File: test_sparse_csr.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (3161 lines) | stat: -rw-r--r-- 158,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
# Owner(s): ["module: sparse"]

import copy
import torch
import random
import itertools
import unittest
import functools
from torch.testing import make_tensor
from torch.testing._internal.common_cuda import SM53OrLater, SM80OrLater, TEST_CUSPARSE_GENERIC
from torch.testing._internal.common_utils import \
    (TEST_WITH_ROCM, TEST_SCIPY, TEST_NUMPY, TEST_MKL, IS_WINDOWS, TestCase, run_tests, load_tests, coalescedonoff, parametrize,
     subtest)
from torch.testing._internal.common_device_type import \
    (ops, instantiate_device_type_tests, dtypes, OpDTypes, dtypesIfCUDA, onlyCPU, onlyCUDA, skipCUDAIfNoSparseGeneric,
     precisionOverride, skipMeta, skipCUDAIf, skipCUDAIfRocm, skipCPUIfNoMklSparse, skipCUDAIfRocmVersionLessThan)
from torch.testing._internal.common_methods_invocations import \
    (op_db, sparse_csr_unary_ufuncs, ReductionOpInfo)
from torch.testing._internal.common_cuda import _get_torch_cuda_version, CUDA11OrLater, TEST_CUDA
from torch.testing._internal.common_dtype import (
    floating_types, all_types_and_complex_and, floating_and_complex_types, floating_types_and,
    all_types_and_complex, floating_and_complex_types_and
)
from test_sparse import CUSPARSE_SPMM_COMPLEX128_SUPPORTED

if TEST_SCIPY:
    import scipy.sparse as sp

if TEST_NUMPY:
    import numpy as np
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests

no_mkl_sparse = IS_WINDOWS or not TEST_MKL

def _check_cusparse_triangular_solve_available():
    version = _get_torch_cuda_version()
    # cusparseSpSM was added in 11.3.1 but we don't have access to patch version
    min_supported_version = (11, 4)
    return version >= min_supported_version

def _check_cusparse_spgemm_available():
    # cusparseSpGEMM was added in 11.0
    version = _get_torch_cuda_version()
    min_supported_version = (11, 0)
    return version >= min_supported_version

def _check_cusparse_sddmm_available():
    version = _get_torch_cuda_version()
    # cusparseSDDMM was added in 11.2.1 but we don't have access to patch version
    min_supported_version = (11, 3)
    return version >= min_supported_version

_sparse_csr_ops = list(filter(lambda op: op.supports_sparse_csr, op_db))
_sparse_compressed_ops = list(filter(lambda op: (op.supports_sparse_csr or op.supports_sparse_csc
                                                 or op.supports_sparse_bsr or op.supports_sparse_bsc), op_db))
binary_functions_with_dense_output = ['mm', 'mv', ]
binary_ops_with_dense_output = list(filter(lambda op: op.name in binary_functions_with_dense_output, op_db))

UNARY_EWISE_CSR_ALLOW_AUTOGRAD = [
    'abs',
    'conj_physical',
    'neg',
]

# This should be just an import from test_linalg instead of code duplication
# but https://github.com/pytorch/pytorch/pull/63511#discussion_r733989701
def _test_addmm_addmv(
    test_case,
    f,
    t,
    m,
    v,
    *,
    alpha=None,
    beta=None,
    transpose_out=False,
    layout=torch.strided,
    mode=None
):
    """
    Unified test for checking `f(t, m, v, alpha=alpha, beta=beta)` computation,
    where f is `torch.addmv` or `torch.addmm`.
    `transpose_out` controls whether the out argument is in column-major order.
    `layout` controls whether `m` is converted to specified layout or not.
    Custom behaviour is implemented only for torch.sparse_csr layout.
    """
    dtype = t.dtype
    numpy_dtype = dtype
    if dtype in {torch.bfloat16}:
        numpy_dtype = torch.float
    if dtype.is_complex:
        alpha = 0.9 + 0.3j if alpha is None else alpha
        beta = 0.5 + 0.6j if beta is None else beta
    else:
        alpha = 1.2 if alpha is None else alpha
        beta = 0.8 if beta is None else beta

    def convert_layout(mat):
        if layout == torch.sparse_csr:
            return mat.to_sparse_csr()
        elif layout == torch.sparse_csc:
            return mat.to_sparse_csc()
        else:
            assert mat.layout == layout
            return mat

    if mode == "all_sparse":
        res1 = f(*map(convert_layout, (t, m, v)), alpha=alpha, beta=beta)
        test_case.assertEqual(res1.layout, layout)
        res1 = res1.to_dense()
    elif mode == "dense_result":
        res1 = f(t, convert_layout(m), convert_layout(v), alpha=alpha, beta=beta)
    else:
        res1 = f(t, convert_layout(m), v, alpha=alpha, beta=beta)
    res2 = torch.full_like(res1, float('nan'))
    if transpose_out:
        res2 = res2.t().clone(memory_format=torch.contiguous_format).t()
    f(t, convert_layout(m), v, alpha=alpha, beta=beta, out=res2)
    res3 = alpha * (m.to(numpy_dtype).cpu().numpy() @ v.to(numpy_dtype).cpu().numpy())
    if beta != 0:
        res3 += (beta * t).to(numpy_dtype).cpu().numpy()
    res3 = torch.from_numpy(res3).to(dtype)
    test_case.assertEqual(res1, res2)
    test_case.assertEqual(res1, res3)


class TestSparseCSRSampler(TestCase):

    def test_make_crow_indices(self):
        # Here we test the correctness of the crow_indices algorithm
        # and testing it on CPU and with int32 dtype will be
        # sufficient.
        device = torch.device('cpu')
        index_dtype = torch.int32
        for n_rows in range(1, 10):
            for n_cols in range(1, 10):
                for nnz in range(0, n_rows * n_cols + 1):
                    crow_indices = self._make_crow_indices(
                        n_rows, n_cols, nnz,
                        device=device, dtype=index_dtype)
                    self.assertEqual(len(crow_indices), n_rows + 1)
                    counts = crow_indices[1:] - crow_indices[:-1]
                    self.assertEqual(counts.sum(), nnz)
                    self.assertGreaterEqual(counts.min(), 0)
                    self.assertLessEqual(counts.max(), n_cols)


def all_sparse_compressed_layouts(test_name='layout'):
    return parametrize(test_name, [
        subtest(torch.sparse_csr, name='SparseCSR'),
        subtest(torch.sparse_csc, name='SparseCSC'),
        subtest(torch.sparse_bsr, name='SparseBSR'),
        subtest(torch.sparse_bsc, name='SparseBSC')])


def sparse_compressed_nonblock_layouts(test_name='layout'):
    return parametrize(test_name, [
        subtest(torch.sparse_csr, name='SparseCSR'),
        subtest(torch.sparse_csc, name='SparseCSC')])


sparse_compressed_indices_methods = {
    torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
    torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
    torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
    torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
}


def batched_nonbatched(test_name='batched'):
    return parametrize(test_name, [
        subtest(True, name="Batched"),
        subtest(False, name="NonBatched")
    ])


def hybrid_nonhybrid(test_name='hybrid'):
    return parametrize(test_name, [
        subtest(True, name="Hybrid"),
        subtest(False, name="NonHybrid")
    ])


class TestSparseCompressed(TestCase):
    """Testing sparse compressed (CSR, CSC, BSR, BSC) tensor generic features.
    """

    def genTensor(self, size, nnz, *, layout, device=None, dtype=torch.float, index_dtype=torch.int64):
        if device is None:
            device = self.device_type
        return self.genSparseCompressedTensor(size, nnz, device=device, dtype=dtype, index_dtype=index_dtype, layout=layout)

    def _generate_small_inputs_utils(self, layout, device=None, dtype=None):

        def shape(shape, basedim=0, blocksize=(1, 1), dense_shape=()):
            # Below, we define compressed and plain indices that
            # correspond to row compressed tensors. In order to reuse
            # the indices tensors for column compressed tensors, we
            # swap the row and columns in shape dims (basedim and
            # basedim + 1, respectively) to obtain the correct shape
            # for column compressed tensors. Batch and dense
            # dimensions remain as they are.
            #
            # Similarly, we reuse indices of non-block tensors for
            # block tensors, that means, we'll need to multiply the
            # base shape of the non-block tensor with blocksize to get
            # the base shape of a block tensor.
            if layout is torch.sparse_csc:
                shape = shape[:basedim] + (shape[basedim + 1], shape[basedim]) + shape[basedim + 2:]
            elif layout is torch.sparse_bsc:
                shape = shape[:basedim] + (shape[basedim + 1] * blocksize[1], shape[basedim] * blocksize[0]) + shape[basedim + 2:]
            elif layout is torch.sparse_bsr:
                shape = shape[:basedim] + (shape[basedim] * blocksize[0], shape[basedim + 1] * blocksize[1]) + shape[basedim + 2:]
            return shape

        def values(lst, basedim=0, blocksize=(1, 1), densesize=(), device=device, dtype=dtype):
            # Below, we define values for non-blocked and non-hybrid
            # tensors. To reuse these for blocked tensors, we replace
            # all values in lst with a double-list that "shape"
            # corresponds to blocksize.
            # To support hybrid tensors, the values in lst are further
            # replaced with a N-list where N==len(densesize) and the
            # shape corresponds to densesize.

            max_val = torch.iinfo(dtype).max if dtype in [torch.int16, torch.int8, torch.uint8] else None

            def list_add(lst, value):
                # recursively add a value to lst items
                if isinstance(lst, list):
                    return [list_add(item, value) for item in lst]
                rc = lst + value
                return rc if max_val is None else (rc % max_val)

            def stretch_values(value, bdim, values_item_shape):
                # replace a value with a new value that extends the
                # dimensionality of the value by
                # len(values_item_shape) from right. The left
                # dimensions up to bdim are considered as batch
                # dimensions.
                if not values_item_shape:
                    return value
                if isinstance(value, list) and bdim >= 0:
                    return [stretch_values(item, bdim - 1, values_item_shape) for item in value]
                new_value = functools.reduce(lambda x, dims: [copy.deepcopy(x) for _ in range(dims)],
                                             reversed(values_item_shape), None)
                for p in itertools.product(*map(list, map(range, values_item_shape))):
                    row = functools.reduce(lambda x, i: x.__getitem__(i), p[:-1], new_value)
                    row[p[-1]] = list_add(value, sum([i * 10 ** d for d, i in enumerate(p)]))
                return new_value

            if layout is torch.sparse_bsr:
                values_item_shape = blocksize + densesize
            elif layout is torch.sparse_bsc:
                values_item_shape = tuple(reversed(blocksize)) + densesize
            else:
                values_item_shape = densesize

            if not lst:
                return torch.tensor(lst, device=device, dtype=dtype).reshape(0, *values_item_shape)

            lst = stretch_values(lst, basedim, values_item_shape)

            return torch.tensor(lst, device=device, dtype=dtype)

        return shape, values

    def _generate_small_inputs(self, layout, device=None, dtype=None, index_dtype=None,
                               enable_batched=True, enable_hybrid=True):
        """Generator of inputs to sparse compressed tensor factory functions.

