1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
|
# Owner(s): ["module: tests"]
import torch
import numpy as np
import random
from torch._six import nan
from itertools import permutations, product
from torch.testing import make_tensor
from torch.testing._internal.common_dtype import all_types, all_types_and, floating_types_and
from torch.testing._internal.common_utils import \
(TestCase, run_tests, slowTest)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyNativeDeviceTypes,
onlyCUDA, dtypesIfCUDA, dtypesIfCPU, onlyCPU, largeTensorTest)
# TODO: remove this
SIZE = 100
class TestSortAndSelect(TestCase):
def assertIsOrdered(self, order, x, mxx, ixx, task):
SIZE = x.size(1)
if order == 'descending':
def check_order(a, b):
# `a != a` because we put NaNs
# at the end of ascending sorted lists,
# and the beginning of descending ones.
return ((a != a) | (a >= b)).all().item()
elif order == 'ascending':
def check_order(a, b):
# see above
return ((b != b) | (a <= b)).all().item()
else:
error('unknown order "{}", must be "ascending" or "descending"'.format(order))
are_ordered = True
for k in range(1, SIZE):
self.assertTrue(check_order(mxx[:, k - 1], mxx[:, k]),
'torch.sort ({}) values unordered for {}'.format(order, task))
seen = set()
indicesCorrect = True
size0 = x.size(0)
size = x.size(x.dim() - 1)
x = x.tolist()
mxx = mxx.tolist()
ixx = ixx.tolist()
for k in range(size0):
seen.clear()
for j in range(size):
self.assertEqual(x[k][ixx[k][j]], mxx[k][j],
msg='torch.sort ({}) indices wrong for {}'.format(order, task))
seen.add(ixx[k][j])
self.assertEqual(len(seen), size)
def test_sort(self, device):
# on CUDA 2048 vs >2048 have different code path for the dim being sorted
for SIZE in (4, 2049):
x = torch.rand(4, SIZE, device=device)
res1val, res1ind = torch.sort(x)
# Test inplace
y = x.clone()
y_inds = torch.tensor((), dtype=torch.int64, device=device)
torch.sort(y, out=(y, y_inds))
x_vals, x_inds = torch.sort(x)
self.assertEqual(x_vals, y)
self.assertEqual(x_inds, y_inds)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.sort(x, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
self.assertEqual(torch.argsort(x), res1ind)
self.assertEqual(x.argsort(), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random')
# Test simple sort
self.assertEqual(
torch.sort(torch.tensor((50, 40, 30, 20, 10), device=device))[0],
torch.tensor((10, 20, 30, 40, 50), device=device),
atol=0, rtol=0
)
# Test that we still have proper sorting with duplicate keys
x = torch.floor(torch.rand(4, SIZE, device=device) * 10)
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind, 'random with duplicate keys')
# DESCENDING SORT
x = torch.rand(4, SIZE, device=device)
res1val, res1ind = torch.sort(x, x.dim() - 1, True)
# Test use of result tensor
res2val = torch.tensor((), device=device)
res2ind = torch.tensor((), device=device, dtype=torch.long)
torch.sort(x, x.dim() - 1, True, out=(res2val, res2ind))
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
self.assertEqual(torch.argsort(x, x.dim() - 1, True), res1ind)
self.assertEqual(x.argsort(x.dim() - 1, True), res1ind)
# Test sorting of random numbers
self.assertIsOrdered('descending', x, res2val, res2ind, 'random')
# Test simple sort task
self.assertEqual(
torch.sort(torch.tensor((10, 20, 30, 40, 50), device=device), 0, True)[0],
torch.tensor((50, 40, 30, 20, 10), device=device),
atol=0, rtol=0
)
# Test that we still have proper sorting with duplicate keys
self.assertIsOrdered('descending', x, res2val, res2ind, 'random with duplicate keys')
# Test argument sorting with and without stable
x = torch.tensor([1, 10, 2, 2, 3, 7, 7, 8, 9, 9] * 3)
self.assertEqual(torch.argsort(x, stable=True), torch.sort(x, stable=True).indices)
self.assertEqual(torch.argsort(x, stable=False), torch.sort(x, stable=False).indices)
self.assertEqual(torch.argsort(x), torch.sort(x).indices)
# Test sorting with NaNs
x = torch.rand(4, SIZE, device=device)
x[1][2] = float('NaN')
x[3][0] = float('NaN')
torch.sort(x, out=(res2val, res2ind))
self.assertIsOrdered('ascending', x, res2val, res2ind,
'random with NaNs')
torch.sort(x, out=(res2val, res2ind), descending=True)
self.assertIsOrdered('descending', x, res2val, res2ind,
'random with NaNs')
@onlyCUDA
def test_sort_large_slice(self, device):
# tests direct cub path
x = torch.randn(4, 1024000, device=device)
