torch.int64))
self.assertEqual(x.min(1), (torch.tensor([-1, 3], dtype=dtype),
torch.tensor([0, 1], dtype=torch.int64)))
self.assertEqual(x.amin(1), torch.tensor([-1, 3], dtype=dtype))
self.assertEqual(x.argmin(1), torch.tensor([0, 1], dtype=torch.int64))
self.assertEqual(x.min(dim=1, keepdim=True), (torch.tensor([[-1], [3]], dtype=dtype),
torch.tensor([[0], [1]], dtype=torch.int64)))
self.assertEqual(x.amin(dim=1, keepdim=True), torch.tensor([[-1], [3]], dtype=dtype))
self.assertEqual(x.argmin(dim=1, keepdim=True), torch.tensor([[0], [1]], dtype=torch.int64))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].min().item(), -1)
self.assertEqual(x[:, :2].amin().item(), -1)
self.assertEqual(x[:, :2].argmin().item(), 0)
x = torch.tensor(example, device=device, dtype=dtype)
self.assertEqual(x.max().item(), 6)
self.assertEqual(x.amax().item(), 6)
self.assertEqual(x.argmax().item(), 5)
self.assertEqual(x.max(0), (torch.tensor([5, 3, 6], dtype=dtype),
torch.tensor([1, 1, 1], dtype=torch.int64)))
self.assertEqual(x.amax(0), torch.tensor([5, 3, 6], dtype=dtype))
self.assertEqual(x.argmax(dim=0), torch.tensor([1, 1, 1], dtype=torch.int64))
self.assertEqual(x.max(dim=0, keepdim=True), (torch.tensor([[5, 3, 6]], dtype=dtype),
torch.tensor([[1, 1, 1]], dtype=torch.int64)))
self.assertEqual(x.amax(dim=0, keepdim=True), torch.tensor([[5, 3, 6]], dtype=dtype))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.tensor([[1, 1, 1]], dtype=torch.int64))
self.assertEqual(x.max(1), (torch.tensor([2, 6], dtype=dtype),
torch.tensor([1, 2], dtype=torch.int64)))
self.assertEqual(x.amax(1), torch.tensor([2, 6], dtype=dtype))
self.assertEqual(x.argmax(dim=1), torch.tensor([1, 2], dtype=torch.int64))
self.assertEqual(x.max(1, keepdim=True), (torch.tensor([[2], [6]], dtype=dtype),
torch.tensor([[1], [2]], dtype=torch.int64)))
self.assertEqual(x.amax(1, keepdim=True), torch.tensor([[2], [6]], dtype=dtype))
self.assertEqual(x.argmax(dim=1, keepdim=True), torch.tensor([[1], [2]], dtype=torch.int64))
# test that non-contiguous tensors work
self.assertEqual(x[:, :2].max().item(), 5)
self.assertEqual(x[:, :2].amax().item(), 5)
self.assertEqual(x[:, :2].argmax().item(), 2)
dim_red_fns = [
"mean", "median", "nanmedian", "mode", "norm", "prod",
"std", "sum", "var", "max", "min", "amax", "amin"]
def normfn_attr(t, dim, keepdim=False, out=None):
attr = torch.norm
return attr(t, 2, dim, keepdim, out=out)
for fn_name in dim_red_fns:
fn_attr = getattr(torch, fn_name) if fn_name != "norm" else normfn_attr
def fn(x, dim, keepdim=False, out=None):
ans = fn_attr(x, dim, keepdim=keepdim, out=out)
return ans if not isinstance(ans, tuple) else ans[0]
def fn_tuple(x, dim, keepdim=False, out=None):
return fn_attr(x, dim, keepdim=keepdim, out=out)
def test_multidim(x, dim):
self.assertEqual(fn(x, dim).unsqueeze(dim), fn(x, dim, keepdim=True))
self.assertEqual(x.ndimension() - 1, fn(x, dim).ndimension())
self.assertEqual(x.ndimension(), fn(x, dim, keepdim=True).ndimension())
# general case
x = torch.randn(3, 4, 5, device=device)
dim = random.randint(0, 2)
test_multidim(x, dim)
# check 1-d behavior
x = torch.randn(1, device=device)
dim = 0
self.assertEqual(fn(x, dim).shape, ())
self.assertEqual(fn(x, dim, keepdim=True).shape, (1,))
# check reducing of a singleton dimension
dims = [3, 4, 5]
singleton_dim = random.randint(0, 2)
dims[singleton_dim] = 1
x = torch.randn(dims, device=device)
test_multidim(x, singleton_dim)
# check reducing with output kwargs
if fn_name in ['median', 'nanmedian', 'mode', 'max', 'min']:
y = torch.randn(5, 3, device=device)
values = torch.randn(5, 3, device=device)
indices = torch.zeros(5, 3, device=device).long() - 1
fn_tuple(y, 1, keepdim=False, out=(values[:, 1], indices[:, 1]))
values_expected, indices_expected = fn_tuple(y, 1, keepdim=False)
self.assertEqual(values[:, 1], values_expected,
msg='{} values with out= kwarg'.format(fn_name))
self.assertEqual(indices[:, 1], indices_expected,
msg='{} indices with out= kwarg'.format(fn_name))
continue
x = torch.randn(5, 3, device=device)
y = torch.randn(5, 3, device=device)
fn(y, 1, keepdim=False, out=x[:, 1])
expected = fn(y, 1, keepdim=False)
self.assertEqual(x[:, 1], expected, msg='{} with out= kwarg'.format(fn_name))
@onlyCUDA
@largeTensorTest('10GB')
def test_reduction_split(self, device):
# Test reduction when there is a 32bit-indexing split
# https://github.com/pytorch/pytorch/issues/37583
input_ = torch.randn(5, 14400, 14400, device=device)
result = input_.sum(dim=0)
expect = input_[0] + input_[1] + input_[2] + input_[3] + input_[4]
self.assertEqual(result, expect)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double, torch.bfloat16)
def test_reduction_vectorize_along_input_corner(self, device, dtype):
# 1D case: sum
size = 1024 * 1024 * 64 + 3
shift = 1
x = torch.zeros(size, dtype=dtype, device=device)
y = x[shift:]
for i in range(100):
x.zero_()
x[i] = 1
self.assertEqual(x.sum(), 1.0)
if i < shift:
self.assertEqual(y.sum(), 0.0)
else:
self.assertEqual(y.sum(), 1.0)
for i in range(1, 100):
x.zero_()
x[-i] = 1
self.assertEqual(x.sum(), 1.0)
self.assertEqual(y.sum(), 1.0)
# 1D case: argmax
size = 1024 * 1024 * 64 + 3
shift = 1
ysize = size - shift
x = torch.zeros(size, dtype=dtype, device=device)
y = x[shift:]
for i in range(100):
x.zero_()
x[i] = 1
self.assertEqual(x.argmax().item(), i)
if i >= shift:
self.assertEqual(y.argmax().item(), i - shift)
for i in range(1, 100):
x.zero_()
x[-i] = 1
self.assertEqual(x.argmax().item(), size - i)
self.assertEqual(y.argmax().item(), ysize - i)
# 2D case: sum
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = j
xs = x.sum(dim=-1)
for j in range(7):
self.assertEqual(xs[j].item(), float(j))
for i in range(100):
x.zero_()
for j in range(7):
x[j][-i] = j
xs = x.sum(dim=-1)
for j in range(7):
self.assertEqual(xs[j].item(), float(j))
# 2D case: max/argmax
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = j + 1
xs1 = x.argmax(dim=-1)
xs2 = x.max(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), i)
self.assertEqual(xs2[j].item(), i)
for i in range(1, 100):
x.zero_()
for j in range(7):
x[j][-i] = j + 1
xs1 = x.argmax(dim=-1)