        The input is defined as a 4-tuple:
          compressed_indices, plain_indices, values, expected_size_from_shape_inference
        """
        if index_dtype is None:
            index_dtype = torch.int64

        shape, values = self._generate_small_inputs_utils(layout, device, dtype)

        # a regular tensor
        yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype),
               torch.tensor([0, 1, 0, 2], device=device, dtype=index_dtype),
               values([1, 2, 3, 4], 0, (2, 1)),
               shape((2, 3), 0, (2, 1)))

        # a tensor with zero dimensions
        yield (torch.tensor([0, ], device=device, dtype=index_dtype),
               torch.tensor([], device=device, dtype=index_dtype),
               values([], 0, (2, 1)),
               shape((0, 0), 0, (2, 1)))

        if enable_batched:
            # a batched tensor with one batch dimension
            yield (torch.tensor([[0, 2, 4], [0, 3, 4]], device=device, dtype=index_dtype),
                   torch.tensor([[0, 1, 0, 1], [0, 1, 2, 0]], device=device, dtype=index_dtype),
                   values([[1, 2, 3, 4], [5, 6, 7, 8]], 1, (1, 2)),
                   shape((2, 2, 3), 1, (1, 2)))

            # a batched tensor with two batch dimensions
            yield (torch.tensor([[[0, 2, 4], [0, 3, 4], [0, 1, 4]],
                                 [[0, 1, 4], [0, 2, 4], [0, 3, 4]]],
                                device=device, dtype=index_dtype),
                   torch.tensor([[[0, 1, 0, 1], [0, 1, 2, 0], [0, 0, 1, 2]],
                                 [[1, 0, 1, 2], [0, 2, 0, 1], [0, 1, 2, 1]]],
                                device=device, dtype=index_dtype),
                   values([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
                           [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]], 2, (2, 3)),
                   shape((2, 3, 2, 3), 2, (2, 3)))

        if enable_hybrid:
            # a tensor with one dense dimension
            yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype),
                   torch.tensor([0, 1, 0, 2], device=device, dtype=index_dtype),
                   values([1, 2, 3, 4], 0, (3, 2), (2,)),
                   shape((2, 3, 2), 0, (3, 2)))

            # a tensor with two dense dimensions
            yield (torch.tensor([0, 2, 4], device=device, dtype=index_dtype),
                   torch.tensor([0, 1, 0, 2], device=device, dtype=index_dtype),
                   values([1, 2, 3, 4], 0, (2, 3), (4, 2)),
                   shape((2, 3, 4, 2), 0, (2, 3)))

        if enable_batched and enable_hybrid:
            # a batched tensor with two batch dimensions and two dense dimensions
            yield (torch.tensor([[[0, 2, 4], [0, 3, 4], [0, 1, 4]],
                                 [[0, 1, 4], [0, 2, 4], [0, 3, 4]]],
                                device=device, dtype=index_dtype),
                   torch.tensor([[[0, 1, 0, 1], [0, 1, 2, 0], [0, 0, 1, 2]],
                                 [[1, 0, 1, 2], [0, 2, 0, 1], [0, 1, 2, 1]]],
                                device=device, dtype=index_dtype),
                   values([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
                           [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]], 2, (3, 2), (2, 1)),
                   shape((2, 3, 2, 3, 2, 1), 2, (3, 2)))

    @all_sparse_compressed_layouts()
    @onlyCPU
    def test_layout(self, layout):
        self.assertIn(str(layout), {'torch.sparse_csr', 'torch.sparse_csc', 'torch.sparse_bsr', 'torch.sparse_bsc'})
        self.assertEqual(type(layout), torch.layout)

    @parametrize('shape_and_device_inference', [subtest(False, name='_'), subtest(True, name='shape_and_device_inference')])
    @parametrize('use_factory_function', [subtest(False, name='_'), subtest(True, name='factory')])
    @parametrize('input_kind', [subtest('tensor', name='from_tensor'), subtest('list', name='from_list')])
    @all_sparse_compressed_layouts()
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_sparse_compressed_constructor(self, layout, device, dtype,
                                           use_factory_function, shape_and_device_inference, input_kind):
        if input_kind == 'list' and shape_and_device_inference and torch.device(device).type == 'cuda':
            # list inputs to factory/constructor function without
            # specifying device will result a sparse compressed tensor
            # on CPU. So, skip testing against cuda device as unused.
            self.skipTest("nothing to test")

        expected_devices = [torch.device(device)]
        if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2 and not shape_and_device_inference:
            expected_devices.append(torch.device('cuda:1'))

        factory_function = {
            torch.sparse_csr: torch.sparse_csr_tensor,
            torch.sparse_csc: torch.sparse_csc_tensor,
            torch.sparse_bsr: torch.sparse_bsr_tensor,
            torch.sparse_bsc: torch.sparse_bsc_tensor,
        }[layout]
        compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
        for index_dtype in [torch.int32, torch.int64]:
            for expected_device in expected_devices:
                for compressed_indices, plain_indices, values, size in self._generate_small_inputs(
                        layout, expected_device, dtype, index_dtype):
                    if input_kind == 'list':
                        if size == (0, 0):
                            # for this degenerate case, plain_indices must
                            # remain a tensor because
                            # tensor(plain_indices) results a float dtype
                            # when plain_indices is an empty list
                            if index_dtype == torch.int32:
                                # skip testing int32 case because
                                # tensor(compressed_indices) results a
                                # int64 dtype when compressed_indices is
                                # [0] (a list of single int zero).
                                continue
                        else:
                            plain_indices = plain_indices.tolist()
                        compressed_indices = compressed_indices.tolist()
                        values = values.tolist()
                        if size == (0, 0) and layout in {torch.sparse_bsr, torch.sparse_bsc}:
                            # in the block sparse case, values of type list needs to represent a 3-D tensor
                            values = [[[]]]

                    if use_factory_function:
                        if shape_and_device_inference:
                            sparse = factory_function(compressed_indices, plain_indices, values)
                        else:
                            sparse = factory_function(compressed_indices, plain_indices, values, size,
                                                      dtype=dtype, device=expected_device)
                    else:
                        if shape_and_device_inference:
                            sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, layout=layout)
                        else:
                            sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size,
                                                                    dtype=dtype, layout=layout, device=expected_device)
                    self.assertEqual(layout, sparse.layout)
                    self.assertEqual(size, sparse.shape)
                    self.assertEqual(compressed_indices, compressed_indices_mth(sparse))
                    self.assertEqual(plain_indices, plain_indices_mth(sparse))
                    self.assertEqual(values, sparse.values())
                    self.assertEqual(sparse.device, sparse.values().device)
                    self.assertEqual(sparse.device, expected_device)

    @skipMeta
    @sparse_compressed_nonblock_layouts()
    @dtypes(*all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half))
    def test_empty(self, layout, device, dtype):
        ns = [5, 2, 0]
        batch_shapes = [(), (2,), (2, 3)]
        compressed_dim = {
            torch.sparse_csr: -2,
            torch.sparse_csc: -1,
        }[layout]
        compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
        for m, n, b in itertools.product(ns, ns, batch_shapes):
            shape = (*b, m, n)
            result = torch.empty(shape, dtype=dtype, device=device, layout=layout)
            self.assertEqual(result.shape, shape)
            self.assertEqual(result.dtype, dtype)
            self.assertEqual(result.device, torch.device(device))
            self.assertEqual(result.layout, layout)
            self.assertEqual(compressed_indices_mth(result).shape, (*b, shape[compressed_dim] + 1,))
            self.assertEqual(plain_indices_mth(result).shape, (*b, 0,))
            self.assertEqual(result.values().shape, (*b, 0,))
            self.assertEqual(result._nnz(), 0)
            self.assertEqual(compressed_indices_mth(result).device, torch.device(device))
            self.assertEqual(plain_indices_mth(result).device, torch.device(device))
            self.assertEqual(result.values().device, torch.device(device))
            self.assertEqual(compressed_indices_mth(result).dtype, torch.int64)
            self.assertEqual(plain_indices_mth(result).dtype, torch.int64)
            self.assertEqual(result.values().dtype, dtype)

    @skipMeta
    @sparse_compressed_nonblock_layouts()
    @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
    def test_empty_errors(self, layout, device, dtype):
        with self.assertRaisesRegex(RuntimeError,
                                    "torch.empty: Only batched sparse compressed \\(non-block\\) tensors are supported"
                                    ", but got size"):
            torch.empty((5,), dtype=dtype, device=device, layout=layout)

    @skipMeta
    @all_sparse_compressed_layouts()
    @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
    def test_clone(self, layout, device, dtype):
        for compressed_indices, plain_indices, values, size in self._generate_small_inputs(
                layout, device, dtype, index_dtype=torch.int32):
            sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size,
                                                    dtype=dtype, layout=layout, device=device)
            cloned_sparse = sparse.clone()
            self.assertEqual(sparse, cloned_sparse)

