1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
|
# Owner(s): ["module: serialization"]
import torch
import unittest
import io
import tempfile
import os
import sys
import zipfile
import warnings
import gzip
import copy
import pickle
import shutil
import pathlib
from copy import deepcopy
from itertools import product
from torch._utils_internal import get_file_path_2
from torch._utils import _rebuild_tensor
from torch.serialization import check_module_version_greater_or_equal
from torch.testing._internal.common_utils import TestCase, IS_WINDOWS, TEST_DILL, \
run_tests, download_file, BytesIOContext, TemporaryFileName, parametrize, instantiate_parametrized_tests
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_dtype import all_types_and_complex_and
# These tests were all copied from `test/test_torch.py` at some point, so see
# the actual blame, see this revision
# https://github.com/pytorch/pytorch/blame/9a2691f2fc948b9792686085b493c61793c2de30/test/test_torch.py
if TEST_DILL:
import dill
HAS_DILL_AT_LEAST_0_3_1 = check_module_version_greater_or_equal(dill, (0, 3, 1))
else:
HAS_DILL_AT_LEAST_0_3_1 = False
can_retrieve_source = True
with warnings.catch_warnings(record=True) as warns:
with tempfile.NamedTemporaryFile() as checkpoint:
x = torch.save(torch.nn.Module(), checkpoint)
for warn in warns:
if "Couldn't retrieve source code" in warn.message.args[0]:
can_retrieve_source = False
break
class FilelikeMock(object):
def __init__(self, data, has_fileno=True, has_readinto=False):
if has_readinto:
self.readinto = self.readinto_opt
if has_fileno:
# Python 2's StringIO.StringIO has no fileno attribute.
# This is used to test that.
self.fileno = self.fileno_opt
self.calls = set()
self.bytesio = io.BytesIO(data)
def trace(fn, name):
def result(*args, **kwargs):
self.calls.add(name)
return fn(*args, **kwargs)
return result
for attr in ['read', 'readline', 'seek', 'tell', 'write', 'flush']:
traced_fn = trace(getattr(self.bytesio, attr), attr)
setattr(self, attr, traced_fn)
def fileno_opt(self):
raise io.UnsupportedOperation('Not a real file')
def readinto_opt(self, view):
self.calls.add('readinto')
return self.bytesio.readinto(view)
def was_called(self, name):
return name in self.calls
class SerializationMixin(object):
def _test_serialization_data(self):
a = [torch.randn(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)] # 0-3
b += [a[0].storage()] # 4
b += [a[0].reshape(-1)[1:4].storage()] # 5
b += [torch.arange(1, 11).int()] # 6
t1 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
t2 = torch.FloatTensor().set_(a[0].reshape(-1)[1:4].clone().storage(), 0, (3,), (1,))
b += [(t1.storage(), t1.storage(), t2.storage())] # 7
b += [a[0].reshape(-1)[0:2].storage()] # 8
return b
def _test_serialization_assert(self, b, c):
self.assertEqual(b, c, atol=0, rtol=0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.storage.TypedStorage))
self.assertEqual(c[4].dtype, torch.float)
c[0].fill_(10)
self.assertEqual(c[0], c[2], atol=0, rtol=0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], atol=0, rtol=0)
# I have to do it in this roundabout fashion, because there's no
# way to slice storages
for i in range(4):
self.assertEqual(c[4][i + 1], c[5][i])
# check that serializing the same storage view object unpickles
# it as one object not two (and vice versa)
views = c[7]
self.assertEqual(views[0]._cdata, views[1]._cdata)
self.assertEqual(views[0], views[2])
self.assertNotEqual(views[0]._cdata, views[2]._cdata)
rootview = c[8]
self.assertEqual(rootview.data_ptr(), c[0].data_ptr())
def test_serialization_zipfile_utils(self):
data = {
'a': b'12039810948234589',
'b': b'1239081209484958',
'c/d': b'94589480984058'
}
def test(name_or_buffer):
with torch.serialization._open_zipfile_writer(name_or_buffer) as zip_file:
for key in data:
zip_file.write_record(key, data[key], len(data[key]))
if hasattr(name_or_buffer, 'seek'):
name_or_buffer.seek(0)
with torch.serialization._open_zipfile_reader(name_or_buffer) as zip_file:
for key in data:
actual = zip_file.get_record(key)
expected = data[key]
self.assertEqual(expected, actual)
with tempfile.NamedTemporaryFile() as f:
test(f)
with TemporaryFileName() as fname:
test(fname)
test(io.BytesIO())
def _test_serialization(self, weights_only):
# Test serialization with a real file
b = self._test_serialization_data()
with tempfile.NamedTemporaryFile() as f:
torch.save(b, f)
f.seek(0)
c = torch.load(f, weights_only=weights_only)
self._test_serialization_assert(b, c)
with TemporaryFileName() as fname:
torch.save(b, fname)
c = torch.load(fname, weights_only=weights_only)
self._test_serialization_assert(b, c)
# test non-ascii encoding of bytes arrays/strings
# The following bytes are produced by serializing
# [b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc', torch.zeros(1, dtype=torch.float), 2]
# in Python 2.7.12 and PyTorch 0.4.1, where the first element contains
# bytes of some utf-8 characters (i.e., `utf8_str.encode('utf-8')`).
serialized = (
b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03.'