xs2 = x.max(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), size[1] - i)
self.assertEqual(xs2[j].item(), size[1] - i)
# 2D case: min/argmin
size = (7, 1024 * 1024 + 3)
x = torch.zeros(size, dtype=dtype, device=device)
for i in range(100):
x.zero_()
for j in range(7):
x[j][i] = -(j + 1)
xs1 = x.argmin(dim=-1)
xs2 = x.min(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), i)
self.assertEqual(xs2[j].item(), i)
for i in range(1, 100):
x.zero_()
for j in range(7):
x[j][-i] = -(j + 1)
xs1 = x.argmin(dim=-1)
xs2 = x.min(dim=-1).indices
for j in range(7):
self.assertEqual(xs1[j].item(), size[1] - i)
self.assertEqual(xs2[j].item(), size[1] - i)
@onlyCUDA
@dtypes(torch.half, torch.float, torch.double, torch.bfloat16)
def test_reduction_vectorize_along_output(self, device, dtype):
def run_test(input_):
M, N = input_.shape
input_.zero_()
for i in range(min(M, N)):
input_[i][i] = 1
output1 = input_.argmax(dim=0)
output2 = input_.sum(dim=0)
for i in range(min(M, N)):
self.assertEqual(output1[i], i)
self.assertEqual(output2[i], 1)
# vec 4
run_test(torch.zeros(64, 64, dtype=dtype, device=device))
# vec 2
run_test(torch.zeros(64 * 64 + 2, dtype=dtype, device=device)[2:].view(64, 64))
run_test(torch.zeros(64, 62, dtype=dtype, device=device))
run_test(torch.zeros(64, 2, dtype=dtype, device=device))
# vec 1
run_test(torch.zeros(64 * 64 + 1, dtype=dtype, device=device)[1:].view(64, 64))
run_test(torch.zeros(64, 61, dtype=dtype, device=device))
run_test(torch.zeros(64, 1, dtype=dtype, device=device))
@onlyCUDA
def test_argminmax_large_axis(self, device):
# Regression test for gh-32863
x = torch.zeros(2**31, device=device, dtype=torch.int8)
x[-1] = 1
self.assertEqual(x.argmax(0), x.shape[0] - 1)
self.assertEqual(x.max(0).indices, x.shape[0] - 1)
x[-1] = -1
self.assertEqual(x.argmin(0), x.shape[0] - 1)
self.assertEqual(x.min(0).indices, x.shape[0] - 1)
def test_argminmax_axis_with_dim_one(self, device):
# See: https://github.com/pytorch/pytorch/issues/38922
n = 32768
x = torch.zeros(1, n)
self.assertEqual(x.argmax(dim=0), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=0), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=-2), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=-2), torch.zeros(n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=0, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmax(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
self.assertEqual(x.argmin(dim=-2, keepdim=True), torch.zeros(1, n, dtype=torch.int64))
@dtypes(torch.int, torch.long, torch.float, torch.double)
@dtypesIfCUDA(torch.int, torch.long, torch.half, torch.float, torch.double)
def test_median_real_values(self, device, dtype):
# Generate random 0-3D sizes
sizes = [random.sample(range(1, 32), i) for i in range(4) for _ in range(2)]
for size in sizes:
# Create random input tensor
t = torch.randn(size, device=device).type(dtype)
t_numpy = t.cpu().numpy()
res = t.median()
self.assertEqual(res, t.nanmedian())
k = int((t.numel() - 1) / 2)
self.assertEqual(res, t.view(-1).sort()[0][k])
if t.numel() % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res.cpu().numpy(), np.median(t_numpy))
for dim in range(t.ndim):
res = t.median(dim, True)
self.assertEqual(res, t.nanmedian(dim, True))
size = t.size(dim) if t.ndim > 0 else 1
k = int((size - 1) / 2)
self.assertEqual(res[0], (t.sort(dim)[0]).select(dim, k).unsqueeze_(dim))
self.assertEqual(res[0], t.gather(dim, res[1]))
if size % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res[0].cpu().numpy(), np.median(t_numpy, dim, keepdims=True), exact_dtype=False)
@dtypes(torch.float, torch.double)
@dtypesIfCUDA(torch.half, torch.float, torch.double)
def test_median_nan_values(self, device, dtype):
# Generate random 0-3D sizes
sizes = [random.sample(range(1, 32), i) for i in range(4) for _ in range(2)]
for size in sizes:
# Create random input tensor with nan values
t = torch.rand(size, device=device, dtype=dtype)
t.masked_fill_(t < 0.1, float('nan'))
t_numpy = t.cpu().numpy()
for op in [torch.median, torch.nanmedian]:
numpy_op = np.median if op == torch.median else np.nanmedian
res = op(t)
num_nan = t.isnan().sum()
if op == torch.median and num_nan > 0:
k = t.numel() - 1
else:
k = int((t.numel() - num_nan - 1) / 2)
self.assertEqual(res, t.view(-1).sort()[0][k])
if (t.numel() - num_nan) % 2 == 1:
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
self.assertEqual(res.item(), numpy_op(t.cpu().numpy()))
for dim in range(t.ndim):
res = op(t, dim, True)
size = t.size(dim) if t.ndim > 0 else 1
num_nan = t.isnan().sum(dim, True)
if op == torch.median:
k = torch.where(num_nan > 0, size - 1, int((size - 1) / 2))
else:
k = ((size - num_nan - 1) / 2).type(torch.long)
self.assertEqual(res[0], (t.sort(dim)[0]).gather(dim, k))
self.assertEqual(res[0], t.gather(dim, res[1]))
# We can only test agains numpy for odd reductions because numpy
# returns the mean of the two medians and torch returns the lower
mask = (size - num_nan) % 2 == 1
res = res[0].masked_select(mask).cpu()
ref = numpy_op(t_numpy, dim, keepdims=True)[mask.cpu().numpy()]
self.assertEqual(res, torch.from_numpy(ref))
def test_median_corner_cases(self, device):
def check(op, a, args, key):
t = torch.tensor(a, device=device)
res = op(t, *args)
if not args:
key = torch.tensor(key, device=device)
else:
if len(key) == 1:
key = torch.tensor(key[0], device=device)
res = res[0]
else:
key = (torch.tensor(key[0], device=device), torch.tensor(key[1], device=device))
self.assertEqual(res, key)
nan = float('nan')
check(torch.median, nan, [], nan)
check(torch.median, [], [], nan)
check(torch.nanmedian, nan, [], nan)
check(torch.median, nan, [0], [nan, 0])
check(torch.nanmedian, nan, [0], [nan, 0])
check(torch.median, [nan], [0, True], [[nan], [0]])
check(torch.nanmedian, [nan], [0, True], [[nan], [0]])
check(torch.median, [nan], [0, True], [[nan], [0]])
check(torch.nanmedian, [nan], [0, True], [[nan], [0]])
# Indices are not deterministic here so can only check values
check(torch.median, [[nan, nan], [1, 2]], [0], [[nan, nan]])
check(torch.nanmedian, [[nan, nan], [1, 2]], [0], [[1, 2.]])
check(torch.median, [[nan, nan], [1, 2]], [1], [[nan, 1]])
check(torch.nanmedian, [[nan, nan], [1, 2]], [1], [[nan, 1.]])