    @all_sparse_compressed_layouts()
    def test_print(self, layout, device):
        compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
        printed = []
        for enable_hybrid in [False, True]:
            for index_dtype in [torch.int32, torch.int64]:
                for dtype in [torch.float32, torch.float64]:
                    for compressed_indices, plain_indices, values, size in self._generate_small_inputs(
                            layout, device, dtype, index_dtype, enable_hybrid=enable_hybrid):
                        block_ndim = 2 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 0
                        base_ndim = 2
                        batch_ndim = compressed_indices.dim() - 1
                        dense_ndim = values.dim() - batch_ndim - block_ndim - 1
                        if enable_hybrid and dense_ndim == 0:
                            # non-hybrid cases are covered by the enable_hybrid==False loop
                            continue
                        batchsize = size[:batch_ndim]
                        basesize = size[batch_ndim:batch_ndim + base_ndim]
                        densesize = size[batch_ndim + base_ndim:]
                        assert len(densesize) == dense_ndim
                        printed.append("########## {}/{}/size={}+{}+{} ##########".format(
                            dtype, index_dtype, batchsize, basesize, densesize))
                        x = torch.sparse_compressed_tensor(compressed_indices,
                                                           plain_indices,
                                                           values, size, dtype=dtype, layout=layout, device=device)
                        printed.append("# sparse tensor")
                        printed.append(str(x))
                        printed.append(f"# _{compressed_indices_mth.__name__}")
                        printed.append(str(compressed_indices_mth(x)))
                        printed.append(f"# _{plain_indices_mth.__name__}")
                        printed.append(str(plain_indices_mth(x)))
                        printed.append("# _values")
                        printed.append(str(x.values()))
                        printed.append('')
                    printed.append('')
        orig_maxDiff = self.maxDiff
        self.maxDiff = None
        try:
            self.assertExpected('\n'.join(printed))
            self.maxDiff = orig_maxDiff
        except Exception:
            self.maxDiff = orig_maxDiff
            raise

    @skipMeta
    @all_sparse_compressed_layouts()
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_copy(self, layout, device, dtype):

        def run_test(shape, blocksize, nnz, index_type):
            a = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device,
                                               index_dtype=index_dtype, blocksize=blocksize)
            b = self.genSparseCompressedTensor(shape, nnz, dtype=dtype, layout=layout, device=device,
                                               index_dtype=index_dtype, blocksize=blocksize)

            a.copy_(b)

            self.assertEqual(a, b)

        ns = [(9, 3), (2, 1), (0, 0)]  # (number of dimensions, the corresponding block size)
        batch_shapes = [(), (2,), (2, 3)]
        for ((m, bm), (n, bn), b), index_dtype in zip(itertools.product(ns, ns, batch_shapes), [torch.int32, torch.int64]):
            blocksize = (bm, bn) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
            run_test((*b, m, n), blocksize, 0, index_dtype)
            run_test((*b, m, n), blocksize, m * n, index_dtype)

    @skipMeta
    @all_sparse_compressed_layouts()
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_copy_errors(self, layout, device, dtype):
        blocksize = (2, 3) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
        nnz = 6 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 1
        shape1 = (2 * 6, 3 * 6) if layout in {torch.sparse_bsr, torch.sparse_bsc} else (2, 3)
        for index_dtype in [torch.int32, torch.int64]:
            a = self.genSparseCompressedTensor(shape1, 0, dtype=dtype, layout=layout, device=device,
                                               index_dtype=index_dtype, blocksize=blocksize)

            with self.assertRaisesRegex(RuntimeError,
                                        "copy of sparse compressed tensors having different layouts is not supported."):
                a.copy_(torch.empty(a.shape, dtype=dtype, device=device))

            b = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device,
                                               index_dtype=index_dtype, blocksize=blocksize)
            assert a._nnz() != b._nnz(), (a._nnz(), b._nnz())
            with self.assertRaisesRegex(RuntimeError,
                                        "only sparse compressed tensors with the same number of specified elements are supported."):
                a.copy_(b)

            shape2 = tuple(reversed(shape1))
            c = self.genSparseCompressedTensor(shape2, nnz, dtype=dtype, layout=layout, device=device,
                                               index_dtype=index_dtype, blocksize=blocksize)
            with self.assertRaisesRegex(
                    RuntimeError,
                    "expected shapes of self and src to match along dimension"):
                b.copy_(c)

            if blocksize:
                blocksize1 = tuple(reversed(blocksize))
                d = self.genSparseCompressedTensor(shape1, nnz, dtype=dtype, layout=layout, device=device,
                                                   index_dtype=index_dtype, blocksize=blocksize1)
                with self.assertRaisesRegex(RuntimeError,
                                            "copy of sparse compressed tensors having different block sizes is not supported"):
                    b.copy_(d)

    def _smallest_divisor(self, n):
        for i in range(2, int(n ** 0.5) + 1):
            if n % i == 0:
                return i
        return n

    @all_sparse_compressed_layouts()
    @ops(_sparse_compressed_ops)
    def test_consistency(self, layout, device, dtype, op):
        # TODO: Normaly, we should use DecorateInfo instead of
        # skipTest but this requires implemening OpInfo support for
        # layout as a test parameter (similar to device and dtype).
        if not (layout == torch.sparse_csr and op.supports_sparse_csr
                or layout == torch.sparse_csc and op.supports_sparse_csc
                or layout == torch.sparse_bsr and op.supports_sparse_bsr
                or layout == torch.sparse_bsc and op.supports_sparse_bsc):
            self.skipTest(f"{op.name} does not support input with {layout} layout")

        # FIXME: remove in followup once integer support is landed for segment_reduce
        if (layout == torch.sparse_csr and not dtype.is_floating_point
                and op.name in ('masked.mean', 'masked.amax', 'masked.amin')):
            self.skipTest(f"{op.name} does not support input with {layout} layout")

        require_mask = isinstance(op, ReductionOpInfo) and 'masked.' in op.name
        if require_mask and layout in {torch.sparse_bsr, torch.sparse_bsc}:
            self.skipTest(f"{op.name} does not support input with {layout} layout")

        if layout is torch.sparse_bsc:
            self.skipTest(f"test requires conversion from Strided layout to {layout} layout")

        samples = list(op.sample_inputs(device, dtype))

        # Fail early to prevent silent success with this test
        ndims_equals_2d = (s.input.ndim == 2 for s in samples)
        if not any(ndims_equals_2d):
            raise ValueError("Expected at least one 2D tensor in samples.")

        count = 0
        for sample in samples:
            assert torch.is_tensor(sample.input)
            # Sparse CSR/CSC only supports 2D tensors as inputs
            if sample.input.ndim != 2:
                continue
            if isinstance(op, ReductionOpInfo):
                # Reductions on sparse compressed require keepdim=True
                if not sample.kwargs.get('keepdim'):
                    continue
                # Reductions on sparse compressed tensors require explicit mask
                if require_mask and sample.kwargs.get('mask') is None:
                    continue
            expected = op(sample.input, **sample.kwargs)
            assert torch.is_tensor(expected)
            # Use smallest non-trivial blocksize for the given input shape:
            blocksize = tuple(map(self._smallest_divisor, sample.input.shape[-2:]))
            if layout is torch.sparse_bsr:
                sparse = sample.input.to_sparse_bsr(blocksize)
            elif layout is torch.sparse_bsc:
                sparse = sample.input.to_sparse_bsc(blocksize)
            elif layout is torch.sparse_csr:
                sparse = sample.input.to_sparse_csr()
            elif layout is torch.sparse_csc:
                sparse = sample.input.to_sparse_csc()
            else:
                assert 0, layout

            assert torch.is_tensor(sparse)
            output = op(sparse, **sample.kwargs)
            assert torch.is_tensor(output)
            strided_output = output.to_dense()
            if require_mask:
                output_mask = torch.masked._output_mask(op.op, sample.input, **sample.kwargs)
                expected.masked_fill_(~output_mask, 0)
            self.assertEqual(strided_output, expected)
            count += 1

        # Better fail late to prevent silent success with this test
        if not count:
            raise ValueError("Expected at least one sample with keepdim and/or explicit mask for reductions.")

    @skipMeta
    @all_sparse_compressed_layouts()
    @all_sparse_compressed_layouts('layout2')
    @dtypes(*all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16))
    def test_empty_like(self, layout, layout2, device, dtype):
        for compressed_indices, plain_indices, values, size in self._generate_small_inputs(layout):
            sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size,
                                                    dtype=dtype, layout=layout, device=device)
            if layout == layout2:
                result = torch.empty_like(sparse, layout=layout2)
                compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[result.layout]
                torch._validate_sparse_compressed_tensor_args(compressed_indices_mth(result),
                                                              plain_indices_mth(result),
                                                              result.values(),
                                                              result.shape,
                                                              result.layout)
                self.assertEqual(sparse.shape, result.shape)
            else:
                self.assertRaisesRegex(
                    RuntimeError,
                    "empty_like with different sparse layout is not supported",
                    lambda: torch.empty_like(sparse, layout=layout2)
                )