res1val, res1ind = torch.sort(x, stable=True)
torch.cuda.synchronize()
# assertIsOrdered is too slow, so just compare to cpu
res1val_cpu, res1ind_cpu = torch.sort(x.cpu(), stable=True)
self.assertEqual(res1val, res1val_cpu.cuda())
self.assertEqual(res1ind, res1ind_cpu.cuda())
res1val, res1ind = torch.sort(x, descending=True, stable=True)
torch.cuda.synchronize()
res1val_cpu, res1ind_cpu = torch.sort(x.cpu(), descending=True, stable=True)
self.assertEqual(res1val, res1val_cpu.cuda())
self.assertEqual(res1ind, res1ind_cpu.cuda())
# FIXME: remove torch.bool from unsupported types once support is added for cub sort
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_stable_sort(self, device, dtype):
sizes = (100, 1000, 10000)
for ncopies in sizes:
x = torch.tensor([0, 1] * ncopies, dtype=dtype, device=device)
_, idx = x.sort(stable=True)
self.assertEqual(
idx[:ncopies],
torch.arange(start=0, end=2 * ncopies, step=2, device=device)
)
self.assertEqual(
idx[ncopies:],
torch.arange(start=1, end=2 * ncopies, step=2, device=device)
)
@onlyCUDA
@dtypes(torch.uint8)
@largeTensorTest('200GB') # Unfortunately 80GB A100 is not large enough
def test_sort_large(self, device, dtype):
t0 = torch.randperm(8192, device=device).to(dtype)
t = t0.view(1, 8192).expand(2 ** 18 + 1, -1).contiguous()
v, i = t.sort()
del t
iv, im = i.var_mean(dim=0)
del i
vv, vm = v.var_mean(dim=0)
del v
self.assertEqual(vv, torch.zeros_like(vv))
self.assertEqual(iv, torch.zeros_like(iv))
self.assertEqual(vm, torch.arange(255, dtype=dtype, device=device))
self.assertEqual(im, t0.sort().indices)
@dtypes(torch.float32)
def test_sort_restride(self, device, dtype):
# Input: non-contiguous (stride: 5) 3-element array
tensor = torch.randn((3, 5), dtype=dtype, device=device)[:, 0]
# Outputs: 0-dim tensors
# They will need to be resized, which means they will also be
# restrided with the input tensor's strides as base.
values = torch.tensor(0, dtype=dtype, device=device)
indices = torch.tensor(0, dtype=torch.long, device=device)
torch.sort(tensor, out=(values, indices))
# Check: outputs were restrided to dense strides
self.assertEqual(values.stride(), (1,))
self.assertEqual(indices.stride(), (1,))
# Check: 'tensor' indexed by 'indices' is equal to 'values'
self.assertEqual(tensor[indices], values)
def _test_sort_discontiguous(self, device, dtype):
# on CUDA 2048 vs >2048 have different code path for the dim being sorted
sizes = (5, 7, 2049)
for shape in permutations(sizes):
for perm in permutations((0, 1, 2)):
for dim in range(3):
t = torch.randn(shape, device=device, dtype=dtype).permute(perm)
r1 = t.sort(dim=dim)
r2 = t.contiguous().sort(dim=dim)
self.assertEqual(r1, r2)
n = t.size(dim)
# assert ordered
self.assertTrue((r1.values.narrow(dim, 1, n - 1) >= r1.values.narrow(dim, 0, n - 1)).all())
# assert that different segments does not mix, which can easily happen
# if the stride is not handled correctly
self.assertTrue((t.unsqueeze(-1).transpose(dim, -1) == r1.values.unsqueeze(-1)).any(dim=dim).any(dim=-1).all())
# assert stride is preserved
if self.device_type == 'cuda':
# FIXME: this behavior should be true for all cases, not
# just the one specified in if condition
self.assertEqual(r1.values.stride(), t.stride())
self.assertEqual(r1.indices.stride(), t.stride())
@onlyCUDA
@dtypes(torch.float32)
def test_sort_discontiguous(self, device, dtype):
self._test_sort_discontiguous(device, dtype)
@slowTest # this test is slow on CPU, but not on CUDA
@onlyCPU
@dtypes(torch.float32)
def test_sort_discontiguous_slow(self, device, dtype):
self._test_sort_discontiguous(device, dtype)
@dtypes(torch.float32)
def test_sort_1d_output_discontiguous(self, device, dtype):
tensor = torch.randn(12, device=device, dtype=dtype)[:6]
values = torch.empty_like(tensor)[::2]
indices = torch.empty(18, device=device, dtype=torch.long)[::3]
torch.sort(tensor, out=(values, indices))
values_cont, indices_cont = tensor.sort()
self.assertEqual(indices, indices_cont)
self.assertEqual(values, values_cont)
@dtypes(torch.float32)
def test_topk_1d_output_discontiguous(self, device, dtype):
tensor = torch.randn(12, device=device, dtype=dtype)
values = torch.empty_like(tensor)[::2]
indices = torch.empty(18, device=device, dtype=torch.long)[::3]
for sorted in (True, False):