# Discontiguous and strided tensors
a = torch.arange(12, device=device)
self.assertEqual(a[::2].median(), torch.tensor(4, device=device))
self.assertEqual(a[::2].nanmedian(), torch.tensor(4, device=device))
a.resize_(3, 4)
self.assertEqual(a.T.median(), torch.tensor(5, device=device))
self.assertEqual(a.T.nanmedian(), torch.tensor(5, device=device))
self.assertEqual(a[::2, ::2].median(-1)[0], torch.tensor([0, 8], device=device))
self.assertEqual(a[::2, ::2].nanmedian(-1)[0], torch.tensor([0, 8], device=device))
a.resize_(2, 3, 2)
self.assertEqual(a.T.median(), torch.tensor(5, device=device))
self.assertEqual(a.T.nanmedian(), torch.tensor(5, device=device))
self.assertEqual(a[:, ::2, :].median(-1)[0], torch.tensor([[0, 4], [6, 10]], device=device))
self.assertEqual(a[:, ::2, :].nanmedian(-1)[0], torch.tensor([[0, 4], [6, 10]], device=device))
@onlyNativeDeviceTypes
@dtypes(torch.float, torch.double)
def test_quantile(self, device, dtype):
# Generate some random test cases
ops = ['quantile', 'nanquantile']
inputs = [tuple(np.random.randint(2, 10, size=i)) for i in range(1, 4)]
quantiles = [tuple(np.random.rand(i)) for i in range(0, 5)]
keepdims = [True, False]
# Add corner cases
inputs.extend([0.75, (1,), (1, 1), (1, 2, 1)])
inputs.extend([[float('nan')], [[float('nan'), float('nan')], [1, 2]]])
inputs.extend([[[float('nan'), float('nan')], [float('nan'), 2]]])
quantiles.extend([0.5, [0., 1.], np.random.rand(10)])
# Enumerate all input combinations
for op, x, q, keepdim in product(ops, inputs, quantiles, keepdims):
if type(x) is tuple:
a = torch.randn(x, dtype=dtype, device=device)
# Make some random elements NaN
a.masked_fill_(torch.randint_like(a, 20) == 0, float('nan'))
else:
a = torch.tensor(x, dtype=dtype, device=device)
q = torch.tensor(q, dtype=dtype, device=device)
torch_op = getattr(torch, op)
numpy_op = getattr(np, op)
# Compute quantile along every dimension and flattened tensor
interpolations = ('linear', 'lower', 'higher', 'midpoint', 'nearest')
for interpolation, dim in product(interpolations,
[None] + list(range(a.ndim))):
result = torch_op(a, q, dim=dim, keepdim=keepdim, interpolation=interpolation)
expected = numpy_op(a.cpu().numpy(), q.cpu().numpy(), dim,
interpolation=interpolation, keepdims=keepdim)
self.assertEqual(result.cpu(), torch.from_numpy(np.array(expected)).type(result.type()))
# Test out variation
out = torch.empty_like(result)
torch_op(a, q, dim=dim, keepdim=keepdim, interpolation=interpolation, out=out)
self.assertEqual(out.cpu(), result.cpu())
def test_quantile_backward(self, device):
def check(a, q, dim, expected_grad, ops=(torch.quantile, torch.nanquantile)):
for op in ops:
t = torch.tensor(a, device=device, requires_grad=True)
op(t, torch.tensor(q, device=device), dim).sum().backward()
self.assertEqual(t.grad, expected_grad)
check([1., 2, 3], 0.5, 0, [0, 1, 0])
check([1., 2, 3, 4], 0.5, 0, [0, 0.5, 0.5, 0])
check([3., 1, 4, 2], 0.5, 0, [0.5, 0, 0, 0.5])
check([1., 2, 3, 4], [0.25, 0.5, 0.75], 0, [0.25, 1.25, 1.25, 0.25])
check([[1., 2], [2, 1]], 0., 0, [[1, 0], [0, 1]])
check([[1., 2], [4, 3]], 1., 1, [[0, 1], [1, 0]])
check([1, float('nan'), 2], 0.5, 0, [0, 1, 0], [torch.quantile])
check([1, float('nan'), 2], 0.5, 0, [0.5, 0, 0.5], [torch.nanquantile])
def test_quantile_error(self, device):
def check(a, q, args, kwargs, message):
with self.assertRaisesRegex(RuntimeError, r'quantile\(\) ' + message):
at = torch.tensor(a, device=device)
qt = torch.tensor(q, device=device) if isinstance(q, list) else q
torch.quantile(at, qt, *args, **kwargs)
check([], 0.5, [], {}, r'input tensor must be non-empty')
check([1.], [[1.]], [], {}, r'q must be a scalar or 1D tensor')
check([1], 0.5, [], {}, r'input tensor must be either float or double dtype')
check([1.], [1], [], {}, r'q tensor must be same dtype as the input tensor')
check([1.], -1., [], {}, r'q must be in the range \[0, 1\] but got -1')
check([1.], 1.1, [], {}, r'q must be in the range \[0, 1\] but got 1.1')
check([1.], 0.5, [], {'out': torch.empty([], dtype=torch.int32, device=device)},
r'out tensor must be same dtype as the input tensor')
check([1.], [1.], [None, False], {'interpolation': 'random_mode'},
r"interpolation must be one of linear, lower, higher, midpoint or nearest, but got random_mode")
if self.device_type == "cpu":
check([1.], [0.5, 1.1, -1], [], {}, r'q values must be in the range \[0, 1\]')
if self.device_type == "cuda":
with self.assertRaisesRegex(
RuntimeError, r'quantile\(\) q tensor must be on the same device as the input tensor'):
torch.randn(1, device=device).quantile(torch.tensor(0.5))
with self.assertRaisesRegex(
RuntimeError, r'quantile\(\) out tensor must be on the same device as the input tensor'):
torch.quantile(torch.randn(1, device=device), 0.5, out=torch.scalar_tensor(1))
def test_std_mean(self, device):
x = torch.rand(100, 50, 20, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_std_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
std1, mean1 = torch.std_mean(x, unbiased=unbiased)
std2 = x.std(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def test_var_mean(self, device):
x = torch.rand(100, 300, 50, device=device)
for dim in range(x.dim()):
for unbiased in [False, True]:
for keepdim in [False, True]:
var1, mean1 = torch.var_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
var2 = x.var(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_var_mean_all_dims(self, device):
x = torch.rand(100, 50, 20, device=device)
for unbiased in [False, True]:
var1, mean1 = torch.var_mean(x, unbiased=unbiased)
var2 = x.var(unbiased=unbiased)
mean2 = x.mean()
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_std_mean_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for unbiased in [False, True]:
for keepdim in [False, True]:
std1, mean1 = torch.std_mean(x, dim=dim, unbiased=unbiased, keepdim=keepdim)
std2 = x.std(dim=dim, unbiased=unbiased, keepdim=keepdim)
mean2 = x.mean(dim=dim, keepdim=keepdim)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
def _compare_std_var_with_numpy(self, op, device, dtype, input, dim,
keepdim, unbiased, use_out):
a = input.cpu().numpy() if input.dtype is not torch.bfloat16 else input.float().cpu().numpy()
numpy_kwargs = {
'axis' : dim,
'keepdims' : keepdim,
'ddof' : 1 if unbiased else 0,
}
if dim is None:
del numpy_kwargs['axis']
del numpy_kwargs['keepdims']
if op == 'var':
torch_op = torch.var
numpy_op = np.var
elif op == 'std':
torch_op = torch.std
numpy_op = np.std
else:
self.fail("Unknown op!")