    @skipMeta
    @all_sparse_compressed_layouts()
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_validate(self, layout, device, dtype):
        for index_dtype in [torch.int32, torch.int64]:
            for compressed_indices, plain_indices, values, size in self._generate_small_inputs(
                    layout, device, dtype, index_dtype, enable_batched=True, enable_hybrid=True):
                torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout)

    def _generate_invalid_input(self, layout, device):
        from functools import partial

        shape, values = self._generate_small_inputs_utils(layout, device=device)

        tensor = partial(torch.tensor, device=device)
        values = partial(values, device=device)

        yield ('incontiguous compressed_indices',
               tensor([0, -1, 2, -1, 4, -1])[::2],
               tensor([0, 1, 0, 2]),
               values([1, 2, 3, 4]),
               shape((2, 3)),
               'expected compressed_indices to be a strided and contiguous tensor')

        yield ('incontiguous plain_indices',
               tensor([0, 2, 4]),
               tensor([0, -1, 1, -1, 0, -1, 2, -1])[::2],
               values([1, 2, 3, 4]),
               shape((2, 3)),
               'expected plain_indices to be a strided and contiguous tensor')

        yield ('incontiguous values',
               tensor([0, 2, 4]),
               tensor([0, 1, 0, 2]),
               values([1, 1, 2, 2, 3, 3, 4, 4])[::2],
               shape((2, 3)),
               'expected values to be a strided and contiguous tensor')

        yield ('0-D compressed_indices',
               tensor(0),
               tensor([0, 1, 0, 2]),
               values([1, 2, 3, 4]),
               shape((2, 3)),
               'compressed_indices must have dimensionality >= 1 but got 0')

        yield ('compressed/plain_indices mismatch of dimensionalites',
               tensor([[0, 2, 4]]),
               tensor([0, 1, 0, 2]),
               values([1, 2, 3, 4]),
               shape((2, 3)),
               'compressed_indices and plain_indices dimensionalities must be equal but got 2 and 1, respectively')

        if layout in {torch.sparse_csr, torch.sparse_csc}:
            yield ('indices and values mismatch of dimensionalites',
                   tensor([[0, 2, 4]]),
                   tensor([[0, 1, 0, 2]]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 0\) but got 1')
        else:
            yield ('indices and values mismatch of dimensionalites',
                   tensor([[0, 2, 4]]),
                   tensor([[0, 1, 0, 2]]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'values must have dimensionality > sum of batch and block dimensionalities \(=1 \+ 2\) but got 3')

        yield ('invalid size',
               tensor([0, 2, 4]),
               tensor([0, 1, 0, 2]),
               values([1, 2, 3, 4]),
               (2,),
               r'tensor dimensionality must be sum of batch, base, and dense dimensionalites \(=0 \+ 2 \+ 0\) but got 1')

        yield ('invalid batchsize',
               tensor([[0, 2, 4]]),
               tensor([[0, 1, 0, 2]]),
               values([[1, 2, 3, 4]]),
               shape((2, 2, 3), 1),
               r'all batch dimensions of compressed_indices \(=\[1\]\), plain_indices \(=\[1\]\), '
               r'and values \(=\[1\]\) must be equal to tensor batch dimensions \(=\[2\]\)')

        if layout is torch.sparse_bsr:
            yield ('invalid blocksize',
                   tensor([0, 2, 4]),
                   tensor([0, 1, 0, 2]),
                   tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]),
                   shape((2, 3)),
                   r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape')

        if layout is torch.sparse_bsc:
            yield ('invalid blocksize',
                   tensor([0, 2, 4]),
                   tensor([0, 1, 0, 2]),
                   tensor([[[1, 11]], [[2, 22]], [[3, 33]], [[4, 33]]]),
                   shape((3, 2)),
                   r'tensor shape\[1\] \(=3\) must be divisible with blocksize\[1\] \(=2\) as defined by values shape')

        yield ('invalid compressed_indices shape',
               tensor([0, 2, 3, 4]),
               tensor([0, 1, 0, 2]),
               values([1, 2, 3, 4]),
               shape((2, 3)),
               r'compressed_indices.shape\[-1\] must be equal to the number of compressed_indices_names \+ 1 \(=3\), but got 4')

        yield ('invalid compressed_indices shape',
               tensor([0, 2, 4]),
               tensor([0, 1, 0, 1, 2]),
               values([1, 2, 3, 4]),
               shape((2, 3)),
               r'plain_indices.shape\[-1\] must be equal to nnz \(=4\) as defined by values.shape\[0\], but got 5')

        yield ('compressed/plain_indices mismatch of dtype',
               tensor([0, 2, 4], dtype=torch.int32),
               tensor([0, 1, 0, 2], dtype=torch.int64),
               values([1, 2, 3, 4]),
               shape((2, 3)),
               r'compressed_indices and plain_indices must have the same dtype, bot got Int and Long, respectively')

        yield ('invalid compressed/plain_indices dtype',
               tensor([0, 2, 4], dtype=torch.int16),
               tensor([0, 1, 0, 2], dtype=torch.int16),
               values([1, 2, 3, 4]),
               shape((2, 3)),
               r'compressed_indices and plain_indices dtype must be Int or Long, but got Short')

        # CUDA kernel asserts are not recoverable, so we skip these for now
        if torch.device(device).type == 'cpu':
            yield ('invalid compressed_indices[0]',
                   tensor([1, 2, 4]),
                   tensor([0, 1, 0, 2]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'`compressed_indices\[..., 0\] == 0` is not satisfied.')

            yield ('invalid compressed_indices[-1]',
                   tensor([0, 2, 5]),
                   tensor([0, 1, 0, 2]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'`compressed_indices\[..., -1\] == nnz` is not satisfied.')

            yield ('invalid compressed_indices.diff(dim=-1)',
                   tensor([0, 0, 4]),
                   tensor([0, 1, 0, 2]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.')

            yield ('invalid compressed_indices.diff(dim=-1)',
                   tensor([0, 5, 4]),
                   tensor([0, 1, 0, 2]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'0 <= compressed_indices\[..., 1:\] - compressed_indices\[..., :\-1\] <= plain_dim` is not satisfied.')

            yield ('invalid min(plain_indices)',
                   tensor([0, 2, 4]),
                   tensor([0, -1, 0, 3]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'`0 <= plain_indices < plain_dim` is not satisfied.')

            yield ('invalid max(plain_indices)',
                   tensor([0, 2, 4]),
                   tensor([0, 1, 0, 3]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'`0 <= plain_indices < plain_dim` is not satisfied.')

            yield ('non-coalesced',
                   tensor([0, 2, 4]),
                   tensor([1, 0, 0, 2]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'`plain_indices\[..., compressed_indices\[..., i - 1\]:compressed_indices\[..., i\]\] '
                   'for all i = 1, ..., compressed_dim '
                   'are sorted and distinct along the last dimension values` is not satisfied.')

        if TEST_CUDA and torch.device(device).type == 'cpu':
            yield ('indices and values mismatch of device',
                   torch.tensor([0, 2, 4]),
                   torch.tensor([0, 1, 0, 1]),
                   values([1, 2, 3, 4], device='cuda'),
                   shape((2, 3)),
                   r'device of compressed_indices \(=cpu\) must match device of values \(=cuda:0\)')
            yield ('compressed_indices and values mismatch of device',
                   torch.tensor([0, 2, 4], device='cuda'),
                   torch.tensor([0, 1, 0, 1]),
                   values([1, 2, 3, 4]),
                   shape((2, 3)),
                   r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!')
            yield ('compressed/plain_indices mismatch of device',
                   torch.tensor([0, 2, 4], device='cuda'),
                   torch.tensor([0, 1, 0, 1]),
                   values([1, 2, 3, 4], device='cuda'),
                   shape((2, 3)),
                   r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!')

        if TEST_CUDA and torch.device(device).type == 'cuda' and torch.cuda.device_count() >= 2:
            yield ('indices and values mismatch of device index',
                   torch.tensor([0, 2, 4], device='cuda:0'),
                   torch.tensor([0, 1, 0, 1], device='cuda:0'),
                   values([1, 2, 3, 4], device='cuda:1'),
                   shape((2, 3)),
                   r'device of compressed_indices \(=cuda:0\) must match device of values \(=cuda:1\)')
            yield ('compressed_indices and values mismatch of device index',
                   torch.tensor([0, 2, 4], device='cuda:0'),
                   torch.tensor([0, 1, 0, 1], device='cuda:1'),
                   values([1, 2, 3, 4], device='cuda:0'),
                   shape((2, 3)),
                   r'Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!')

    @skipMeta
    @all_sparse_compressed_layouts()
    @parametrize('target', [subtest('validate_sparse_compressed_tensor_args'),
                            subtest('sparse_compressed_tensor'),
                            subtest('sparse_compressed_tensor_no_size')])
    def test_invalid_input(self, layout, device, target):
        for label, compressed_indices, plain_indices, values, size, errmsg in self._generate_invalid_input(layout, device):
            if layout is torch.sparse_bsr:
                errmsg = errmsg.replace('compressed_indices_name', 'row block').replace('plain_indices_name', 'column block')
            elif layout is torch.sparse_bsc:
                errmsg = errmsg.replace('compressed_indices_name', 'column block').replace('plain_indices_name', 'row block')
            elif layout is torch.sparse_csr:
                errmsg = errmsg.replace('compressed_indices_name', 'row').replace('plain_indices_name', 'column')
            elif layout is torch.sparse_csc:
                errmsg = errmsg.replace('compressed_indices_name', 'column').replace('plain_indices_name', 'row')
            if layout in {torch.sparse_csr, torch.sparse_bsr}:
                errmsg = errmsg.replace('compressed_indices', 'crow_indices') \
                               .replace('plain_indices', 'col_indices') \
                               .replace('plain_dim', 'ncols') \
                               .replace('compressed_dim', 'nrows')
            else:
                errmsg = errmsg.replace('compressed_indices', 'ccol_indices') \
                               .replace('plain_indices', 'row_indices') \
                               .replace('plain_dim', 'nrows') \
                               .replace('compressed_dim', 'ncols')

            if target == 'sparse_compressed_tensor_no_size' and label in {
                    'invalid size', 'invalid batchsize', 'invalid compressed_indices shape', 'invalid max(plain_indices)',
                    'invalid blocksize'}:
                # Skip invalid size input as a valid size is estimated for other inputs
                continue

            with self.assertRaisesRegex(RuntimeError, errmsg):
                if target == 'validate_sparse_compressed_tensor_args':
                    torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, values, size, layout)
                elif target == 'sparse_compressed_tensor':
                    torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, layout=layout)
                elif target == 'sparse_compressed_tensor_no_size':
                    torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, layout=layout)
                else:
                    raise NotImplementedError(target)