b'\x80\x02}q\x01(U\x10protocol_versionq\x02M\xe9\x03U\n'
b'type_sizesq\x03}q\x04(U\x03intq\x05K\x04U\x05shortq\x06K\x02U'
b'\x04longq\x07K\x04uU\rlittle_endianq\x08\x88u.\x80\x02]q'
b'\x01(U\x0e\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85'
b'\xc5\xbcq\x02ctorch._utils\n_rebuild_tensor_v2\nq\x03((U'
b'\x07storageq\x04ctorch\nFloatStorage\nq\x05U\x0845640624q'
b'\x06U\x03cpuq\x07\x8a\x01\x01NtQK\x00K\x01\x85K\x01\x85'
b'\x89NtRq\x08K\x02e.\x80\x02]q\x01U\x0845640624q\x02a.\x01\x00'
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
)
buf = io.BytesIO(serialized)
utf8_bytes = b'\xc5\xbc\xc4\x85\xc4\x85\xc3\xb3\xc5\xbc\xc4\x85\xc5\xbc'
utf8_str = utf8_bytes.decode('utf-8')
loaded_utf8 = torch.load(buf, weights_only=weights_only, encoding='utf-8')
self.assertEqual(loaded_utf8, [utf8_str, torch.zeros(1, dtype=torch.float), 2])
buf.seek(0)
loaded_bytes = torch.load(buf, weights_only=weights_only, encoding='bytes')
self.assertEqual(loaded_bytes, [utf8_bytes, torch.zeros(1, dtype=torch.float), 2])
def test_serialization(self):
self._test_serialization(False)
def test_serialization_safe(self):
self._test_serialization(True)
def test_serialization_filelike(self):
# Test serialization (load and save) with a filelike object
b = self._test_serialization_data()
with BytesIOContext() as f:
torch.save(b, f)
f.seek(0)
c = torch.load(f)
self._test_serialization_assert(b, c)
def test_serialization_fake_zip(self):
data = [
ord('P'),
ord('K'),
5,
6
]
for i in range(0, 100):
data.append(0)
t = torch.tensor(data, dtype=torch.uint8)
with tempfile.NamedTemporaryFile() as f:
torch.save(t, f)
# If this check is False for all Python versions (i.e. the fix
# has been backported), this test and torch.serialization._is_zipfile
# can be deleted
self.assertTrue(zipfile.is_zipfile(f))
self.assertFalse(torch.serialization._is_zipfile(f))
f.seek(0)
self.assertEqual(torch.load(f), t)
def test_serialization_gzip(self):
# Test serialization with gzip file
b = self._test_serialization_data()
f1 = tempfile.NamedTemporaryFile(delete=False)
f2 = tempfile.NamedTemporaryFile(delete=False)
torch.save(b, f1)
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
with gzip.open(f2.name, 'rb') as f:
c = torch.load(f)
self._test_serialization_assert(b, c)
@unittest.skipIf(
not TEST_DILL or HAS_DILL_AT_LEAST_0_3_1,
'"dill" not found or is correct version'
)
def test_serialization_dill_version_not_supported(self):
x = torch.randn(5, 5)
with tempfile.NamedTemporaryFile() as f:
with self.assertRaisesRegex(ValueError, 'supports dill >='):
torch.save(x, f, pickle_module=dill)
f.seek(0)
with self.assertRaisesRegex(ValueError, 'supports dill >='):
x2 = torch.load(f, pickle_module=dill, encoding='utf-8')
@unittest.skipIf(
not TEST_DILL or not HAS_DILL_AT_LEAST_0_3_1,
'"dill" not found or not correct version'
)
def test_serialization_dill(self):
x = torch.randn(5, 5)
with tempfile.NamedTemporaryFile() as f:
torch.save(x, f, pickle_module=dill)
f.seek(0)
x2 = torch.load(f, pickle_module=dill, encoding='utf-8')
self.assertIsInstance(x2, type(x))
self.assertEqual(x, x2)
f.seek(0)
x3 = torch.load(f, pickle_module=dill)
self.assertIsInstance(x3, type(x))
self.assertEqual(x, x3)
def test_serialization_offset_gzip(self):
a = torch.randn(5, 5)
i = 41
f1 = tempfile.NamedTemporaryFile(delete=False)
f2 = tempfile.NamedTemporaryFile(delete=False)
with open(f1.name, 'wb') as f:
pickle.dump(i, f)
torch.save(a, f)
with open(f1.name, 'rb') as f_in, gzip.open(f2.name, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
with gzip.open(f2.name, 'rb') as f:
j = pickle.load(f)
b = torch.load(f)
self.assertTrue(torch.equal(a, b))
self.assertEqual(i, j)
def _test_serialization_sparse(self, weights_only):
def _test_serialization(conversion):
x = torch.zeros(3, 3)
x[1][1] = 1
x = conversion(x)
with tempfile.NamedTemporaryFile() as f:
torch.save({"tensor": x}, f)
f.seek(0)
y = torch.load(f, weights_only=weights_only)
self.assertEqual(x, y["tensor"])
_test_serialization(lambda x: x.to_sparse())
_test_serialization(lambda x: x.to_sparse_csr())
def test_serialization_sparse(self):
self._test_serialization(False)
def test_serialization_sparse_safe(self):
self._test_serialization(True)
def test_serialization_sparse_invalid(self):
x = torch.zeros(3, 3)
x[1][1] = 1
x = x.to_sparse()
class TensorSerializationSpoofer(object):
def __init__(self, tensor):
self.tensor = tensor
def __reduce_ex__(self, proto):
invalid_indices = self.tensor._indices().clone()
invalid_indices[0][0] = 3
return (
torch._utils._rebuild_sparse_tensor,
(
self.tensor.layout,
(
invalid_indices,
self.tensor._values(),
self.tensor.size())))
with tempfile.NamedTemporaryFile() as f:
torch.save({"spoofed": TensorSerializationSpoofer(x)}, f)
f.seek(0)
with self.assertRaisesRegex(
RuntimeError,
"size is inconsistent with indices"):
y = torch.load(f)
def test_serialization_sparse_csr_invalid(self):
x = torch.zeros(3, 3)
x[1][1] = 1
x = x.to_sparse_csr()
class TensorSerializationSpoofer(object):
def __init__(self, tensor):
self.tensor = tensor
def __reduce_ex__(self, proto):
invalid_crow_indices = self.tensor.crow_indices().clone()
invalid_crow_indices[0] = 3
return (
torch._utils._rebuild_sparse_tensor,
(
self.tensor.layout,
(
invalid_crow_indices,
self.tensor.col_indices(),
self.tensor.values(),
self.tensor.size())))
with tempfile.NamedTemporaryFile() as f:
torch.save({"spoofed": TensorSerializationSpoofer(x)}, f)
f.seek(0)
with self.assertRaisesRegex(
RuntimeError,
"rebuilding sparse tensor for layout torch.sparse_csr"):
y = torch.load(f)
def test_serialize_device(self):
device_str = ['cpu', 'cpu:0', 'cuda', 'cuda:0']
device_obj = [torch.device(d) for d in device_str]
for device in device_obj:
device_copied = copy.deepcopy(device)
self.assertEqual(device, device_copied)
def _test_serialization_backwards_compat(self, weights_only):
a = [torch.arange(1 + i, 26 + i).view(5, 5).float() for i in range(2)]
b = [a[i % 2] for i in range(4)]
b += [a[0].storage()]
b += [a[0].reshape(-1)[1:4].clone().storage()]
path = download_file('https://download.pytorch.org/test_data/legacy_serialized.pt')
c = torch.load(path, weights_only=weights_only)
self.assertEqual(b, c, atol=0, rtol=0)
self.assertTrue(isinstance(c[0], torch.FloatTensor))
self.assertTrue(isinstance(c[1], torch.FloatTensor))
self.assertTrue(isinstance(c[2], torch.FloatTensor))
self.assertTrue(isinstance(c[3], torch.FloatTensor))
self.assertTrue(isinstance(c[4], torch.storage.TypedStorage))
self.assertEqual(c[4].dtype, torch.float32)
c[0].fill_(10)
self.assertEqual(c[0], c[2], atol=0, rtol=0)
self.assertEqual(c[4], torch.FloatStorage(25).fill_(10), atol=0, rtol=0)
c[1].fill_(20)
self.assertEqual(c[1], c[3], atol=0, rtol=0)
# test some old tensor serialization mechanism
class OldTensorBase(object):
def __init__(self, new_tensor):
self.new_tensor = new_tensor
def __getstate__(self):
return (self.new_tensor.storage(),
self.new_tensor.storage_offset(),
tuple(self.new_tensor.size()),
self.new_tensor.stride())
class OldTensorV1(OldTensorBase):
def __reduce__(self):
return (torch.Tensor, (), self.__getstate__())
class OldTensorV2(OldTensorBase):
def __reduce__(self):
return (_rebuild_tensor, self.__getstate__())
x = torch.randn(30).as_strided([2, 3], [9, 3], 2)
for old_cls in [OldTensorV1, OldTensorV2]:
with tempfile.NamedTemporaryFile() as f:
old_x = old_cls(x)
torch.save(old_x, f)
f.seek(0)
load_x = torch.load(f, weights_only=weights_only)
self.assertEqual(x.storage(), load_x.storage())
self.assertEqual(x.storage_offset(), load_x.storage_offset())
self.assertEqual(x.size(), load_x.size())
self.assertEqual(x.stride(), load_x.stride())
def test_serialization_backwards_compat(self):