numpy_result = numpy_op(a, **numpy_kwargs)
if dim is None and use_out is False:
torch_result = torch_op(input, unbiased)
elif dim is not None and use_out is False:
torch_result = torch_op(input, dim, unbiased, keepdim)
elif dim is not None and use_out is True:
out = torch.empty(0, device=device, dtype=dtype)
torch_result = torch_op(input, dim, unbiased, keepdim, out=out)
else:
out = torch.empty(0, device=device, dtype=dtype)
torch_result = torch_op(input, dim, unbiased, keepdim, out=out)
exact_dtype = input.dtype not in (torch.bfloat16, torch.complex32, torch.complex64, torch.complex128)
self.assertEqual(torch_result, numpy_result, exact_dtype=exact_dtype)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_var_vs_numpy(self, device, dtype):
_size = (20, 20)
for test_case in product((torch.randn(_size, device=device, dtype=dtype),),
(None, 0, 1),
(False, True),
(False, True),
(False, True),):
self._compare_std_var_with_numpy('var', device, dtype, *test_case)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_std_vs_numpy(self, device, dtype):
_size = (20, 20)
for test_case in product((torch.randn(_size, device=device, dtype=dtype),),
(None, 0, 1),
(False, True),
(False, True),
(False, True),):
self._compare_std_var_with_numpy('std', device, dtype, *test_case)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_var_correction_vs_numpy(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
array = tensor.cpu().numpy()
for dim, correction, keepdim in test_args:
numpy_kwargs = dict(axis=dim, ddof=correction, keepdims=keepdim)
if correction is None:
# NumPy default is not compatible with torch.std (gh-50010)
numpy_kwargs['ddof'] = 1
numpy_res = np.asarray(np.var(array, **numpy_kwargs))
torch_res = torch.var(tensor, dim=dim, correction=correction, keepdim=keepdim)
# inf vs. nan results are sensitive to machine precision,
# just treat them as equivalent
numpy_res[np.isinf(numpy_res)] = np.nan
torch_res[torch_res.isinf()] = np.nan
self.assertEqual(torch_res, numpy_res)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_std_correction_vs_numpy(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
array = tensor.cpu().numpy()
for dim, correction, keepdim in test_args:
numpy_kwargs = dict(axis=dim, ddof=correction, keepdims=keepdim)
if correction is None:
# NumPy default is incompatible with torch.std (gh-50010)
numpy_kwargs['ddof'] = 1
numpy_res = np.asarray(np.std(array, **numpy_kwargs))
torch_res = torch.std(tensor, dim=dim, correction=correction, keepdim=keepdim)
# inf vs. nan results are sensitive to machine precision,
# just treat them as equivalent
numpy_res[np.isinf(numpy_res)] = np.nan
torch_res[torch_res.isinf()] = np.nan
self.assertEqual(torch_res, numpy_res)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_std_mean_correction(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
for dim, correction, keepdim in test_args:
kwargs = dict(dim=dim, correction=correction, keepdim=keepdim)
std1 = torch.std(tensor, **kwargs)
if dim is not None:
mean1 = torch.mean(tensor, dim=dim, keepdim=keepdim)
else:
mean1 = torch.mean(tensor)
if keepdim:
mean1 = mean1.reshape((1,) * tensor.ndim)
std2, mean2 = torch.std_mean(tensor, **kwargs)
self.assertEqual(std1, std2)
self.assertEqual(mean1, mean2)
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_var_mean_correction(self, device, dtype):
_size = (20, 20)
test_args = [
*product(
# dim
(None, 0, 1),
# correction
(None, 0, 10, 30),
# keepdim
(False, True),
),
[None, -100, True], # Negative correction
]
tensor = make_tensor(_size, device=device, dtype=dtype)
for dim, correction, keepdim in test_args:
kwargs = dict(dim=dim, correction=correction, keepdim=keepdim)
var1 = torch.var(tensor, **kwargs)
if dim is not None:
mean1 = torch.mean(tensor, dim=dim, keepdim=keepdim)
else:
mean1 = torch.mean(tensor)
if keepdim:
mean1 = mean1.reshape((1,) * tensor.ndim)
var2, mean2 = torch.var_mean(tensor, **kwargs)
self.assertEqual(var1, var2)
self.assertEqual(mean1, mean2)
def test_amin_amax_some_dims(self, device):
sizes = (4, 6, 7, 5, 3)
dims = len(sizes)
x = torch.rand(sizes, device=device)
for num_of_dims in range(2, dims):
dim_list = list(combinations(list(range(dims)), r=num_of_dims))
for dim in dim_list:
for keepdim in [False, True]:
amin1 = torch.amin(x, dim=dim, keepdim=keepdim)
amax1 = torch.amax(x, dim=dim, keepdim=keepdim)
amin2 = x
amax2 = x
for i, d in enumerate(dim):
if not keepdim:
d -= i
amin2 = torch.amin(amin2, dim=d, keepdim=keepdim)
amax2 = torch.amax(amax2, dim=d, keepdim=keepdim)
self.assertEqual(amin1, amin2)
self.assertEqual(amax1, amax2)
def test_histc(self, device):
# negative nbins throws
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
torch.histc(torch.tensor([1], dtype=torch.float, device=device), bins=-1)
# empty tensor
actual = torch.histc(torch.tensor([], device=device), min=0, max=3)
expected = torch.zeros(100, dtype=torch.float, device=device)
self.assertEqual(expected, actual)
# without nbins
actual = torch.histc(
torch.tensor([2, 5], dtype=torch.float, device=device))
expected = torch.zeros(100, dtype=torch.float, device=device)
expected[0] = 1
expected[99] = 1
self.assertEqual(expected, actual)
# tensor with the same element
actual = torch.histc(torch.ones(5, dtype=torch.float, device=device), bins=5)
self.assertEqual(
torch.tensor([0, 0, 5, 0, 0], dtype=torch.float, device=device),
actual)
# no element falls between [min, max]
actual = torch.histc(
torch.ones(5, dtype=torch.float, device=device), bins=5, min=2, max=3)
self.assertEqual(
torch.tensor([0, 0, 0, 0, 0], dtype=torch.float, device=device),
actual)
# element falls below min + integral bin size and
actual = torch.histc(
torch.tensor([2, 4, 2, 2, 5, 4], dtype=torch.float, device=device),
bins=5, min=1, max=5)
self.assertEqual(
torch.tensor([0, 3, 0, 2, 1], dtype=torch.float, device=device),
actual)
# non-integral bin size
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
# double input
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.double, device=device), bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.double, device=device),
actual)
self.assertEqual(actual.dtype, torch.double)
# mixed input
actual = torch.histc(
torch.tensor([1., 2, 1], dtype=torch.float, device=device),
bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.float, device=device),
actual)
self.assertEqual(actual.dtype, torch.float)