# outputs of `sorted=False` test are not guaranteed to be the same,
# but with current implementation they are
torch.topk(tensor, 6, sorted=sorted, out=(values, indices))
values_cont, indices_cont = tensor.topk(6, sorted=sorted)
self.assertEqual(indices, indices_cont)
self.assertEqual(values, values_cont)
# FIXME: remove torch.bool from unsupported types once support is added for cub sort
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_stable_sort_against_numpy(self, device, dtype):
if dtype in floating_types_and(torch.float16, torch.bfloat16):
inf = float('inf')
neg_inf = -float('inf')
nan = float('nan')
else:
if dtype != torch.bool:
# no torch.iinfo support for torch.bool
inf = torch.iinfo(dtype).max
neg_inf = torch.iinfo(dtype).min
else:
inf = True
neg_inf = ~inf
# no nan for integral types, we use inf instead for simplicity
nan = inf
def generate_samples():
from itertools import chain, combinations
for sizes in [(1025,), (10000,)]:
size = sizes[0]
# binary strings
yield (torch.tensor([0, 1] * size, dtype=dtype, device=device), 0)
if self.device_type == 'cuda':
return
yield (torch.tensor([0, 1] * 100, dtype=dtype, device=device), 0)
def repeated_index_fill(t, dim, idxs, vals):
res = t
for idx, val in zip(idxs, vals):
res = res.index_fill(dim, idx, val)
return res
for sizes in [(1, 10), (10, 1), (10, 10), (10, 10, 10)]:
size = min(*sizes)
x = (torch.randn(*sizes, device=device) * size).to(dtype)
yield (x, 0)
# Generate tensors which are being filled at random locations
# with values from the non-empty subsets of the set (inf, neg_inf, nan)
# for each dimension.
n_fill_vals = 3 # cardinality of (inf, neg_inf, nan)
for dim in range(len(sizes)):
idxs = (torch.randint(high=size, size=(size // 10,)) for i in range(n_fill_vals))
vals = (inf, neg_inf, nan)
subsets = chain.from_iterable(combinations(list(zip(idxs, vals)), r)
for r in range(1, n_fill_vals + 1))
for subset in subsets:
idxs_subset, vals_subset = zip(*subset)
yield (repeated_index_fill(x, dim, idxs_subset, vals_subset), dim)
for sample, dim in generate_samples():
_, idx_torch = sample.sort(dim=dim, stable=True)
if dtype is torch.bfloat16:
sample_numpy = sample.float().cpu().numpy()
else:
sample_numpy = sample.cpu().numpy()
idx_numpy = np.argsort(sample_numpy, axis=dim, kind='stable')
self.assertEqual(idx_torch, idx_numpy)
@dtypes(*all_types_and(torch.half, torch.bfloat16))
def test_msort(self, device, dtype):
def test(shape):
tensor = make_tensor(shape, dtype=dtype, device=device, low=-9, high=9)
if tensor.size() != torch.Size([]):
if dtype is torch.bfloat16:
expected = torch.from_numpy(np.msort(tensor.float().cpu().numpy())).bfloat16()
else:
expected = torch.from_numpy(np.msort(tensor.cpu().numpy()))
else:
expected = tensor # numpy.msort() does not support empty shapes tensor
result = torch.msort(tensor)
self.assertEqual(result, expected)
out = torch.empty_like(result)
torch.msort(tensor, out=out)
self.assertEqual(out, expected)
shapes = (
[],
[0, ],
[20, ],
[1, 20],
[30, 30],
[10, 20, 30]
)
for shape in shapes:
test(shape)
def test_topk(self, device):
def topKViaSort(t, k, dim, dir):
sorted, indices = t.sort(dim, dir)
return sorted.narrow(dim, 0, k), indices.narrow(dim, 0, k)
def compareTensors(t, res1, ind1, res2, ind2, dim):
# Values should be exactly equivalent
self.assertEqual(res1, res2, atol=0, rtol=0)
# Indices might differ based on the implementation, since there is
# no guarantee of the relative order of selection
if not ind1.eq(ind2).all():
# To verify that the indices represent equivalent elements,
# gather from the input using the topk indices and compare against
# the sort indices
vals = t.gather(dim, ind2)
self.assertEqual(res1, vals, atol=0, rtol=0)
def compare(t, k, dim, dir):
topKVal, topKInd = t.topk(k, dim, dir, True)
sortKVal, sortKInd = topKViaSort(t, k, dim, dir)
compareTensors(t, sortKVal, sortKInd, topKVal, topKInd, dim)
t = torch.rand(random.randint(1, SIZE),
random.randint(1, SIZE),
random.randint(1, SIZE), device=device)
for _kTries in range(3):
for _dimTries in range(3):
for transpose in (True, False):
for dir in (True, False):
testTensor = t
if transpose:
dim1 = random.randrange(t.ndimension())
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(t.ndimension())
testTensor = t.transpose(dim1, dim2)
dim = random.randrange(testTensor.ndimension())
k = random.randint(1, testTensor.size(dim))
compare(testTensor, k, dim, dir)