self._test_serialization_backwards_compat(False)
def test_serialization_backwards_compat_safe(self):
self._test_serialization_backwards_compat(True)
def test_serialization_save_warnings(self):
with warnings.catch_warnings(record=True) as warns:
with tempfile.NamedTemporaryFile() as checkpoint:
x = torch.save(torch.nn.Linear(2, 3), checkpoint)
self.assertEqual(len(warns), 0)
def test_serialization_map_location(self):
test_file_path = download_file('https://download.pytorch.org/test_data/gpu_tensors.pt')
def map_location(storage, loc):
return storage
def load_bytes():
with open(test_file_path, 'rb') as f:
return io.BytesIO(f.read())
fileobject_lambdas = [lambda: test_file_path, load_bytes]
cpu_map_locations = [
map_location,
{'cuda:0': 'cpu'},
'cpu',
torch.device('cpu'),
]
gpu_0_map_locations = [
{'cuda:0': 'cuda:0'},
'cuda',
'cuda:0',
torch.device('cuda'),
torch.device('cuda', 0)
]
gpu_last_map_locations = [
'cuda:{}'.format(torch.cuda.device_count() - 1),
]
def check_map_locations(map_locations, tensor_class, intended_device):
for fileobject_lambda in fileobject_lambdas:
for map_location in map_locations:
tensor = torch.load(fileobject_lambda(), map_location=map_location)
self.assertEqual(tensor.device, intended_device)
self.assertIsInstance(tensor, tensor_class)
self.assertEqual(tensor, tensor_class([[1.0, 2.0], [3.0, 4.0]]))
check_map_locations(cpu_map_locations, torch.FloatTensor, torch.device('cpu'))
if torch.cuda.is_available():
check_map_locations(gpu_0_map_locations, torch.cuda.FloatTensor, torch.device('cuda', 0))
check_map_locations(
gpu_last_map_locations,
torch.cuda.FloatTensor,
torch.device('cuda', torch.cuda.device_count() - 1)
)
@unittest.skipIf(torch.cuda.is_available(), "Testing torch.load on CPU-only machine")
def test_load_nonexistent_device(self):
# Setup: create a serialized file object with a 'cuda:0' restore location
# The following was generated by saving a torch.randn(2, device='cuda') tensor.
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9'
b'\x03.\x80\x02}q\x00(X\x10\x00\x00\x00protocol_versionq'
b'\x01M\xe9\x03X\r\x00\x00\x00little_endianq\x02\x88X\n'
b'\x00\x00\x00type_sizesq\x03}q\x04(X\x05\x00\x00\x00shortq'
b'\x05K\x02X\x03\x00\x00\x00intq\x06K\x04X\x04\x00\x00\x00'
b'longq\x07K\x04uu.\x80\x02ctorch._utils\n_rebuild_tensor_v2'
b'\nq\x00((X\x07\x00\x00\x00storageq\x01ctorch\nFloatStorage'
b'\nq\x02X\x0e\x00\x00\x0094919395964320q\x03X\x06\x00\x00'
b'\x00cuda:0q\x04K\x02Ntq\x05QK\x00K\x02\x85q\x06K\x01\x85q'
b'\x07\x89Ntq\x08Rq\t.\x80\x02]q\x00X\x0e\x00\x00\x00'
b'94919395964320q\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\xbb'
b'\x1f\x82\xbe\xea\x81\xd1>')
buf = io.BytesIO(serialized)
error_msg = r'Attempting to deserialize object on a CUDA device'
with self.assertRaisesRegex(RuntimeError, error_msg):
_ = torch.load(buf)
@unittest.skipIf((3, 8, 0) <= sys.version_info < (3, 8, 2), "See https://bugs.python.org/issue39681")
def test_serialization_filelike_api_requirements(self):
filemock = FilelikeMock(b'', has_readinto=False)
tensor = torch.randn(3, 5)
torch.save(tensor, filemock)
expected_superset = {'write', 'flush'}
self.assertTrue(expected_superset.issuperset(filemock.calls))
# Reset between save and load
filemock.seek(0)
filemock.calls.clear()
_ = torch.load(filemock)
expected_superset = {'read', 'readline', 'seek', 'tell'}
self.assertTrue(expected_superset.issuperset(filemock.calls))
def _test_serialization_filelike(self, tensor, mock, desc):
f = mock(b'')
torch.save(tensor, f)
f.seek(0)
data = mock(f.read())
msg = 'filelike serialization with {}'
b = torch.load(data)
self.assertTrue(torch.equal(tensor, b), msg.format(desc))
@unittest.skipIf((3, 8, 0) <= sys.version_info < (3, 8, 2), "See https://bugs.python.org/issue39681")
def test_serialization_filelike_missing_attrs(self):