# scalar input and 1 bin -- should return a 1-dimensional tensor, not a scalar.
actual = torch.histc(
torch.tensor(0, dtype=torch.float, device=device),
bins=1, min=0, max=3)
self.assertEqual(
torch.tensor([1], dtype=torch.float, device=device),
actual)
# tensors with inf; min, max not provided -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, r'range of \[inf, inf\] is not finite'):
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device))
with self.assertRaisesRegex(RuntimeError, r'range of \[1, inf\] is not finite'):
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device))
# tensors with inf; min, max provided
self.assertEqual(
torch.histc(torch.tensor([float("inf")], dtype=torch.float, device=device),
bins=1, min=0, max=3),
torch.tensor([0], dtype=torch.float, device=device))
self.assertEqual(
torch.histc(torch.tensor([1., 2., float("inf")], dtype=torch.float, device=device),
bins=4, max=3),
torch.tensor([0, 1, 1, 0], dtype=torch.float, device=device))
# tensor with nan -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, r'range of \[nan, nan\] is not finite'):
torch.histc(torch.tensor([float("nan")], dtype=torch.float, device=device))
# tensors with min > max -- should throw a RuntimeError
with self.assertRaisesRegex(RuntimeError, "max must be larger than min"):
torch.histc(torch.tensor([1., 2., 3.], dtype=torch.float, device=device),
bins=4, min=5, max=1)
# test against numpy.histogram()
def test_against_np(tensor, bins=100, min=0, max=0):
if min == 0 and max == 0:
min = tensor.min().item()
max = tensor.max().item()
nparr = tensor.cpu().numpy()
actual = torch.histc(tensor, bins=bins, min=min, max=max)
expected = torch.from_numpy(np.histogram(nparr, bins=bins, range=(min, max))[0])
actual_cpu = actual.cpu()
# NB: Numpy returns a int64 tensor, like normal people...
self.assertEqual(actual, expected.to(actual_cpu))
test_against_np(torch.tensor([1., 2, 1], device=device))
test_against_np(torch.randn(5000, device=device))
# Test bins arg
test_against_np(torch.randn(301, device=device), bins=10)
# Test truncated range
test_against_np(torch.randn(201, device=device), min=0.1, max=1)
noncontig = torch.randn(100, 3, device=device)[:, 2]
test_against_np(noncontig)
multidim = torch.randn(3, 5, 7, 2, device=device)
test_against_np(multidim)
expanded = torch.randn(1, 5, 1, 2, device=device).expand(3, 5, 7, 2)
test_against_np(expanded)
@onlyCPU
def test_histc_bfloat16(self, device):
actual = torch.histc(
torch.tensor([1, 2, 1], dtype=torch.bfloat16, device=device), bins=4, min=0, max=3)
self.assertEqual(
torch.tensor([0, 2, 1, 0], dtype=torch.bfloat16, device=device),
actual)
self.assertEqual(actual.dtype, torch.bfloat16)
"""
Runs torch.histogram and numpy.histogram on the specified input parameters
and asserts that their output is equal.
"""
def _test_histogram_numpy(self, t, bins, bin_range, weights, density):
def to_np(t):
if not torch.is_tensor(t):
return t
else:
return t.cpu().numpy()
# Wrapper around numpy.histogram performing conversions between torch tensors and numpy arrays.
def reference_histogram(self, t, bins, bin_range, weights, density, dtype):
(np_t, np_bins, np_weights) = map(to_np, [t, bins, weights])
(np_hist, np_bin_edges) = np.histogram(np_t, np_bins, range=bin_range, weights=np_weights, density=density)
return (torch.from_numpy(np_hist).to(dtype), torch.from_numpy(np_bin_edges).to(dtype))
# Doesn't pass a 'range' kwarg unless necessary because the override of histogram with Tensor bins doesn't accept one
if bin_range:
(actual_hist, actual_bin_edges) = torch.histogram(t, bins, range=bin_range, weight=weights, density=density)
else:
(actual_hist, actual_bin_edges) = torch.histogram(t, bins, weight=weights, density=density)
(expected_hist, expected_bin_edges) = reference_histogram(self, t, bins, bin_range, weights, density, actual_hist.dtype)
"""
Works around linspace discrepancies by passing torch's constructed bin_edges to numpy.
When bin edges are not explicitly defined, histogram uses the linspace operator internally
to construct the sequence of bin edges. In some cases, torch.linspace output differs slightly
from numpy.linspace output.