# This tests the code path where on CUDA, topk is implemented with sort.
t = torch.randn((2, 100000), device=device)
compare(t, 2000, 1, True)
compare(t, 2000, 1, False)
# This tests the code path where on CUDA, topk is implemented with multiblock
t = torch.randn((2, 10000), device=device)
compare(t, 2000, 1, True)
compare(t, 2000, 1, False)
def test_topk_arguments(self, device):
q = torch.randn(10, 2, 10, device=device)
# Make sure True isn't mistakenly taken as the 2nd dimension (interpreted as 1)
self.assertRaises(TypeError, lambda: q.topk(4, True))
def test_unique_dim(self, device):
self.assertFalse(hasattr(torch, 'unique_dim'))
def run_test(device, dtype):
x = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
x_empty = torch.empty(5, 0, dtype=dtype, device=device)
x_ill_formed_empty = torch.empty(5, 0, 0, dtype=dtype, device=device)
x_ill_formed_empty_another = torch.empty(5, 0, 5, dtype=dtype, device=device)
if dtype in floating_types_and(torch.float16, torch.bfloat16):
x_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_unique_dim0 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim0 = torch.tensor([0, 0])
expected_counts_dim0 = torch.tensor([2])
expected_unique_dim1 = torch.tensor([[[0., 1.],
[1., 1.],
[2., 1.]],
[[0., 1.],
[1., 1.],
[2., 1.]]],
dtype=dtype,
device=device)
expected_unique_dim1_bool = torch.tensor([[[False, True], [True, True]],
[[False, True], [True, True]]],
dtype=torch.bool,
device=device)
expected_inverse_dim1 = torch.tensor([1, 0, 2, 0])
expected_inverse_dim1_bool = torch.tensor([1, 0, 1, 0])
expected_counts_dim1 = torch.tensor([2, 1, 1])
expected_counts_dim1_bool = torch.tensor([2, 2])
expected_unique_dim2 = torch.tensor([[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]],
[[1., 1.],
[0., 1.],
[2., 1.],
[0., 1.]]],
dtype=dtype,
device=device)
expected_inverse_dim2 = torch.tensor([0, 1])
expected_counts_dim2 = torch.tensor([1, 1])
expected_unique_empty = torch.empty(5, 0, dtype=dtype, device=device)
expected_inverse_empty = torch.tensor([], dtype=torch.long, device=device)
expected_counts_empty = torch.tensor([], dtype=torch.long, device=device)
if dtype in floating_types_and(torch.float16, torch.bfloat16):
expected_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
expected_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)
# dim0
x_unique = torch.unique(x, dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_counts_dim0, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_dim0, x_unique)
self.assertEqual(expected_inverse_dim0, x_inverse)
self.assertEqual(expected_counts_dim0, x_counts)
# dim1
x_unique = torch.unique(x, dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
else:
self.assertEqual(expected_unique_dim1, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_counts_dim1_bool, x_counts)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_counts_dim1, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=1)
if x.dtype == torch.bool:
self.assertEqual(expected_unique_dim1_bool, x_unique)
self.assertEqual(expected_inverse_dim1_bool, x_inverse)
self.assertEqual(expected_counts_dim1_bool, x_counts)
else:
self.assertEqual(expected_unique_dim1, x_unique)
self.assertEqual(expected_inverse_dim1, x_inverse)
self.assertEqual(expected_counts_dim1, x_counts)
# dim2
x_unique = torch.unique(x, dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
x_unique, x_inverse = torch.unique(
x,
return_inverse=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
x_unique, x_counts = torch.unique(
x,
return_inverse=False,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_counts_dim2, x_counts)
x_unique, x_inverse, x_counts = torch.unique(
x,
return_inverse=True,
return_counts=True,
dim=2)
self.assertEqual(expected_unique_dim2, x_unique)
self.assertEqual(expected_inverse_dim2, x_inverse)
self.assertEqual(expected_counts_dim2, x_counts)
# test empty tensor
x_unique, x_inverse, x_counts = torch.unique(
x_empty,
return_inverse=True,
return_counts=True,
dim=1)
self.assertEqual(expected_unique_empty, x_unique)
self.assertEqual(expected_inverse_empty, x_inverse)
self.assertEqual(expected_counts_empty, x_counts)
# test tensor with nan
if dtype in floating_types_and(torch.float16, torch.bfloat16):
x_unique, x_inverse, x_counts = torch.unique(
x_nan,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_unique_nan, x_unique)
self.assertEqual(expected_inverse_nan, x_inverse)
self.assertEqual(expected_counts_nan, x_counts)