# Test edge cases where filelike objects are missing attributes.
# The Python io docs suggests that these attributes should really exist
# and throw io.UnsupportedOperation, but that isn't always the case.
mocks = [
('no readinto', lambda x: FilelikeMock(x)),
('has readinto', lambda x: FilelikeMock(x, has_readinto=True)),
('no fileno', lambda x: FilelikeMock(x, has_fileno=False)),
]
to_serialize = torch.randn(3, 10)
for desc, mock in mocks:
self._test_serialization_filelike(to_serialize, mock, desc)
@unittest.skipIf((3, 8, 0) <= sys.version_info < (3, 8, 2), "See https://bugs.python.org/issue39681")
def test_serialization_filelike_stress(self):
a = torch.randn(11 * (2 ** 9) + 1, 5 * (2 ** 9))
# This one should call python read multiple times
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=False),
'read() stress test')
self._test_serialization_filelike(a, lambda x: FilelikeMock(x, has_readinto=True),
'readinto() stress test')
def test_serialization_filelike_uses_readinto(self):
# For maximum effiency, when reading a file-like object,
# ensure the C API calls readinto instead of read.
a = torch.randn(5, 4)
f = io.BytesIO()
torch.save(a, f)
f.seek(0)
data = FilelikeMock(f.read(), has_readinto=True)
b = torch.load(data)
self.assertTrue(data.was_called('readinto'))
def test_serialization_storage_slice(self):
# Generated using:
#
# t = torch.zeros(2);
# s1 = t.storage()[:1]
# s2 = t.storage()[1:]
# torch.save((s1, s2), 'foo.ser')
#
# with PyTorch 0.3.1
serialized = (b'\x80\x02\x8a\nl\xfc\x9cF\xf9 j\xa8P\x19.\x80\x02M\xe9\x03'
b'.\x80\x02}q\x00(X\n\x00\x00\x00type_sizesq\x01}q\x02(X\x03'
b'\x00\x00\x00intq\x03K\x04X\x05\x00\x00\x00shortq\x04K\x02X'
b'\x04\x00\x00\x00longq\x05K\x04uX\x10\x00\x00\x00protocol_versionq'
b'\x06M\xe9\x03X\r\x00\x00\x00little_endianq\x07\x88u.\x80\x02'
b'(X\x07\x00\x00\x00storageq\x00ctorch\nFloatStorage\nq\x01X\x0e'
b'\x00\x00\x0094279043900432q\x02X\x03\x00\x00\x00cpuq\x03K\x02'
b'X\x0e\x00\x00\x0094279029750368q\x04K\x00K\x01\x87q\x05tq\x06'
b'Q(h\x00h\x01X\x0e\x00\x00\x0094279043900432q\x07h\x03K\x02X'
b'\x0e\x00\x00\x0094279029750432q\x08K\x01K\x01\x87q\ttq\nQ'
b'\x86q\x0b.\x80\x02]q\x00X\x0e\x00\x00\x0094279043900432q'
b'\x01a.\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
b'\x00\x00\x00\x00')
buf = io.BytesIO(serialized)
(s1, s2) = torch.load(buf)
self.assertEqual(s1[0], 0)
self.assertEqual(s2[0], 0)
self.assertEqual(s1.data_ptr() + 4, s2.data_ptr())
def test_load_unicode_error_msg(self):
# This Pickle contains a Python 2 module with Unicode data and the
# loading should fail if the user explicitly specifies ascii encoding!
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
self.assertRaises(UnicodeDecodeError, lambda: torch.load(path, encoding='ascii'))
def test_load_python2_unicode_module(self):
# This Pickle contains some Unicode data!
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
with warnings.catch_warnings(record=True) as w:
self.assertIsNotNone(torch.load(path))
def test_load_error_msg(self):
expected_err_msg = (".*You can only torch.load from a file that is seekable. " +
"Please pre-load the data into a buffer like io.BytesIO and " +
"try to load from it instead.")