Issue: https://github.com/pytorch/pytorch/issues/58758
"""
if not torch.is_tensor(bins):
self.assertEqual(actual_bin_edges, expected_bin_edges, atol=1e-5, rtol=1e-5)
# Calls numpy.histogram again, passing torch's actual_bin_edges as the bins argument
(expected_hist, expected_bin_edges) = reference_histogram(
self, t, actual_bin_edges, bin_range, weights, density, actual_hist.dtype)
self.assertEqual(actual_hist, expected_hist)
self.assertEqual(actual_bin_edges, expected_bin_edges)
# Test passing non-contiguous output tensors
hist_out = make_tensor(expected_hist.shape, device=expected_hist.device, dtype=expected_hist.dtype,
noncontiguous=True)
bin_edges_out = make_tensor(expected_bin_edges.shape, device=expected_bin_edges.device, dtype=expected_bin_edges.dtype,
noncontiguous=True)
# Doesn't pass a 'range' kwarg unless necessary because the override of histogram with Tensor bins doesn't accept one
if bin_range:
torch.histogram(t, bins, range=bin_range, weight=weights, density=density, out=(hist_out, bin_edges_out))
else:
torch.histogram(t, bins, weight=weights, density=density, out=(hist_out, bin_edges_out))
self.assertEqual(hist_out, expected_hist)
self.assertEqual(bin_edges_out, expected_bin_edges)
@onlyCPU
@dtypes(torch.float32)
def test_histogram(self, device, dtype):
shapes = (
(),
(0,),
(1,),
(1, 5),
(3, 5),
(1, 5, 1),
(2, 3, 5))
for contig, bins_contig, bin_ct, weighted, density, shape in \
product([True, False], [True, False], range(1, 10), [True, False], [True, False], shapes):
values = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9, noncontiguous=not contig)
weights = make_tensor(shape, dtype=dtype, device=device, low=0, high=9, noncontiguous=not contig) if weighted else None
# Tests passing just the bin_ct
self._test_histogram_numpy(values, bin_ct, None, weights, density)
# Tests with caller-specified histogram range
bin_range = sorted((random.uniform(-9, 9), random.uniform(-9, 9)))
self._test_histogram_numpy(values, bin_ct, bin_range, weights, density)
# Tests with range min=max
bin_range[1] = bin_range[0]
self._test_histogram_numpy(values, bin_ct, bin_range, weights, density)
# Tests with caller-specified bin edges
bin_edges = make_tensor(bin_ct + 1, dtype=dtype, device=device, low=-9, high=9).msort()
if not bins_contig:
# Necessary because msort always produces contiguous output
bin_edges_noncontig = make_tensor(bin_ct + 1, dtype=dtype, device=device, noncontiguous=not bins_contig)
bin_edges_noncontig.copy_(bin_edges)
bin_edges = bin_edges_noncontig
self.assertEqual(bin_edges.is_contiguous(), bins_contig)
self._test_histogram_numpy(values, bin_edges, None, weights, density)
# Tests with input tensor in which all elements are equal
elt = random.uniform(-9, 9)
values = make_tensor(shape, dtype=dtype, device=device, low=elt, high=elt, noncontiguous=not contig)
self._test_histogram_numpy(values, bin_ct, bin_range, weights, density)
self._test_histogram_numpy(values, bin_edges, None, weights, density)
# Tests with input equal to bin_edges
weights = (
make_tensor(bin_ct + 1, dtype=dtype, device=device, low=0, high=9, noncontiguous=not contig)
if weighted
else None
)
self._test_histogram_numpy(bin_edges, bin_edges, None, weights, density)
# Tests values of default args
for bin_ct, shape in product(range(1, 10), shapes):
values = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9)
(actual_hist, actual_bin_edges) = torch.histogram(values, bin_ct)
(expected_hist, expected_bin_edges) = torch.histogram(
values, bin_ct, range=None, weight=None, density=False)
self.assertEqual(actual_hist, expected_hist)
self.assertEqual(actual_bin_edges, expected_bin_edges)
"""
Runs torch.histogramdd and numpy.histogramdd on the specified input parameters
and asserts that their output is equal.
"""
def _test_histogramdd_numpy(self, t, bins, bin_range, weights, density):
def to_np(t):
if type(t) == list:
return list(map(to_np, t))
if not torch.is_tensor(t):
return t
return t.cpu().numpy()
# Wrapper around numpy.histogram performing conversions between torch tensors and numpy arrays.
def reference_histogramdd(t, bins, bin_range, weights, density, dtype):
(np_t, np_bins, np_weights) = map(to_np, [t, bins, weights])
# numpy.histogramdd accepts only (N, D) shapes
D = np_t.shape[-1]
N = np.prod(np_t.shape[:-1])
reshaped_t = np.reshape(np_t, (N, D))
reshaped_wt = np.reshape(np_weights, (N,)) if np_weights is not None else None
# numpy.histogramdd throws an error for D=0
if D == 0:
return (torch.tensor(float('nan') if density else 0.), [])
# numpy.histogramdd expects range to be specified as a sequence of D (lower, upper) tuples
reshaped_range = None if not bin_range else [(bin_range[2 * i], bin_range[2 * i + 1]) for i in range(D)]
(np_hist, np_bin_edges) = np.histogramdd(reshaped_t, np_bins,
range=reshaped_range, weights=reshaped_wt, density=density)
return (torch.from_numpy(np_hist).to(dtype), [torch.from_numpy(t).to(dtype) for t in np_bin_edges])
(actual_hist, actual_bin_edges) = torch.histogramdd(t, bins, range=bin_range, weight=weights, density=density)
(expected_hist, expected_bin_edges) = reference_histogramdd(t, bins, bin_range, weights, density, actual_hist.dtype)
D = len(actual_bin_edges)
self.assertEqual(D, len(expected_bin_edges))
"""
Works around linspace discrepancies by passing torch's constructed bin_edges to numpy.
When bin edges are not explicitly defined, histogram uses the linspace operator internally
to construct the sequence of bin edges. In some cases, torch.linspace output differs slightly
from numpy.linspace output.
Issue: https://github.com/pytorch/pytorch/issues/58758
"""
if not torch.is_tensor(bins):
for dim in range(D):
self.assertEqual(actual_bin_edges[dim], expected_bin_edges[dim], atol=1e-5, rtol=1e-5)
# Calls numpy.histogram again, passing torch's actual_bin_edges as the bins argument
(expected_hist, expected_bin_edges) = reference_histogramdd(
t, actual_bin_edges, bin_range, weights, density, actual_hist.dtype)
self.assertEqual(D, len(expected_bin_edges))
self.assertEqual(actual_hist, expected_hist)
for dim in range(D):
self.assertEqual(actual_bin_edges[dim], expected_bin_edges[dim])
@onlyCPU
@dtypes(torch.float32)
def test_histogramdd(self, device, dtype):
shapes = (
(1, 5),
(3, 5),
(1, 5, 1),
(2, 3, 5),
(7, 7, 7, 7),
(16, 8, 4, 2),
(10, 10, 10),
(7, 0, 3),
(5, 0),)
for contig, bins_contig, weighted, density, shape in \
product([True, False], [True, False], [True, False], [True, False], shapes):
D = shape[-1]
values = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9, noncontiguous=not contig)
weights = (
make_tensor(shape[:-1], dtype=dtype, device=device, low=0, high=9, noncontiguous=not contig)
if weighted
else None
)
# Tests passing a single bin count
bin_ct = random.randint(1, 5)
self._test_histogramdd_numpy(values, bin_ct, None, weights, density)
# Tests passing a bin count for each dimension
bin_ct = [random.randint(1, 5) for dim in range(D)]
self._test_histogramdd_numpy(values, bin_ct, None, weights, density)
# Tests with caller-specified histogram range
bin_range_tuples = [sorted((random.uniform(-9, 9), random.uniform(-9, 9))) for dim in range(D)]
bin_range = [elt for t in bin_range_tuples for elt in t]
self._test_histogramdd_numpy(values, bin_ct, bin_range, weights, density)
# Tests with range min=max
for dim in range(D):
bin_range[2 * dim + 1] = bin_range[2 * dim]