# test not a well formed tensor
# Checking for runtime error, as this is the expected behaviour
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty,
return_inverse=True,
return_counts=True,
dim=1)
# test along dim2
with self.assertRaises(RuntimeError):
torch.unique(
x_ill_formed_empty_another,
return_inverse=True,
return_counts=True,
dim=2)
# test consecutive version
y = torch.tensor(
[[0, 1],
[0, 1],
[0, 1],
[1, 2],
[1, 2],
[3, 4],
[0, 1],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
# test tensor with nan
if dtype in floating_types_and(torch.float16, torch.bfloat16):
y_nan = torch.tensor([float("nan"), 0, 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_y_unique = torch.tensor(
[[0, 1],
[1, 2],
[3, 4],
[0, 1],
[3, 4],
[1, 2]],
dtype=dtype,
device=device
)
expected_y_inverse = torch.tensor([0, 0, 0, 1, 1, 2, 3, 3, 4, 5], dtype=torch.int64, device=device)
expected_y_counts = torch.tensor([3, 2, 1, 2, 1, 1], dtype=torch.int64, device=device)
expected_y_inverse_bool = torch.tensor([0, 0, 0, 1, 1, 1, 2, 2, 3, 3], dtype=torch.int64, device=device)
expected_y_counts_bool = torch.tensor([3, 3, 2, 2], dtype=torch.int64, device=device)
if dtype in floating_types_and(torch.float16, torch.bfloat16):
expected_y_unique_nan = torch.tensor([float("nan"), 0, float("nan"), float("nan"), 1], dtype=dtype, device=device)
expected_y_inverse_nan = torch.tensor([0, 1, 1, 2, 3, 4], dtype=torch.long, device=device)
expected_y_counts_nan = torch.tensor([1, 2, 1, 1, 1], dtype=torch.long, device=device)
y_unique, y_inverse, y_counts = torch.unique_consecutive(y, return_inverse=True, return_counts=True, dim=0)
if x.dtype == torch.bool:
self.assertEqual(expected_y_inverse_bool, y_inverse)
self.assertEqual(expected_y_counts_bool, y_counts)
else:
self.assertEqual(expected_y_inverse, y_inverse)
self.assertEqual(expected_y_counts, y_counts)
# test tensor with nan
if dtype in floating_types_and(torch.float16, torch.bfloat16):
y_unique, y_inverse, y_counts = torch.unique_consecutive(
y_nan,
return_inverse=True,
return_counts=True,
dim=0)
self.assertEqual(expected_y_unique_nan, y_unique)
self.assertEqual(expected_y_inverse_nan, y_inverse)
self.assertEqual(expected_y_counts_nan, y_counts)
run_test(device, torch.float)
run_test(device, torch.double)
run_test(device, torch.long)
run_test(device, torch.uint8)
run_test(device, torch.bool)
@onlyCUDA
def test_topk_noncontiguous_gpu(self, device):
# test different topk paths on cuda
single_block_t = torch.randn(20, device=device)[::2]
multi_block_t = torch.randn(20000, device=device)[::2]
sort_t = torch.randn(200000, device=device)[::2]
for t in (single_block_t, multi_block_t, sort_t):
for k in (5, 2000, 10000):
if k >= t.shape[0]:
continue
top1, idx1 = t.topk(k)
top2, idx2 = t.contiguous().topk(k)
self.assertEqual(top1, top2)
self.assertEqual(idx1, idx2)
def _test_topk_dtype(self, device, dtype, integral, size):
if integral:
a = torch.randint(torch.iinfo(dtype).min, torch.iinfo(dtype).max,
size=(size,), dtype=dtype, device=device)
else:
a = torch.randn(size=(size,), dtype=dtype, device=device)
sort_topk = a.sort()[0][-(size // 2):].flip(0)
topk = a.topk(size // 2)
self.assertEqual(sort_topk, topk[0]) # check values
self.assertEqual(sort_topk, a[topk[1]]) # check indices
@dtypes(torch.int8, torch.uint8, torch.int16, torch.int32, torch.int64)
def test_topk_integral(self, device, dtype):
small = 10
large = 4096
verylarge = 8192 # multi_block topk on cuda
for curr_size in (small, large, verylarge):
self._test_topk_dtype(device, dtype, True, curr_size)
@onlyCUDA
@dtypes(torch.bfloat16)
def test_topk_bfloat16(self, device, dtype):
small = 10
large = 4096
verylarge = 8192 # multi_block topk on cuda
for curr_size in (small, large, verylarge):
self._test_topk_dtype(device, dtype, False, curr_size)
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
@dtypes(torch.float, torch.double, torch.bfloat16)
def test_topk_nonfinite(self, device, dtype):
x = torch.tensor([float('nan'), float('inf'), 1e4, 0, -1e4, -float('inf')], device=device, dtype=dtype)
val, idx = x.topk(4)
expect = torch.tensor([float('nan'), float('inf'), 1e4, 0], device=device, dtype=dtype)
self.assertEqual(val, expect)
self.assertEqual(idx, [0, 1, 2, 3])
val, idx = x.topk(4, largest=False)
expect = torch.tensor([-float('inf'), -1e4, 0, 1e4], device=device, dtype=dtype)
self.assertEqual(val, expect)
self.assertEqual(idx, [5, 4, 3, 2])
def test_topk_4d(self, device):
small = 128
large = 8192
for size in (small, large):
x = torch.ones(2, size, 2, 2, device=device)
x[:, 1, :, :] *= 2.