resource = FilelikeMock(data=b"data")
delattr(resource, "tell")
delattr(resource, "seek")
with self.assertRaisesRegex(AttributeError, expected_err_msg):
torch.load(resource)
def test_save_different_dtype_unallocated(self):
devices = ['cpu']
if torch.cuda.is_available():
devices.append('cuda')
def save_load_check(a, b):
with io.BytesIO() as f:
torch.save([a, b], f)
f.seek(0)
a_loaded, b_loaded = torch.load(f)
self.assertEqual(a, a_loaded)
self.assertEqual(b, b_loaded)
for device, dtype in product(devices, all_types_and_complex_and(torch.half,
torch.bfloat16, torch.bool)):
a = torch.tensor([], dtype=dtype, device=device)
for other_dtype in all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool):
s = torch.TypedStorage(
wrap_storage=a.storage().untyped(),
dtype=other_dtype)
save_load_check(a, s)
save_load_check(a.storage(), s)
b = torch.tensor([], dtype=other_dtype, device=device)
save_load_check(a, b)
def test_save_different_dtype_error(self):
error_msg = r"Cannot save multiple tensors or storages that view the same data as different types"
devices = ['cpu']
if torch.cuda.is_available():
devices.append('cuda')
for device in devices:
a = torch.randn(10, dtype=torch.complex128, device=device)
f = io.BytesIO()
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.save([a, a.imag], f)
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.save([a.storage(), a.imag], f)
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.save([a, a.imag.storage()], f)
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.save([a.storage(), a.imag.storage()], f)
a = torch.randn(10, device=device)
s_bytes = torch.TypedStorage(
wrap_storage=a.storage().untyped(),
dtype=torch.uint8)
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.save([a, s_bytes], f)
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.save([a.storage(), s_bytes], f)
class serialization_method(object):
def __init__(self, use_zip):
self.use_zip = use_zip
self.torch_save = torch.save
def __enter__(self, *args, **kwargs):
def wrapper(*args, **kwargs):
if '_use_new_zipfile_serialization' in kwargs:
raise RuntimeError("Cannot set method manually")
kwargs['_use_new_zipfile_serialization'] = self.use_zip
return self.torch_save(*args, **kwargs)
torch.save = wrapper
def __exit__(self, *args, **kwargs):
torch.save = self.torch_save
@unittest.skipIf(IS_WINDOWS, "NamedTemporaryFile on windows")
class TestBothSerialization(TestCase):
def _test_serialization_new_format_old_format_compat(self, device, weights_only):
x = [torch.ones(200, 200, device=device) for i in range(30)]
def test(f_new, f_old):
torch.save(x, f_new, _use_new_zipfile_serialization=True)
f_new.seek(0)
x_new_load = torch.load(f_new, weights_only=weights_only)
self.assertEqual(x, x_new_load)
torch.save(x, f_old, _use_new_zipfile_serialization=False)
f_old.seek(0)
x_old_load = torch.load(f_old, weights_only=weights_only)
self.assertEqual(x_old_load, x_new_load)
with tempfile.NamedTemporaryFile() as f_new, tempfile.NamedTemporaryFile() as f_old:
test(f_new, f_old)
def test_serialization_new_format_old_format_compat(self, device):
self._test_serialization_new_format_old_format_compat(device, False)
def test_serialization_new_format_old_format_compat_safe(self, device):
self._test_serialization_new_format_old_format_compat(device, True)
class TestOldSerialization(TestCase, SerializationMixin):