    @skipMeta
    @onlyCPU
    @all_sparse_compressed_layouts()
    def test_dim(self, layout):
        for compressed_indices, plain_indices, values, size in self._generate_small_inputs(layout):
            batch_dim = compressed_indices.dim() - 1
            sparse_dim = 2
            block_dim = 2 if layout in {torch.sparse_bsr, torch.sparse_bsc} else 0
            dense_dim = values.dim() - batch_dim - block_dim - 1
            sparse = torch.sparse_compressed_tensor(compressed_indices, plain_indices, values, size, layout=layout)
            self.assertEqual(sparse.sparse_dim(), sparse_dim)
            self.assertEqual(sparse.dense_dim(), dense_dim)


def _npref_block_addmm_addmv(c, a, b, alpha, beta):
    return alpha * (a @ b) + beta * c


class TestSparseCSR(TestCase):

    def test_csr_stride(self):
        a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)

        with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"):
            a.stride()

        with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have strides"):
            a.stride(-1)

    def test_csr_storage(self):
        a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)

        with self.assertRaisesRegex(RuntimeError, "Cannot access storage of SparseCsrTensorImpl"):
            a.storage()

    def test_csr_is_contiguous(self):
        a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)

        with self.assertRaisesRegex(RuntimeError, "Sparse CSR tensors do not have is_contiguous"):
            a.is_contiguous()

    def test_csr_double_to_sparse_csr(self):
        a = self.genSparseCSRTensor((3, 3), 3, dtype=torch.float, device=self.device_type, index_dtype=torch.int64)
        a.to_sparse_csr().to_sparse_csr()

    @all_sparse_compressed_layouts()
    @parametrize("index_dtype", [torch.int32, torch.int64])
    @dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
    def test_select(self, device, dtype, index_dtype, layout):
        compressed_indices_mth = {
            torch.sparse_csr: torch.Tensor.crow_indices,
            torch.sparse_bsr: torch.Tensor.crow_indices,
            torch.sparse_csc: torch.Tensor.ccol_indices,
            torch.sparse_bsc: torch.Tensor.ccol_indices,
        }[layout]

        plain_indices_mth = {
            torch.sparse_csr: torch.Tensor.col_indices,
            torch.sparse_bsr: torch.Tensor.col_indices,
            torch.sparse_csc: torch.Tensor.row_indices,
            torch.sparse_bsc: torch.Tensor.row_indices,
        }[layout]
        create_tensor_mth = {
            torch.sparse_csr: torch.sparse_csr_tensor,
            torch.sparse_bsr: torch.sparse_bsr_tensor,
            torch.sparse_csc: torch.sparse_csc_tensor,
            torch.sparse_bsc: torch.sparse_bsc_tensor,
        }[layout]

        shape = (2, 3, 6, 10)
        nnz = 6
        blocksize = (2, 2) if layout in {torch.sparse_bsr, torch.sparse_bsc} else ()
        sparse = self.genSparseCompressedTensor(
            shape, nnz, device=device, layout=layout, dtype=dtype, index_dtype=index_dtype, blocksize=blocksize)
        comp_indices = compressed_indices_mth(sparse)
        plain_indices = plain_indices_mth(sparse)
        values = sparse.values()

        # select from batch dimensions
        sparse_selected12 = sparse.select(1, 2)
        expected_sparse_selected12 = create_tensor_mth(comp_indices.select(1, 2).contiguous(),
                                                       plain_indices.select(1, 2).contiguous(),
                                                       values.select(1, 2).contiguous(),
                                                       size=(2, 6, 10),
                                                       dtype=dtype,
                                                       device=device)
        self.assertEqual(expected_sparse_selected12, sparse_selected12)

        # Select from dense dimensions
        sparse_hybrid = self.genSparseCompressedTensor(shape + (4, 2),
                                                       nnz,
                                                       device=device,
                                                       layout=layout,
                                                       dtype=dtype,
                                                       index_dtype=index_dtype,
                                                       blocksize=blocksize,
                                                       dense_dims=2)
        sparse_hybrid_dense_selected = sparse_hybrid.select(4, 1)
        expected_sparse_hybrid_dense_selected = sparse_hybrid.values().select(-2, 1)
        self.assertEqual(expected_sparse_hybrid_dense_selected, sparse_hybrid_dense_selected)



        # selecting rows/col with batch dims not allowed
        sparse_non_batched = sparse[0, 0]
        # select from sparse dimensions if layout supports is
        if layout in {torch.sparse_csr, torch.sparse_csc}:

            for select_args in [(0, 0), (1, 1)]:
                sparse_selected = sparse_non_batched.select(*select_args)
                dense_selected = sparse_non_batched.to_dense().select(*select_args)
                self.assertEqual(dense_selected, sparse_selected)

            self.assertEqual(sparse[0, 0, 0, 0], sparse.to_dense()[0, 0, 0, 0])
            # assigning to sparse through indexing is disabled, not tested generally because only layouts supporting
            # sparse dim select will get far enough to test
            with self.assertRaisesRegex(TypeError, "Cannot assign to a sparse tensor"):
                sparse[0, 0, 0, 0] = 99.0

            # select from sparse dimensions without removing batch dims, not tested generally because only layouts
            # supporting sparse dim select will get far enough
            msg = "selecting rows or columns is not implemented for batched sparse compressed tensors."
            with self.assertRaisesRegex(RuntimeError, msg):
                sparse.select(-2, 0)

            with self.assertRaisesRegex(RuntimeError, msg):
                sparse.select(-1, 0)
        # ensure raises if layout does not support
        else:
            msg = (
                "selecting non-batch dimensions is currently only supported for non-blocked sparse "
                "compressed layouts tensors.")
            with self.assertRaisesRegex(RuntimeError, msg):
                sparse_non_batched.select(0, 0)

    @skipMeta
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_resize(self, device, dtype):
        batch_shapes = [(), (2,), (2, 3)]
        for index_dtype, b in zip([torch.int32, torch.int64], batch_shapes):
            shape = (*b, 2, 3)
            nnz = 6
            a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)

            new_shape = (*b, 4, 5)
            a.resize_(new_shape)

            self.assertEqual(a.shape, new_shape)
            # resize to larger shape doesn't add specified elements
            self.assertEqual(a._nnz(), nnz)

            new_shape = (*b, 1, 5)
            a.resize_(new_shape)

            self.assertEqual(a.shape, new_shape)
            # resize to smaller shape trims specified elements
            self.assertEqual(a._nnz(), 5)

            # trim batched dimensions
            a.resize_(new_shape[-2], new_shape[-1])
            self.assertEqual(a.shape, (new_shape[-2], new_shape[-1]))
            self.assertEqual(a._nnz(), 5)

    @skipMeta
    @dtypes(torch.float, torch.bool)
    @all_sparse_compressed_layouts()
    def test_resize_as_sparse_compressed(self, device, dtype, layout):

        def _check_resize_b_as_a(b, a):
            br = b.clone()
            br.resize_as_sparse_(a)

            # shape is inherited from a
            self.assertEqual(a.shape, br.shape)
            # other metadata is not affected
            self.assertEqual(b.layout, br.layout)
            self.assertEqual(b.device, br.device)
            self.assertEqual(b.dtype, br.dtype)

            def _get_compressed_plain_inds(t):
                compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[t.layout]
                return compressed_indices_mth(t), plain_indices_mth(t)

            br_compressed_indices, br_plain_indices = _get_compressed_plain_inds(br)
            br_values = br.values()

            b_compressed_indices, b_plain_indices = _get_compressed_plain_inds(b)
            a_compressed_indices, a_plain_indices = _get_compressed_plain_inds(a)
            self.assertEqual(a_plain_indices.shape, br_plain_indices.shape)
            self.assertEqual(a_compressed_indices.shape, br_compressed_indices.shape)
            # We don't check the content of br_plain_indices and br_compressed_indices
            # because it is not well-defined (the content depends on the original
            # shape of `b` that `resize_as` ought to discard) nor needed (the
            # subsequent operation likely updates the indices and values of `b` anyway).
            # the device/dtype of indices should always be unaffected
            self.assertEqual(b_plain_indices.dtype, br_plain_indices.dtype)
            self.assertEqual(b_plain_indices.device, br_plain_indices.device)
            self.assertEqual(b_compressed_indices.dtype, br_compressed_indices.dtype)
            self.assertEqual(b_compressed_indices.device, br_compressed_indices.device)
            # values are generated empty, shape is updated
            self.assertEqual(a.values().shape, br_values.shape)
            # the device/dtype of indices should always be unaffected
            b_values = b.values()
            self.assertEqual(b_values.dtype, br_values.dtype)
            self.assertEqual(b_values.device, br_values.device)
            # nnz will be picked up from a via new shape of values
            self.assertEqual(a._nnz(), br._nnz())

            # post resize the invariants of the layout are respected
            torch._validate_sparse_compressed_tensor_args(br_compressed_indices, br_plain_indices, br_values, br.shape,
                                                          br.layout)

        block_sparse = layout in (torch.sparse_bsr, torch.sparse_bsc)
        shape = (2, 1, 6, 4)
        nnz = 4
        blocksize = (2, 1) if block_sparse else ()
        for index_dtype in [torch.int32, torch.int64]:
            a = self.genSparseCompressedTensor(shape,
                                               layout=layout,
                                               device=device,
                                               index_dtype=index_dtype,
                                               dtype=dtype,
                                               nnz=nnz,
                                               blocksize=blocksize)

            # same size, resize should not trigger
            b = self.genSparseCompressedTensor(shape,
                                               layout=layout,
                                               device=device,
                                               index_dtype=index_dtype,
                                               dtype=dtype,
                                               nnz=nnz,
                                               blocksize=blocksize)

            # This test will not always trigger a resize, if the layouts are the same nothing should happen to b.
            # The invariants of the function as checked should still hold
            _check_resize_b_as_a(b, a)