x[:, 10, :, :] *= 1.5
val, ind = torch.topk(x, k=2, dim=1)
expected_ind = torch.ones(2, 2, 2, 2, dtype=torch.long, device=device)
expected_ind[:, 1, :, :] = 10
expected_val = torch.ones(2, 2, 2, 2, device=device)
expected_val[:, 0, :, :] *= 2.
expected_val[:, 1, :, :] *= 1.5
self.assertEqual(val, expected_val, atol=0, rtol=0)
self.assertEqual(ind, expected_ind, atol=0, rtol=0)
@onlyNativeDeviceTypes
@dtypesIfCUDA(*all_types_and(torch.bfloat16))
@dtypes(*all_types())
def test_topk_zero(self, device, dtype):
# https://github.com/pytorch/pytorch/issues/49205
t = torch.rand(2, 2, device=device).to(dtype=dtype)
val, idx = torch.topk(t, k=0, largest=False)
self.assertEqual(val.size(), torch.Size([2, 0]))
self.assertEqual(idx.size(), torch.Size([2, 0]))
def _test_unique_scalar_empty(self, dtype, device, f):
# test scalar
x = torch.tensor(0, dtype=dtype, device=device)
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
expected_unique = torch.tensor([0], dtype=dtype, device=device)
expected_inverse = torch.tensor(0, device=device)
expected_counts = torch.tensor([1], device=device)
self.assertEqual(unique, expected_unique)
self.assertEqual(inverse, expected_inverse)
self.assertEqual(counts, expected_counts)
# test zero sized tensor
x = torch.zeros((0, 0, 3), dtype=dtype, device=device)
unique, inverse, counts = f(x, return_inverse=True, return_counts=True)
expected_unique = torch.tensor([], dtype=dtype, device=device)
expected_inverse = torch.empty((0, 0, 3), dtype=torch.long, device=device)
expected_counts = torch.tensor([], dtype=torch.long, device=device)
self.assertEqual(unique, expected_unique)
self.assertEqual(inverse, expected_inverse)
self.assertEqual(counts, expected_counts)
def _test_unique_with_expects(self, device, dtype, f, x, expected_unique, expected_inverse, expected_counts, additional_shape):
def ensure_tuple(x):
if isinstance(x, torch.Tensor):
return (x,)
return x
for return_inverse in [True, False]:
for return_counts in [True, False]:
# test with expected
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
self.assertEqual(expected_unique, ret[0])
if return_inverse:
self.assertEqual(expected_inverse, ret[1])
if return_counts:
count_index = 1 + int(return_inverse)
self.assertEqual(expected_counts, ret[count_index])
# tests per-element unique on a higher rank tensor.
y = x.view(additional_shape)
y_unique, y_inverse, y_counts = f(y, return_inverse=True, return_counts=True)
self.assertEqual(expected_unique, y_unique)
self.assertEqual(expected_inverse.view(additional_shape), y_inverse)
self.assertEqual(expected_counts, y_counts)
@dtypesIfCPU(*all_types_and(torch.bool, torch.bfloat16))
@dtypes(*all_types_and(torch.half, torch.bool))
def test_unique(self, device, dtype):
def ensure_tuple(x):
if isinstance(x, torch.Tensor):
return (x,)
return x
if dtype is torch.bool:
x = torch.tensor([True, False, False, False, True, False, True, False], dtype=torch.bool, device=device)
expected_unique = torch.tensor([False, True], dtype=torch.bool, device=device)
expected_inverse = torch.tensor([1, 0, 0, 0, 1, 0, 1, 0], dtype=torch.long, device=device)
expected_counts = torch.tensor([5, 3], dtype=torch.long, device=device)
else:
x = torch.tensor([1, 2, 3, 2, 8, 5, 2, 3], dtype=dtype, device=device)
expected_unique = torch.tensor([1, 2, 3, 5, 8], dtype=dtype, device=device)
expected_inverse = torch.tensor([0, 1, 2, 1, 4, 3, 1, 2], device=device)
expected_counts = torch.tensor([1, 3, 2, 1, 1], device=device)
# test sorted unique
fs = (
lambda x, **kwargs: torch.unique(x, sorted=True, **kwargs),
lambda x, **kwargs: x.unique(sorted=True, **kwargs),
)
x_sliced = torch.empty(x.size(0) * 2, dtype=dtype, device=device)[::2].copy_(x)
xs = (x, x_sliced)
for f, x in product(fs, xs):
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (2, 2, 2))
self._test_unique_scalar_empty(dtype, device, f)
# test unsorted unique
fs = (
lambda x, **kwargs: torch.unique(x, sorted=False, **kwargs),
lambda x, **kwargs: x.unique(sorted=False, **kwargs)
)
for f, x in product(fs, xs):
self._test_unique_scalar_empty(dtype, device, f)
for return_inverse, return_counts in product((True, False), repeat=2):
ret = ensure_tuple(f(x, return_inverse=return_inverse, return_counts=return_counts))
self.assertEqual(len(ret), 1 + int(return_inverse) + int(return_counts))
x_list = x.tolist()
x_unique_list = ret[0].tolist()
self.assertEqual(expected_unique.tolist(), sorted(x_unique_list))
if return_inverse:
x_inverse_list = ret[1].tolist()
for i, j in enumerate(x_inverse_list):
self.assertEqual(x_list[i], x_unique_list[j])
if return_counts:
count_index = 1 + int(return_inverse)
x_counts_list = ret[count_index].tolist()
for i, j in zip(x_unique_list, x_counts_list):
count = 0
for k in x_list:
if k == i:
count += 1
self.assertEqual(j, count)
@dtypesIfCPU(*all_types_and(torch.bool, torch.bfloat16))
@dtypes(*all_types_and(torch.half, torch.bool))
def test_unique_consecutive(self, device, dtype):
if dtype is torch.bool:
x = torch.tensor([True, False, False, False, True, True, False, False, False], dtype=torch.bool, device=device)
expected_unique = torch.tensor([True, False, True, False], dtype=torch.bool, device=device)
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 3], dtype=torch.long, device=device)
expected_counts = torch.tensor([1, 3, 2, 3], dtype=torch.long, device=device)
else:
x = torch.tensor([1, 2, 2, 2, 5, 5, 2, 2, 3], dtype=dtype, device=device)
expected_unique = torch.tensor([1, 2, 5, 2, 3], dtype=dtype, device=device)
expected_inverse = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4], device=device)
expected_counts = torch.tensor([1, 3, 2, 2, 1], device=device)
for f in [torch.unique_consecutive, lambda x, **kwargs: x.unique_consecutive(**kwargs)]:
self._test_unique_with_expects(device, dtype, f, x, expected_unique, expected_inverse, expected_counts, (3, 3))
self._test_unique_scalar_empty(dtype, device, f)
@dtypes(torch.double)
def test_kthvalue(self, device, dtype):
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x0 = x.clone()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
# test use of result tensors
k = random.randint(1, SIZE)
res1val = torch.tensor([], dtype=dtype, device=device)
res1ind = torch.tensor([], dtype=torch.long, device=device)
torch.kthvalue(x, k, keepdim=False, out=(res1val, res1ind))
res2val, res2ind = torch.sort(x)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
# test non-default dim
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(x, k, 0, keepdim=False)
res2val, res2ind = torch.sort(x, 0)
self.assertEqual(res1val, res2val[k - 1], atol=0, rtol=0)
self.assertEqual(res1ind, res2ind[k - 1], atol=0, rtol=0)
# non-contiguous
y = x.narrow(1, 0, 1)
y0 = y.contiguous()
k = random.randint(1, SIZE)
res1val, res1ind = torch.kthvalue(y, k)
res2val, res2ind = torch.kthvalue(y0, k)
self.assertEqual(res1val, res2val, atol=0, rtol=0)
self.assertEqual(res1ind, res2ind, atol=0, rtol=0)
# non-contiguous [Reference: https://github.com/pytorch/pytorch/issues/45721]
non_contig_t = torch.tensor([0, -1, 1, -2, 2], dtype=dtype, device=device)[::2]
expected_val, expected_ind = non_contig_t.contiguous().kthvalue(2)
non_contig_cpu_t = non_contig_t.cpu()
expected_val_cpu, expected_ind_cpu = non_contig_cpu_t.kthvalue(2)
out_val, out_ind = non_contig_t.kthvalue(2)
self.assertEqual(expected_val, out_val, atol=0, rtol=0)
self.assertEqual(expected_ind, out_ind, atol=0, rtol=0)
self.assertEqual(expected_val_cpu, out_val, atol=0, rtol=0)
self.assertEqual(expected_ind_cpu, out_ind, atol=0, rtol=0)
# check that the input wasn't modified
self.assertEqual(x, x0, atol=0, rtol=0)
# simple test case (with repetitions)
y = torch.tensor((3., 5, 4, 1, 1, 5), dtype=dtype, device=device)
self.assertEqual(torch.kthvalue(y, 3)[0], 3, atol=0, rtol=0)
self.assertEqual(torch.kthvalue(y, 2)[0], 1, atol=0, rtol=0)
# simple test case (with NaN)
SIZE = 50
x = torch.rand(SIZE, SIZE, SIZE, dtype=dtype, device=device)
x[torch.arange(SIZE), :, torch.randint(50, (50,))] = nan
ks = [random.randint(1, SIZE), 1, SIZE, SIZE - 1]
res2val, res2ind = torch.sort(x)
for k in ks:
res1val, res1ind = torch.kthvalue(x, k, keepdim=False)
self.assertEqual(res1val[:, :], res2val[:, :, k - 1], atol=0, rtol=0)
self.assertEqual(res1ind[:, :], res2ind[:, :, k - 1], atol=0, rtol=0)
@dtypes(torch.float)
@onlyNativeDeviceTypes # Fails on XLA
def test_kthvalue_scalar(self, device, dtype):
# Test scalar input (test case from https://github.com/pytorch/pytorch/issues/30818)
# Tests that passing a scalar tensor or 1D tensor with 1 element work either way
res = torch.tensor(2, device=device, dtype=dtype).kthvalue(1)
ref = torch.tensor([2], device=device, dtype=dtype).kthvalue(1)
self.assertEqual(res[0], ref[0].squeeze())
self.assertEqual(res[1], ref[1].squeeze())
@dtypes(*all_types())
@dtypesIfCUDA(*all_types_and(torch.half))
def test_isin(self, device, dtype):
def assert_isin_equal(a, b):