# unique_key is necessary because on Python 2.7, if a warning passed to
# the warning module is the same, it is not raised again.
def _test_serialization_container(self, unique_key, filecontext_lambda):
tmpmodule_name = 'tmpmodule{}'.format(unique_key)
def import_module(name, filename):
import importlib.util
spec = importlib.util.spec_from_file_location(name, filename)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
sys.modules[module.__name__] = module
return module
with filecontext_lambda() as checkpoint:
fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing',
'_internal', 'data', 'network1.py')
module = import_module(tmpmodule_name, fname)
torch.save(module.Net(), checkpoint)
# First check that the checkpoint can be loaded without warning about unsafe loads
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
if can_retrieve_source:
self.assertEqual(len(w), 0)
# Replace the module with different source
fname = get_file_path_2(os.path.dirname(os.path.dirname(torch.__file__)), 'torch', 'testing',
'_internal', 'data', 'network2.py')
module = import_module(tmpmodule_name, fname)
checkpoint.seek(0)
with warnings.catch_warnings(record=True) as w:
loaded = torch.load(checkpoint)
self.assertTrue(isinstance(loaded, module.Net))
if can_retrieve_source:
self.assertEqual(len(w), 1)
self.assertTrue(w[0].category, 'SourceChangeWarning')
def test_serialization_container(self):
self._test_serialization_container('file', tempfile.NamedTemporaryFile)
def test_serialization_container_filelike(self):
self._test_serialization_container('filelike', BytesIOContext)
def test_serialization_offset(self):
a = torch.randn(5, 5)
b = torch.randn(1024, 1024, 512, dtype=torch.float32)
m = torch.nn.Conv2d(1, 1, (1, 3))
i, j = 41, 43
with tempfile.NamedTemporaryFile() as f:
pickle.dump(i, f)
torch.save(a, f)
pickle.dump(j, f)
torch.save(b, f)
torch.save(m, f)
self.assertTrue(f.tell() > 2 * 1024 * 1024 * 1024)
f.seek(0)
i_loaded = pickle.load(f)
a_loaded = torch.load(f)
j_loaded = pickle.load(f)
b_loaded = torch.load(f)
m_loaded = torch.load(f)
self.assertTrue(torch.equal(a, a_loaded))
self.assertTrue(torch.equal(b, b_loaded))
self.assertTrue(m.kernel_size == m_loaded.kernel_size)
self.assertEqual(i, i_loaded)
self.assertEqual(j, j_loaded)
@parametrize('weights_only', (True, False))
def test_serialization_offset_filelike(self, weights_only):
a = torch.randn(5, 5)
b = torch.randn(1024, 1024, 512, dtype=torch.float32)
i, j = 41, 43
with BytesIOContext() as f:
pickle.dump(i, f)
torch.save(a, f)
pickle.dump(j, f)
torch.save(b, f)
self.assertTrue(f.tell() > 2 * 1024 * 1024 * 1024)
f.seek(0)
i_loaded = pickle.load(f)
a_loaded = torch.load(f, weights_only=weights_only)
j_loaded = pickle.load(f)
b_loaded = torch.load(f, weights_only=weights_only)
self.assertTrue(torch.equal(a, a_loaded))
self.assertTrue(torch.equal(b, b_loaded))
self.assertEqual(i, i_loaded)
self.assertEqual(j, j_loaded)
def run(self, *args, **kwargs):
with serialization_method(use_zip=False):
return super(TestOldSerialization, self).run(*args, **kwargs)
class TestSerialization(TestCase, SerializationMixin):
@parametrize('weights_only', (True, False))
def test_serialization_zipfile(self, weights_only):
data = self._test_serialization_data()
def test(name_or_buffer):
torch.save(data, name_or_buffer)
if hasattr(name_or_buffer, 'seek'):
name_or_buffer.seek(0)
result = torch.load(name_or_buffer, weights_only=weights_only)
self.assertEqual(result, data)
with tempfile.NamedTemporaryFile() as f:
test(f)
with TemporaryFileName() as fname:
test(fname)
test(io.BytesIO())
def test_serialization_zipfile_actually_jit(self):
with tempfile.NamedTemporaryFile() as f:
torch.jit.save(torch.jit.script(torch.nn.Linear(3, 4)), f)
f.seek(0)
torch.load(f)
# Ensure large zip64 serialization works properly
def test_serialization_2gb_file(self):
big_model = torch.nn.Conv2d(20000, 3200, kernel_size=3)
with BytesIOContext() as f:
torch.save(big_model.state_dict(), f)
f.seek(0)
state = torch.load(f)
@parametrize('weights_only', (True, False))
def test_pathlike_serialization(self, weights_only):
model = torch.nn.Conv2d(20, 3200, kernel_size=3)
with TemporaryFileName() as fname:
path = pathlib.Path(fname)
torch.save(model.state_dict(), path)
torch.load(path, weights_only=weights_only)
@parametrize('weights_only', (True, False))
def test_meta_serialization(self, weights_only):
big_model = torch.nn.Conv2d(20000, 320000, kernel_size=3, device='meta')
with BytesIOContext() as f:
torch.save(big_model.state_dict(), f)
f.seek(0)
state = torch.load(f, weights_only=weights_only)
self.assertEqual(state['weight'].size(), big_model.weight.size())
def test_weights_only_assert(self):
class HelloWorld:
def __reduce__(self):
return (print, ("Hello World!",))
with BytesIOContext() as f:
torch.save(HelloWorld(), f)
f.seek(0)
# Unsafe load should work
self.assertIsNone(torch.load(f, weights_only=False))
f.seek(0)
# Safe load should assert
with self.assertRaisesRegex(pickle.UnpicklingError, "Unsupported class"):
torch.load(f, weights_only=True)
def run(self, *args, **kwargs):
with serialization_method(use_zip=True):
return super(TestSerialization, self).run(*args, **kwargs)
class TestWrapperSubclass(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem', 'other']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# The wrapping tensor (TestSubclass) is just a meta tensor, so it