            # same ndim, but bigger, more nnz, different dtype, different blocksize if blocked
            b = self.genSparseCompressedTensor(tuple(s * 2 for s in shape),
                                               layout=layout,
                                               device=device,
                                               dtype=torch.chalf,
                                               index_dtype=torch.int64 if index_dtype == torch.int32 else torch.int32,
                                               nnz=nnz * 2,
                                               blocksize=tuple(2 * bi for bi in blocksize))
            _check_resize_b_as_a(b, a)

            # different device, only check on cuda pass as we know we are testing in an environment
            # that has multiple devices

            # TODO: .cpu() does not seem to work correctly for sparse. Causes a call to `copy_` which
            # complains about incompatible nnz between src and self?
            if torch.device(device).type == 'cuda' and (layout not in (torch.sparse_bsc, torch.sparse_bsr)):
                a_cpu = self.genSparseCompressedTensor(shape,
                                                       layout=layout,
                                                       device='cpu',
                                                       index_dtype=index_dtype,
                                                       dtype=dtype,
                                                       nnz=nnz,
                                                       blocksize=blocksize)
                _check_resize_b_as_a(b, a)

            # error on a strided
            a_strided = a.to_dense()
            with self.assertRaisesRegex(
                    RuntimeError, r'"resize_as_sparse_compressed_: src " expected sparse compressed tensor layout'):
                b.resize_as_sparse_(a_strided)

            # error on b strided
            b_strided = b.to_dense()
            with self.assertRaisesRegex(
                    RuntimeError, r'"resize_as_sparse_compressed_: self " expected sparse compressed tensor layout'):
                b_strided.resize_as_sparse_(a)

            # error if layout does not match, transpose induces layout flip
            with self.assertRaisesRegex(RuntimeError,
                                        r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"):
                b.transpose(-2, -1).resize_as_sparse_(a)
            with self.assertRaisesRegex(RuntimeError,
                                        r"resize_as_sparse_compressed_tensor_: self and src must have the same layout"):
                b.resize_as_sparse_(a.transpose(-2, -1))

    @skipMeta
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_resize_errors(self, device, dtype):
        for index_dtype in [torch.int32, torch.int64]:
            shape = (2, 3)
            nnz = 6
            a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)

            with self.assertRaisesRegex(RuntimeError, "torch.resize_: Only batched sparse CSR matrices are supported"):
                new_shape = (4,)
                a.resize_(new_shape)

            # resizing of columns to smaller size is not implemented
            with self.assertRaisesRegex(
                RuntimeError,
                "torch.resize_: Resizing columns of sparse CSR tensors to a smaller value is not supported.",
            ):
                new_shape = (2, 2)
                a.resize_(new_shape)

    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_sparse_csr_from_dense(self, device, dtype):
        dense = torch.tensor([[4, 5, 0], [0, 0, 0], [1, 0, 0]], dtype=dtype, device=device)
        sparse = dense.to_sparse_csr()
        self.assertEqual(torch.tensor([0, 2, 2, 3], dtype=torch.int64), sparse.crow_indices())
        self.assertEqual(torch.tensor([0, 1, 0], dtype=torch.int64), sparse.col_indices())
        self.assertEqual(torch.tensor([4, 5, 1], dtype=dtype), sparse.values())

        dense = torch.tensor([[0, 0, 0], [0, 0, 1], [1, 0, 0]], dtype=dtype, device=device)
        sparse = dense.to_sparse_csr()
        self.assertEqual(torch.tensor([0, 0, 1, 2], dtype=torch.int64), sparse.crow_indices())
        self.assertEqual(torch.tensor([2, 0], dtype=torch.int64), sparse.col_indices())
        self.assertEqual(torch.tensor([1, 1], dtype=dtype), sparse.values())

        dense = torch.tensor([[2, 2, 2], [2, 2, 2], [2, 2, 2]], dtype=dtype, device=device)
        sparse = dense.to_sparse_csr()
        self.assertEqual(torch.tensor([0, 3, 6, 9], dtype=torch.int64), sparse.crow_indices())
        self.assertEqual(torch.tensor([0, 1, 2] * 3, dtype=torch.int64), sparse.col_indices())
        self.assertEqual(torch.tensor([2] * 9, dtype=dtype), sparse.values())

    def _test_sparse_compressed_to_dense(self, device, dtype, layout):
        compressed_format_str = str(layout)[-3:]

        def to_compressed(t):
            return getattr(t, f"to_sparse_{compressed_format_str}")()

        def compressed_constructor(*input, **kwargs):
            constructor = getattr(torch, f"sparse_{compressed_format_str}_tensor")
            return constructor(*input, **kwargs)

        def get_dense_shape(shape, batch_ndim):
            if layout is torch.sparse_csc:
                compressed_dims_slice = slice(batch_ndim + 1, batch_ndim - 1, -1)
            else:
                compressed_dims_slice = slice(batch_ndim, batch_ndim + 2)
            return shape[:batch_ndim] + shape[compressed_dims_slice] + shape[batch_ndim + 2:]

        def transpose(t, batch_ndim):
            if layout is torch.sparse_csc:
                return t.transpose(batch_ndim, batch_ndim + 1)
            return t

        mn = [5, 2, 0]
        for (m, n) in itertools.product(mn, mn):
            size = (m, n)
            dense = make_tensor(size, dtype=dtype, device=device)
            sparse = to_compressed(dense)
            self.assertEqual(sparse.to_dense(), dense)

        batch_shape = (2, 3)
        compressed_indices = torch.tensor([0, 3, 5], device=device).repeat(6, 1).reshape(*batch_shape, -1)
        plain_indices = torch.tensor([0, 1, 2, 0, 1], device=device).repeat(6, 1).reshape(*batch_shape, -1)
        values = torch.tensor([1, 2, 1, 3, 4], device=device, dtype=dtype).repeat(6, 1).reshape(*batch_shape, -1)
        sparse = compressed_constructor(compressed_indices, plain_indices, values, dtype=dtype, device=device)
        dense_shape = get_dense_shape(sparse.shape, len(batch_shape))
        dense = torch.tensor([[1, 2, 1], [3, 4, 0]], dtype=dtype, device=device).repeat(6, 1).reshape(dense_shape)
        self.assertEqual(sparse.to_dense(), transpose(dense, len(batch_shape)))

    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_sparse_csr_to_dense(self, device, dtype):
        self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csr)

    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_sparse_csc_to_dense(self, device, dtype):
        self._test_sparse_compressed_to_dense(device, dtype, torch.sparse_csc)

    @skipMeta
    @skipCPUIfNoMklSparse
    @coalescedonoff
    @dtypes(torch.double)
    def test_coo_to_csr_convert(self, device, dtype, coalesced):
        with self.assertRaisesRegex(RuntimeError, "Input is supposed to be a vector"):
            torch._convert_indices_from_coo_to_csr(
                torch.randint(100, (5, 5), device=device),
                size=100)

        size = (5, 5)
        sparse_dim = 2
        nnz = 10
        sparse_coo, _, _ = self.genSparseTensor(size, sparse_dim, nnz, coalesced, device, dtype)
        sparse_csr = sparse_coo.to_sparse_csr()

        self.assertTrue(sparse_csr.is_sparse_csr)
        self.assertEqual(sparse_csr.to_dense(), sparse_coo.to_dense())

        vec = torch.randn((5, 1), dtype=dtype, device=device)
        coo_product = sparse_coo.matmul(vec)
        csr_product = sparse_csr.matmul(vec)

        self.assertEqual(coo_product, csr_product)

        vec = torch.randn((100, 1), dtype=dtype, device=device)
        index = torch.tensor([
            [1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
            [92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
        ], dtype=torch.int32)
        values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=dtype, device=device)
        coo = torch.sparse_coo_tensor(index, values, torch.Size([100, 100]), dtype=dtype, device=device)
        csr = coo.to_sparse_csr()

        self.assertEqual(coo.matmul(vec), csr.matmul(vec))

        col_indices = torch.tensor([
            31, 92, 65, 50, 34, 62, 22, 56, 74, 89
        ], dtype=torch.int64, device=device)
        self.assertEqual(csr.col_indices(), col_indices)

        values = torch.tensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7], dtype=dtype, device=device)
        self.assertEqual(csr.values(), values)

    @parametrize("blocksize", [2, 4])
    @dtypes((torch.double, torch.int32), (torch.double, torch.int64))
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    @skipMeta
    def test_csr_to_block_csr(self, device, dtypes, blocksize):
        for shape in [(24, 24), (12, 24)]:
            dtype, index_dtype = dtypes
            m, k = shape
            nnz = random.randint(0, m * k)
            t = self.genSparseCSRTensor((m * blocksize, k * blocksize), nnz, dtype=dtype,
                                        device=device, index_dtype=index_dtype)
            st = sp.csr_matrix((t.values().cpu(), t.col_indices().cpu(), t.crow_indices().cpu()), shape=tuple(t.size()))
            block_t = t.to_sparse_bsr((blocksize, blocksize))
            self.assertEqual(block_t.values().dim(), 3)
            self.assertTrue(block_t.layout == torch.sparse_bsr)
            block_st = st.tobsr(blocksize=(blocksize, blocksize))
            self.assertEqual(block_t.values().cpu(), block_st.data)
            self.assertEqual(block_t.col_indices().cpu(), torch.tensor(block_st.indices).to(index_dtype))
            self.assertEqual(block_t.crow_indices().cpu(), torch.tensor(block_st.indptr).to(index_dtype))

    @dtypes(torch.double)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_csr_to_block_csr_errors(self, device, dtype):
        for index_dtype in [torch.int32, torch.int64]:
            nnz = 15
            t = self.genSparseCSRTensor((16, 16), nnz, dtype=dtype,
                                        device=device, index_dtype=index_dtype)
            with self.assertRaisesRegex(RuntimeError, "must be square."):
                block_t = t.to_sparse_bsr((2, 3))

            with self.assertRaisesRegex(RuntimeError, r"size \(16, 16\) with block size \(5, 5\)"):
                block_t = t.to_sparse_bsr((5, 5))