# Compare to the numpy reference implementation.
x = torch.isin(a, b)
a = a.cpu().numpy() if torch.is_tensor(a) else np.array(a)
b = b.cpu().numpy() if torch.is_tensor(b) else np.array(b)
y = np.isin(a, b)
self.assertEqual(x, y)
# multi-dim tensor, multi-dim tensor
a = torch.arange(24, device=device, dtype=dtype).reshape([2, 3, 4])
b = torch.tensor([[10, 20, 30], [0, 1, 3], [11, 22, 33]], device=device, dtype=dtype)
assert_isin_equal(a, b)
# zero-dim tensor
zero_d = torch.tensor(3, device=device, dtype=dtype)
assert_isin_equal(zero_d, b)
assert_isin_equal(a, zero_d)
assert_isin_equal(zero_d, zero_d)
# empty tensor
empty = torch.tensor([], device=device, dtype=dtype)
assert_isin_equal(empty, b)
assert_isin_equal(a, empty)
assert_isin_equal(empty, empty)
# scalar
assert_isin_equal(a, 6)
assert_isin_equal(5, b)
def define_expected(lst, invert=False):
expected = torch.tensor(lst, device=device)
if invert:
expected = expected.logical_not()
return expected
# Adapted from numpy's in1d tests
for mult in [1, 10]:
for invert in [False, True]:
a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a[0] = 8
ec = define_expected([False, False, True, True], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a[0], a[3] = 4, 8
ec = define_expected([True, False, True, False], invert=invert)
c = torch.isin(a, b, assume_unique=True, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], device=device, dtype=dtype)
b = torch.tensor([2, 3, 4] * mult, device=device, dtype=dtype)
ec = define_expected([False, True, False, True, True, True, True, True, True,
False, True, False, False, False], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
b = torch.tensor([2, 3, 4] * mult + [5, 5, 4] * mult, device=device, dtype=dtype)
ec = define_expected([True, True, True, True, True, True, True, True, True, True,
True, False, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 7, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 7, 1, 1, 2], device=device, dtype=dtype)
b = torch.tensor([2, 4, 3, 3, 1, 5] * mult, device=device, dtype=dtype)
ec = define_expected([True, False, True, True, True], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
a = torch.tensor([5, 5], device=device, dtype=dtype)
b = torch.tensor([2, 2] * mult, device=device, dtype=dtype)
ec = define_expected([False, False], invert=invert)
c = torch.isin(a, b, invert=invert)
self.assertEqual(c, ec)
# multi-dimensional input case using sort-based algo
for assume_unique in [False, True]:
a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
b = torch.arange(3, 30, device=device, dtype=dtype)
ec = define_expected([[False, False, False], [True, True, True]], invert=invert)
c = torch.isin(a, b, invert=invert, assume_unique=assume_unique)
self.assertEqual(c, ec)
def test_isin_different_dtypes(self, device):
supported_types = all_types() if device == 'cpu' else all_types_and(torch.half)
for mult in [1, 10]:
for assume_unique in [False, True]:
for dtype1, dtype2 in product(supported_types, supported_types):
a = torch.tensor([1, 2, 3], device=device, dtype=dtype1)
b = torch.tensor([3, 4, 5] * mult, device=device, dtype=dtype2)
ec = torch.tensor([False, False, True], device=device)
c = torch.isin(a, b, assume_unique=assume_unique)
self.assertEqual(c, ec)
@onlyCUDA
@dtypes(*all_types())
def test_isin_different_devices(self, device, dtype):
a = torch.arange(6, device=device, dtype=dtype).reshape([2, 3])
b = torch.arange(3, 30, device='cpu', dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isin(a, b)
c = torch.arange(6, device='cpu', dtype=dtype).reshape([2, 3])
d = torch.arange(3, 30, device=device, dtype=dtype)
with self.assertRaises(RuntimeError):
torch.isin(c, d)
instantiate_device_type_tests(TestSortAndSelect, globals())
if __name__ == '__main__':
run_tests()
|