# doesn't hold any memory (meta tensor is generally the preferred type
# of tensor you want to make a subclass from)...
r = torch.Tensor._make_subclass(cls, elem.to('meta'), elem.requires_grad)
# ...the real tensor is held as an element on the tensor.
r.elem = elem
return r
def clone(self):
return type(self)(self.elem.clone())
class TestGetStateSubclass(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# The wrapping tensor (TestSubclass) is just a meta tensor, so it
# doesn't hold any memory (meta tensor is generally the preferred type
# of tensor you want to make a subclass from)...
r = torch.Tensor._make_subclass(cls, elem.to('meta'), elem.requires_grad)
# ...the real tensor is held as an element on the tensor.
r.elem = elem
return r
def __getstate__(self):
return ("foo", getattr(self, "elem", None), self.__dict__)
def __setstate__(self, state):
marker, self.elem, self.__dict__ = state
if not marker == "foo":
raise RuntimeError("Invalid state for TestGetStateSubclass")
self.reloaded = True
class TestEmptySubclass(torch.Tensor):
...
class TestSubclassSerialization(TestCase):
def test_tensor_subclass_wrapper_serialization(self):
wrapped_tensor = torch.rand(2)
my_tensor = TestWrapperSubclass(wrapped_tensor)
foo_val = "bar"
my_tensor.foo = foo_val
self.assertEqual(my_tensor.foo, foo_val)
with BytesIOContext() as f:
torch.save(my_tensor, f)
f.seek(0)
new_tensor = torch.load(f)
self.assertIsInstance(new_tensor, TestWrapperSubclass)
self.assertEqual(new_tensor.elem, my_tensor.elem)
self.assertEqual(new_tensor.foo, foo_val)
def test_tensor_subclass_getstate_overwrite(self):
wrapped_tensor = torch.rand(2)
my_tensor = TestGetStateSubclass(wrapped_tensor)
foo_val = "bar"
my_tensor.foo = foo_val
self.assertEqual(my_tensor.foo, foo_val)
with BytesIOContext() as f:
torch.save(my_tensor, f)
f.seek(0)
new_tensor = torch.load(f)
self.assertIsInstance(new_tensor, TestGetStateSubclass)
self.assertEqual(new_tensor.elem, my_tensor.elem)
self.assertEqual(new_tensor.foo, foo_val)
self.assertTrue(new_tensor.reloaded)
def test_tensor_subclass_deepcopy(self):
wrapped_tensor = torch.rand(2)
my_tensor = TestWrapperSubclass(wrapped_tensor)
foo_val = "bar"
my_tensor.foo = foo_val
self.assertEqual(my_tensor.foo, foo_val)
new_tensor = deepcopy(my_tensor)
self.assertIsInstance(new_tensor, TestWrapperSubclass)
self.assertEqual(new_tensor.elem, my_tensor.elem)
self.assertEqual(new_tensor.foo, foo_val)
@parametrize('requires_grad', (True, False))
def test_cloned_deepcopy(self, requires_grad):
my_tensor = torch.rand(2, requires_grad=requires_grad, device='meta')
new_tensor = deepcopy(my_tensor)
self.assertEqual(new_tensor.requires_grad, my_tensor.requires_grad)
def test_empty_class_serialization(self):
tensor = TestEmptySubclass([1.])
# Ensures it runs fine
tensor2 = copy.copy(tensor)
with BytesIOContext() as f:
torch.save(tensor, f)
f.seek(0)
tensor2 = torch.load(f)
tensor = TestEmptySubclass()
# Ensures it runs fine
# Note that tensor.data_ptr() == 0 here
tensor2 = copy.copy(tensor)
with BytesIOContext() as f:
torch.save(tensor, f)
f.seek(0)
tensor2 = torch.load(f)
instantiate_device_type_tests(TestBothSerialization, globals())
instantiate_parametrized_tests(TestSubclassSerialization)
instantiate_parametrized_tests(TestOldSerialization)
instantiate_parametrized_tests(TestSerialization)
if __name__ == '__main__':
run_tests()
|