    # TODO: Support auto generation of device check for sparse tensors
    # See: https://github.com/pytorch/pytorch/issues/59058
    @onlyCUDA
    @dtypes(torch.double)
    def test_matmul_device_mismatch(self, device, dtype):
        cpu = torch.rand((10, 10))
        cuda = cpu.cuda()
        for s, m1, m2 in itertools.product((cpu, cuda), repeat=3):
            csr = m1.to_sparse()
            if s.device == csr.device == m2.device:
                torch.addmm(s, csr, m2)
            else:
                with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
                    torch.addmm(s, csr, m2)

    @skipCPUIfNoMklSparse
    @skipCUDAIfNoSparseGeneric
    @dtypes(*floating_and_complex_types())
    @dtypesIfCUDA(*floating_and_complex_types_and(
                  *[torch.half] if SM53OrLater else [],
                  *[torch.bfloat16] if SM80OrLater else []))
    def test_csr_matvec(self, device, dtype):

        if TEST_WITH_ROCM and (dtype == torch.half or dtype == torch.bfloat16):
            self.skipTest("ROCm doesn't work with half dtypes correctly.")

        side = 100
        for index_dtype in [torch.int32, torch.int64]:
            csr = self.genSparseCSRTensor((side, side), 1000, device=device, dtype=dtype, index_dtype=index_dtype)
            vec = torch.randn(side, dtype=dtype, device=device)

            res = csr.matmul(vec)
            expected = csr.to_dense().matmul(vec)

            self.assertEqual(res, expected)

            bad_vec = torch.randn(side + 10, dtype=dtype, device=device)
            err_msg = "size mismatch, got"
            with self.assertRaisesRegex(RuntimeError, err_msg):
                csr.matmul(bad_vec)

    @onlyCUDA
    @unittest.skipIf(not (CUDA11OrLater or TEST_WITH_ROCM), "Only CUDA 11+ is supported")
    @skipCUDAIfRocmVersionLessThan((5, 2))
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_baddbmm(self, device, dtype):
        def run_test(c, a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None):
            alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random()
            beta = complex(random.random(), random.random()) if dtype.is_complex else random.random()
            b = b.mH if (op_b and a.shape == b.shape) else b

            actual = torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta)

            out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c)
            torch.baddbmm(c, a_batched, b, alpha=alpha, beta=beta, out=out)

            expected = [torch.addmm(c[i], a, b[i], alpha=alpha, beta=beta) for i in range(c.shape[0])]
            expected = torch.stack(expected, 0)

            self.assertEqual(actual, out)
            self.assertEqual(actual, expected)

        for index_dtype in [torch.int32, torch.int64]:
            for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]):
                nnz = random.randint(0, m * k)
                a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)

                # a_batched is a regular CSR tensor but with a batch dimension in the shape
                a_batched = torch._sparse_csr_tensor_unsafe(
                    a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k))

                b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
                c = make_tensor((batch_size, m, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
                for op_b, op_out in itertools.product([True, False], repeat=2):
                    run_test(c, a, a_batched, b, op_b, op_out, dtype=dtype, device=device)

    @onlyCUDA
    @unittest.skipIf(not CUDA11OrLater, "Only CUDA 11+ is supported")
    @skipCUDAIfNoSparseGeneric
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_bmm(self, device, dtype):
        def run_test(a, a_batched, b, op_b=False, op_out=False, *, dtype=None, device=None):
            b = b.mH if (op_b and a.shape == b.shape) else b

            actual = torch.bmm(a_batched, b)

            out = torch.empty_like(actual.mH if op_out and a.shape == b.shape else actual)
            torch.bmm(a_batched, b, out=out)

            expected = [torch.mm(a, b[i]) for i in range(b.shape[0])]
            expected = torch.stack(expected, 0)

            self.assertEqual(actual, out)
            self.assertEqual(actual, expected)

        for index_dtype in [torch.int32, torch.int64]:
            for (m, n, k), batch_size, noncontiguous in zip(itertools.product([2, 5], repeat=3), [1, 3], [True, False]):
                nnz = random.randint(0, m * k)
                a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)

                # a_batched is a regular CSR tensor but with a batch dimension in the shape
                a_batched = torch._sparse_csr_tensor_unsafe(
                    a.crow_indices(), a.col_indices(), a.values(), (batch_size, m, k))

                b = make_tensor((batch_size, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
                for op_b, op_out in itertools.product([True, False], repeat=2):
                    run_test(a, a_batched, b, op_b, op_out, dtype=dtype, device=device)

    def run_test_block_addmm_addmv(self,
                                   addmv_addmm,
                                   c,
                                   a,
                                   b,
                                   op_b=False,
                                   op_out=False,
                                   *,
                                   dtype=None,
                                   device=None,
                                   ref=_npref_block_addmm_addmv):
        alpha = complex(random.random(), random.random()) if dtype.is_complex else random.random()
        beta = complex(random.random(), random.random()) if dtype.is_complex else random.random()
        b = b.mH if (op_b and a.shape == b.shape) else b

        actual = addmv_addmm(c, a, b, alpha=alpha, beta=beta)

        out = torch.empty_like(c.mH if op_out and a.shape == b.shape else c)
        addmv_addmm(c, a, b, alpha=alpha, beta=beta, out=out)
        expected = ref(c, a, b, alpha, beta)

        self.assertEqual(actual, out)
        self.assertEqual(actual, expected)

    # TODO: block_size 1 is broken
    @parametrize("block_size", [2, 3])
    @parametrize("index_dtype", [torch.int32, torch.int64])
    @parametrize("noncontiguous", [True, False])
    @skipCPUIfNoMklSparse
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    @dtypes(*floating_and_complex_types())
    @dtypesIfCUDA(*floating_and_complex_types_and(
                  *[torch.half] if SM53OrLater else [],
                  *[torch.bfloat16] if SM80OrLater else []))
    @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
                        torch.float64: 1e-5, torch.complex128: 1e-5,
                        torch.float16: 1e-3, torch.bfloat16: 1e-3})
    def test_block_addmm(self, device, dtype, index_dtype, block_size, noncontiguous):

        def make_transposed_addmm_op(f):

            def tt(t):
                if isinstance(t, torch.Tensor):
                    return t.transpose(-2, -1)
                else:
                    # assume numpy/scipy spmatrix
                    return t.transpose()

            @functools.wraps(f)
            def wrapper(c, a, b, alpha=None, beta=None, out=None):
                if out is not None:
                    # the ref takes no out kwarg
                    assert isinstance(out, torch.Tensor)
                    # tranpose inplace to propogate out to checking context
                    out.transpose_(-2, -1)
                    return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta, out=out)
                else:
                    return f(tt(c), tt(b), tt(a), alpha=alpha, beta=beta)

            return wrapper

        def ref_sp_numpy(c, a, b, alpha=None, beta=None, out=None):

            def prep_input(t):

                def to_sp_block_compressed(t):

                    if t.layout is torch.sparse_bsc:
                        tt = t.transpose(-1, -2)
                    else:
                        tt = t

                    t_sp_bsr = sp.bsr_matrix(
                        (
                            tt.values().cpu().numpy(),
                            tt.col_indices().cpu().numpy(),
                            tt.crow_indices().cpu().numpy(),
                        ),
                        shape=tt.shape,
                    )

                    if t.layout is torch.sparse_bsc:
                        return t_sp_bsr.transpose()
                    else:
                        return t_sp_bsr

                if t.layout is not torch.strided:
                    return to_sp_block_compressed(t)
                else:
                    return t.cpu().resolve_conj().numpy()

            res = _npref_block_addmm_addmv(
                *map(lambda t: prep_input(t), (c, a, b)),
                alpha,
                beta
            )

            if out is not None:
                out.copy_(res)
                return out
            else:
                return res

        def ref_half_bfloat16(c, a, b, alpha=None, beta=None, out=None):
            res = alpha * (a.to_dense() @ b.to_dense()) + beta * c
            if out is not None:
                out.copy_(res)
                return out
            else:
                return res

        if dtype in (torch.half, torch.bfloat16):
            ref = ref_half_bfloat16
        else:
            ref = ref_sp_numpy

        for (m, n, k) in itertools.product([2, 5], repeat=3):
            nnz = random.randint(0, m * k)
            a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
            a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
            a_data = a_data.mT if noncontiguous else a_data
            a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(),
                                                a_data, (m * block_size, k * block_size))
            b = make_tensor((k * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous)
            c = make_tensor((m * block_size, n * block_size), dtype=dtype, device=device, noncontiguous=noncontiguous)
            for op_b, op_out in itertools.product([True, False], repeat=2):
                self.run_test_block_addmm_addmv(torch.addmm, c, a, b, op_b, op_out, dtype=dtype, device=device, ref=ref)
                self.run_test_block_addmm_addmv(make_transposed_addmm_op(torch.addmm),
                                                c,
                                                a,
                                                b,
                                                op_b,
                                                op_out,
                                                dtype=dtype,
                                                device=device,
                                                ref=make_transposed_addmm_op(ref))

    @parametrize("block_size", [2, 3])
    @parametrize("index_dtype", [torch.int32, torch.int64])
    @parametrize("noncontiguous", [True, False])
    @skipCPUIfNoMklSparse
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_block_addmv(self, device, dtype, index_dtype, block_size, noncontiguous):
        # TODO: Explicitly disable block size 1 support
        # if (TEST_WITH_ROCM or not TEST_CUSPARSE_GENERIC) and block_size == 1:
        #     return
        for (m, k) in itertools.product([2, 5], repeat=2):
            nnz = random.randint(0, m * k)
            if not noncontiguous:
                a = self.genSparseCSRTensor((m * block_size, k * block_size), nnz,
                                            dtype=dtype, device=device, index_dtype=index_dtype)
                a = a.to_sparse_bsr((block_size, block_size))
            else:
                a = self.genSparseCSRTensor((m, k), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
                a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
                a_data = a_data.mT if noncontiguous else a_data   # Test column-major blocks
                a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(),
                                                    a_data, (m * block_size, k * block_size))
            b = make_tensor((k * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous)
            c = make_tensor((m * block_size,), dtype=dtype, device=device, noncontiguous=noncontiguous)
            self.run_test_block_addmm_addmv(torch.addmv, c, a, b, dtype=dtype, device=device)