self._test_histogramdd_numpy(values, bin_ct, bin_range, weights, density)
# Tests with caller-specified bin edges
bin_edges = [make_tensor(ct + 1, dtype=dtype, device=device, low=-9, high=9).msort() for ct in bin_ct]
if not bins_contig:
# Necessary because msort always produces contiguous output
bin_edges_noncontig = [
make_tensor(ct + 1, dtype=dtype, device=device, noncontiguous=not bins_contig)
for ct in bin_ct
]
for dim in range(D):
bin_edges_noncontig[dim].copy_(bin_edges[dim])
bin_edges = bin_edges_noncontig
for dim in range(D):
self.assertEqual(bin_edges[dim].is_contiguous(), bins_contig)
self._test_histogramdd_numpy(values, bin_edges, None, weights, density)
@onlyCPU
@dtypes(torch.float32)
def test_histogram_error_handling(self, device, dtype):
with self.assertRaisesRegex(RuntimeError, 'not implemented for'):
values = make_tensor((), dtype=torch.int32, device=device)
torch.histogram(values, 1)
inconsistent_dtype = torch.float32 if dtype != torch.float32 else torch.float64
with self.assertRaisesRegex(RuntimeError, 'input tensor and bins tensors should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
bins = make_tensor((), dtype=inconsistent_dtype, device=device)
torch.histogram(values, bins)
with self.assertRaisesRegex(RuntimeError, 'input tensor and weight tensor should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
weight = make_tensor((), dtype=inconsistent_dtype, device=device)
torch.histogram(values, 1, weight=weight)
with self.assertRaisesRegex(RuntimeError, 'input tensor and hist tensor should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
hist = make_tensor((), dtype=inconsistent_dtype, device=device)
bin_edges = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, 1, out=(hist, bin_edges))
with self.assertRaisesRegex(RuntimeError, 'input tensor and bin_edges tensor should have the same dtype'):
values = make_tensor((), dtype=dtype, device=device)
hist = make_tensor((), dtype=dtype, device=device)
bin_edges = make_tensor((), dtype=inconsistent_dtype, device=device)
torch.histogram(values, 1, out=(hist, bin_edges))
with self.assertRaisesRegex(RuntimeError, 'bins tensor should have one dimension'):
t = make_tensor((2, 2), dtype=dtype, device=device)
torch.histogram(t, t)
with self.assertRaisesRegex(RuntimeError, 'bins tensor should have at least 1 element'):
t = make_tensor((0), dtype=dtype, device=device)
torch.histogram(t, t)
with self.assertRaisesRegex(RuntimeError, 'bins must be > 0'):
values = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, -1)
with self.assertRaisesRegex(RuntimeError, 'if weight tensor is provided it should have the same shape \
as the input tensor excluding its innermost dimension'):
values = make_tensor((2, 2), dtype=dtype, device=device)
weight = make_tensor((1), dtype=dtype, device=device)
torch.histogram(values, 1, weight=weight)
with self.assertRaisesRegex(TypeError, 'received an invalid combination of arguments'):
values = make_tensor((), dtype=dtype, device=device)
bin_edges = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, bin_edges, range=(0, 1))
with self.assertRaisesRegex(RuntimeError, 'min should not exceed max'):
values = make_tensor((), dtype=dtype, device=device)
torch.histogram(values, 2, range=(1, 0))
with self.assertRaisesRegex(RuntimeError, r'range \[nan, nan\] is not finite'):
values = torch.tensor([float("nan")], device=device, dtype=dtype)
torch.histogram(values, 2)
# Tests to ensure that reduction functions employing comparison operators are usable when there
# exists a zero dimension (i.e. when the the tensors are empty) in the tensor. These tests specifically
# cater to functions where specifying the `dim` parameter is necessary.
def test_tensor_compare_ops_empty(self, device):
shape = (2, 0, 4)
master_input = torch.randn(shape, device=device)
np_input = np.empty(shape)
test_functions = [
('amax', torch.amax, np.amax),
('amin', torch.amin, np.amin),
('max', lambda *args, **kwargs: torch.max(*args, **kwargs).values, np.max),
('min', lambda *args, **kwargs: torch.min(*args, **kwargs).values, np.min),
('median', lambda *args, **kwargs: torch.median(*args, **kwargs).values, np.median),
]
for name, fn, np_function in test_functions:
# Check if reduction happens along the specified dim with and without keepdim. Check with
# numpy to maintain compatibility with numpy functions.
error_msg = f"test function: {name}"
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=2), msg=error_msg)
self.assertEqual(np_function(np_input, axis=2),
fn(master_input, dim=2).cpu().numpy(), msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=-1), msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1),
fn(master_input, dim=-1).cpu().numpy(), msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=2, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=2, keepdims=True),
fn(master_input, dim=2, keepdim=True).cpu().numpy(), msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=-1, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1, keepdims=True),
fn(master_input, dim=-1, keepdim=True).cpu().numpy(), msg=error_msg, exact_dtype=False)
# Check if function raises error on specified zero'd dimension as reduction dim.
self.assertRaisesRegex(IndexError, "Expected reduction dim", lambda: fn(master_input, dim=1))
# Tests to ensure that reduction of zero-dim tensors (i.e. empty tensors) using comparison operators
# raises an error if no `dim` parameter is specified. This exists separately from tests in
# test_tensot_compare_ops_empty because not specifying a `dim` parameter in the former tests does
# not throw errors. Also, checking the return type of argmax requires supplying a different dtype
# argument than that for the input tensor. There is also variantion in numpy testing.
def test_tensor_compare_ops_argmax_argmix_kthvalue_dim_empty(self, device):
shape = (2, 0, 4)
master_input = torch.randn(shape, device=device)
np_input = np.empty(shape)
test_functions = [
('argmax', torch.argmax, {'dtype': torch.int64}, np.argmax),
('argmin', torch.argmin, {'dtype': torch.int64}, np.argmin),
('kthvalue', lambda *args, k=1, **kwargs: torch.kthvalue(*args, k=1, **kwargs).values,
{}, lambda *args, k=1, axis=None, **kwargs: np.partition(*args, k, **kwargs).take(k - 1, axis=axis))
]
for name, fn, dtype, np_function in test_functions:
error_msg = f"test function: {name}"
self.assertEqual(torch.empty((2, 0), device=device, **dtype), fn(master_input, dim=2), msg=error_msg)
self.assertEqual(
np_function(np_input, axis=2), fn(master_input, dim=2).cpu().numpy(), msg=error_msg, exact_dtype=False
)
self.assertEqual(torch.empty((2, 0), device=device, **dtype), fn(master_input, dim=-1), msg=error_msg)
self.assertEqual(
np_function(np_input, axis=-1), fn(master_input, dim=-1).cpu().numpy(), msg=error_msg, exact_dtype=False
)
# keepdim variant does not exist for numpy
self.assertEqual(torch.empty((2, 0, 1), device=device, **dtype), fn(master_input, dim=2, keepdim=True),
msg=error_msg)
self.assertEqual(torch.empty((2, 0, 1), device=device, **dtype), fn(master_input, dim=-1, keepdim=True),
msg=error_msg)
# Check if function raises error on specified zero'd dimension as reduction dim.
self.assertRaisesRegex(IndexError, "Expected reduction dim", lambda: fn(master_input, dim=1))
if name != 'kthvalue':
self.assertRaisesRegex(IndexError, "Expected reduction dim", lambda: fn(master_input))
# Tests to ensure that reduction of zero-dim tensors (i.e. empty tensors) using math operators works when a
# non-zero dim is specified for the reduction and throws an error when the dim specified is 0. Although
# there is some repetition with test_tensor_compare_ops_optional_dim_empty and test_tensor_compare_ops_empty,
# these tests are kept separate since tests for math operators also require checking for correctness of the
# returned data using allclose() or isinf() which does not exists in the former tests.
@skipIfNoSciPy
def test_tensor_reduce_ops_empty(self, device):
from scipy.special import logsumexp
shape = (2, 0, 4)
master_input = torch.randn(shape, device=device)
np_input = np.empty(shape)
test_functions = [
('prod', torch.prod, 1., np.prod),
('sum', torch.sum, 0., np.sum),
('norm', torch.norm, 0., np.linalg.norm),
('mean', torch.mean, nan, np.mean),
('var', torch.var, nan, np.var),
('std', torch.std, nan, np.std),
('logsumexp', torch.logsumexp, -inf, logsumexp),
]
for name, fn, return_value, np_function in test_functions:
# Check if reduction happens along the specified dimension.
error_msg = f"test function: {name}"
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=2), msg=error_msg)
self.assertEqual(np_function(np_input, axis=2), fn(master_input, dim=2).cpu().numpy(), msg=error_msg,
exact_dtype=False)
self.assertEqual(torch.empty((2, 0), device=device), fn(master_input, dim=-1), msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1), fn(master_input, dim=-1).cpu().numpy(), msg=error_msg,
exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=2, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=2, keepdims=True), fn(master_input, dim=2, keepdim=True),
msg=error_msg, exact_dtype=False)
self.assertEqual(torch.empty((2, 0, 1), device=device), fn(master_input, dim=-1, keepdim=True),
msg=error_msg)
self.assertEqual(np_function(np_input, axis=-1, keepdims=True), fn(master_input, dim=-1, keepdim=True),
msg=error_msg, exact_dtype=False)
self.assertEqual(torch.full((2, 4), return_value, device=device), fn(master_input, dim=1), msg=error_msg)
self.assertEqual(torch.full((2, 4), return_value, device=device), fn(master_input, dim=-2), msg=error_msg)
self.assertEqual(torch.full((2, 1, 4), return_value, device=device), fn(master_input, dim=1, keepdim=True),
msg=error_msg)
self.assertEqual(torch.full((2, 1, 4), return_value, device=device), fn(master_input, dim=-2, keepdim=True),
msg=error_msg)
if name != 'logsumexp':
# The scipy function does not work for reduction the zero dimension
self.assertEqual(np.float32(np_function(np_input, axis=1)), fn(master_input, dim=1).cpu().numpy(),
msg=error_msg)
self.assertEqual(np.float32(np_function(np_input, axis=-2)), fn(master_input, dim=-2).cpu().numpy(),
msg=error_msg)
self.assertEqual(np.float32(np_function(np_input, axis=1, keepdims=True)),
fn(master_input, dim=1, keepdim=True).cpu().numpy(),
msg=error_msg)
self.assertEqual(np.float32(np_function(np_input, axis=-2, keepdims=True)),
fn(master_input, dim=-2, keepdim=True).cpu().numpy(),
msg=error_msg)
# logsumexp throws a type error when not specifying dim so test separately.
self.assertEqual(torch.full((), return_value, device=device), fn(master_input), msg=error_msg)
else:
self.assertRaises(TypeError, lambda: fn(master_input))
# Tests to ensure that any() and all() functions work with zero-dim tensors. Kept separate from
# other tests for checking reduction with zero-dim tensors because these tests have significantly
# different testing behaviour than that used for the former tests.
def test_reduction_empty_any_all(self, device):
shape = (2, 0, 4)
x = torch.randn(shape, device=device)
for dtype in all_types_and_complex_and(torch.half, torch.bool):
# Refer: [all, any uint8 compatibility]
if dtype == torch.uint8:
out_dtype = torch.uint8
else:
out_dtype = torch.bool # output of all/any is bool irrespective of input dtype
xb = x.to(dtype)
yb = x.to(dtype)
# any
self.assertEqual((2, 0), xb.any(2).shape)
self.assertEqual((2, 0, 1), xb.any(2, keepdim=True).shape)
self.assertEqual(torch.zeros((2, 4), device=device, dtype=out_dtype), xb.any(1))
self.assertEqual(torch.zeros((2, 1, 4), device=device, dtype=out_dtype), xb.any(1, keepdim=True))
self.assertEqual(torch.zeros((), device=device, dtype=out_dtype), xb.any())
# all
self.assertEqual((2, 0), xb.all(2).shape)
self.assertEqual((2, 0, 1), xb.all(2, keepdim=True).shape)
self.assertEqual(torch.ones((2, 4), device=device, dtype=out_dtype), xb.all(1))
self.assertEqual(torch.ones((2, 1, 4), device=device, dtype=out_dtype), xb.all(1, keepdim=True))
self.assertEqual(torch.ones((), device=device, dtype=out_dtype), xb.all())
# TODO: can these be merged with their respective OpInfos?
def test_reduce_dtype(self, device):
def test_reduction(op, has_no_dim, takes_dtype=True):
x = torch.randn(3, 3, dtype=torch.float, requires_grad=True, device=device)
if has_no_dim:
grad1, = torch.autograd.grad([op(x)], [x])
grad2, = torch.autograd.grad([op(x, dtype=torch.double)], [x])
self.assertEqual(grad1, grad2)
self.assertEqual(grad2.dtype, torch.float)
gi = torch.randn(op(x, dim=0).shape, dtype=torch.float, device=device)
grad1, = torch.autograd.grad([op(x, dim=0)], [x], gi)
if takes_dtype:
grad2, = torch.autograd.grad([op(x, dim=0, dtype=torch.double)], [x], gi.double())
else:
grad2, = torch.autograd.grad([op(x.double(), dim=0)], [x], gi.double())
self.assertEqual(grad1, grad2)
self.assertEqual(grad2.dtype, torch.float)
test_reduction(torch.sum, True)
test_reduction(torch.prod, True)
test_reduction(torch.cumsum, False)
test_reduction(torch.cumprod, False)
test_reduction(torch.logcumsumexp, False, takes_dtype=False)
@ops(reference_masked_ops)
def test_reference_masked(self, device, dtype, op):
"""Test masked reduction operations on strided-only tensors using
numpy reductions as reference.
"""
def to_numpy(input):
if input.dtype is torch.bfloat16:
return input.cpu().to(torch.float32).numpy()
else:
return input.cpu().numpy()
samples = op.sample_inputs_func(op, device, dtype, requires_grad=False)
for sample_input in samples:
t = sample_input.input
actual = op(t, *sample_input.args, **sample_input.kwargs)
exact_dtype = not (t.dtype is torch.bfloat16
or (op.promotes_int_to_float and not torch.is_floating_point(t)))
expected = op.ref(to_numpy(t), *sample_input.args,
**dict(
# `identity` is mapped to numpy reduction `initial` argument
identity=torch.masked._reduction_identity(op.name, t),
**sample_input.kwargs))
# Workaround https://github.com/pytorch/pytorch/issues/66556
expected = np.asarray(expected) # transform numpy scalars to numpy.ndarray instances
msg = ("Failed to produce expected results! Input tensor was"
" {0}, torch result is {1}, and reference result is"
" {2}.").format(t, actual, expected) if t.numel() < 10 else None
self.assertEqual(actual, expected, msg, exact_dtype=exact_dtype)
instantiate_device_type_tests(TestReductions, globals())
if __name__ == '__main__':
run_tests()
|