    @parametrize("block_size", [2, 3])
    @parametrize("index_dtype", [torch.int32, torch.int64])
    @parametrize("noncontiguous", [True, False])
    @skipCPUIfNoMklSparse
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_block_triangular_solve(self, device, dtype, index_dtype, block_size, noncontiguous):
        def run_test(a, b, upper, transpose, unitriangular, op_out):
            if unitriangular and self.device_type == 'cpu':
                # TODO: When unitriangular=True results are not correct on CPU
                return

            if not upper and self.device_type == 'cpu':
                # TODO: When upper=False some generated inputs might crash on CPU
                return

            actual = torch.triangular_solve(b, a, upper=upper, unitriangular=unitriangular, transpose=transpose)
            actual_X = actual.solution
            actual_A_clone = actual.cloned_coefficient
            self.assertTrue(actual_A_clone.numel() == 0)
            if a._nnz() == 0:
                self.assertTrue(actual_X.isnan().all())
                return

            # TODO: replace with torch method when implemented to_dense() on block sparse tensor
            a_bsr = sp.bsr_matrix(
                (
                    a.values().cpu().numpy(),
                    a.col_indices().cpu().numpy(),
                    a.crow_indices().cpu().numpy(),
                ),
                shape=a.shape,
            )
            expected_X, _ = torch.triangular_solve(
                b,
                torch.tensor(a_bsr.todense(), device=device),
                transpose=transpose,
                upper=upper,
                unitriangular=unitriangular)

            if expected_X.isnan().any():
                # TODO: zeros on the diagonal are not handled for CPU path
                # there's no way to query this info from MKL
                if self.device_type == 'cuda' and not TEST_WITH_ROCM:
                    self.assertTrue(actual_X.isnan().any() or actual_X.isinf().any())
                return

            self.assertEqual(actual_X, expected_X)

            out = torch.empty_like(b.mH if op_out and a.shape == b.shape else b)
            torch.triangular_solve(
                b, a,
                upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
            )
            self.assertEqual(out, actual_X)
            self.assertEqual(out, expected_X)

        for (m, k) in itertools.product([2, 3], [1, 3]):
            nnz = random.randint(0, m * m)
            if not noncontiguous:
                a = self.genSparseCSRTensor((m * block_size, m * block_size), nnz,
                                            dtype=dtype, device=device, index_dtype=index_dtype)
                a = a.to_sparse_bsr((block_size, block_size))
            else:
                a = self.genSparseCSRTensor((m, m), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
                a_data = make_tensor((nnz, block_size, block_size), dtype=dtype, device=device)
                a_data = a_data.mT if noncontiguous else a_data  # Test column-major blocks
                a = torch._sparse_bsr_tensor_unsafe(a.crow_indices(), a.col_indices(),
                                                    a_data, (m * block_size, m * block_size))
            b = make_tensor((m * block_size, k), dtype=dtype, device=device, noncontiguous=noncontiguous)

            for (upper, unitriangular, transpose, op_out) in itertools.product([True, False], repeat=4):
                run_test(a, b, upper, unitriangular, transpose, op_out)

    @skipCPUIfNoMklSparse
    @unittest.skipIf(not CUDA11OrLater, "Only CUDA 11+ is supported")
    @dtypes(torch.double)
    def test_mm(self, device, dtype):
        def test_shape(di, dj, dk, nnz0=None, nnz1=None):
            for index_dtype in [torch.int32, torch.int64]:
                alpha = random.random()
                beta = random.random()

                def _test_addmm(t, x, y):
                    # TODO: addmm doesn't support strided result for sparse inputs.
                    # res = beta * t  + alpha * (x @ y)
                    res = torch.addmm(t, x, y, beta=beta, alpha=alpha)
                    expected = torch.addmm(t, x.to_dense(), y.to_dense(), beta=beta, alpha=alpha)
                    self.assertEqual(res, expected)

                    res = torch.addmm(t, x, y)
                    expected = torch.addmm(t, x.to_dense(), y.to_dense())
                    self.assertEqual(res, expected)

                def _test_mm(x, y):
                    res = torch.mm(x, y)
                    expected = torch.mm(x.to_dense(), y.to_dense())
                    if x.layout is torch.strided or y.layout is torch.strided:
                        self.assertEqual(res.layout, torch.strided)
                    else:
                        self.assertEqual(res.layout, torch.sparse_csr)
                    self.assertEqual(res.to_dense(), expected)

                def _test(t, x, y):
                    _test_addmm(t, x, y)
                    _test_mm(x, y)

                if nnz0 is None:
                    nnz0 = random.randint(di * dk // 2, di * dk)
                t = torch.randn(di, dj, dtype=dtype, device=device)
                x = self.genSparseCSRTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
                y = torch.randn(dk, dj, dtype=dtype, device=device)
                _test(t, x, y)

                t = torch.randn(di, dj, dtype=dtype, device=device)
                x = self.genSparseCSCTensor((di, dk), nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
                y = torch.randn(dk, dj, dtype=dtype, device=device)
                _test(t, x, y)

                if nnz1 is None:
                    nnz1 = random.randint(dk * dj // 2, dk * dj)
                t = torch.randn(di, dj, dtype=dtype, device=device)
                x = torch.randn(di, dk, dtype=dtype, device=device)
                y = self.genSparseCSRTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
                _test(t, x, y)

                t = torch.randn(di, dj, dtype=dtype, device=device)
                x = torch.randn(di, dk, dtype=dtype, device=device)
                y = self.genSparseCSCTensor((dk, dj), nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
                _test(t, x, y)

                x_shape, y_shape = x.shape, y.shape

                gen_csr_csc = [self.genSparseCSRTensor, self.genSparseCSCTensor]

                # Test mm({CSR, CSC}, {CSR, CSC})
                for gen_x, gen_y in itertools.product(gen_csr_csc, gen_csr_csc):
                    x = gen_x(x_shape, nnz0, device=device, dtype=dtype, index_dtype=index_dtype)
                    y = gen_y(y_shape, nnz1, device=device, dtype=dtype, index_dtype=index_dtype)
                    _test_mm(x, y)

        for i in [2, 4]:
            for j in [2, 4, 7]:
                for k in [2, 3, 7]:
                    test_shape(i, j, k)
        test_shape(4, 4, 4, 0, 0)

    @skipCPUIfNoMklSparse
    @dtypes(*floating_and_complex_types())
    @dtypesIfCUDA(*floating_and_complex_types_and(
                  *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [],
                  *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else []))
    @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
    def test_sparse_mm(self, device, dtype):
        def test_shape(d1, d2, d3, nnz, transposed, index_dtype):
            if transposed:
                D = torch.randn(d3, d2, dtype=dtype, device=device).t_()
            else:
                D = torch.randn(d2, d3, dtype=dtype, device=device)
            S = self.genSparseCSRTensor((d1, d2), nnz, device=device, dtype=dtype, index_dtype=index_dtype)
            S_dense = S.to_dense()
            self.assertEqual(torch.sparse.mm(S, D), torch.mm(S_dense, D))

        for index_dtype in [torch.int32, torch.int64]:
            test_shape(7, 8, 9, 20, False, index_dtype)
            test_shape(7, 8, 9, 20, True, index_dtype)

    @dtypes(*floating_and_complex_types())
    @dtypesIfCUDA(*floating_and_complex_types_and(
                  *[torch.half] if SM53OrLater and TEST_CUSPARSE_GENERIC else [],
                  *[torch.bfloat16] if SM80OrLater and TEST_CUSPARSE_GENERIC else []))
    @precisionOverride({torch.bfloat16: 1e-2, torch.float16: 1e-2})
    def test_sparse_addmm(self, device, dtype):
        def test_shape(m, n, p, nnz, broadcast, index_dtype, alpha_beta=None):
            if alpha_beta is None:
                alpha = random.random()
                beta = random.random()
            else:
                alpha, beta = alpha_beta
            if broadcast:
                D1 = make_tensor((), dtype=dtype, device=device)
            else:
                D1 = make_tensor([n, p], dtype=dtype, device=device)
            D2 = make_tensor([m, p], dtype=dtype, device=device)
            S = self.genSparseCSRTensor([n, m], nnz, dtype=dtype, device=device, index_dtype=index_dtype)
            S_dense = S.to_dense()
            Y = torch.sparse.addmm(D1, S, D2, beta=beta, alpha=alpha)
            Y_dense = torch.addmm(D1, S_dense, D2, beta=beta, alpha=alpha)
            self.assertEqual(Y, Y_dense)

        for index_dtype in [torch.int32, torch.int64]:
            test_shape(7, 8, 9, 20, False, index_dtype, None)
            test_shape(7, 8, 9, 20, True, index_dtype, None)
            test_shape(7, 8, 9, 20, False, index_dtype, (1, 0))
            test_shape(7, 8, 9, 20, True, index_dtype, (1, 0))
            test_shape(7, 8, 9, 20, False, index_dtype, (1, 1))
            test_shape(7, 8, 9, 20, True, index_dtype, (1, 1))

    @skipCPUIfNoMklSparse
    @dtypes(*floating_and_complex_types())
    @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6,
                        torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8})
    @dtypesIfCUDA(*floating_types_and(torch.complex64,
                                      *[torch.bfloat16] if SM80OrLater else [],
                                      *[torch.half] if SM53OrLater else [],
                                      *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else []))
    @sparse_compressed_nonblock_layouts()
    @skipCUDAIf(
        not _check_cusparse_spgemm_available(),
        "cuSparse Generic API SpGEMM is not available"
    )
    def test_addmm_all_sparse_csr(self, device, dtype, layout):
        M = torch.randn(10, 25, device=device).to(dtype)
        m1 = torch.randn(10, 50, device=device).to(dtype)
        m2 = torch.randn(50, 25, device=device).to(dtype)
        _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse")

        # Test 0-strided
        M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25)
        m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50)
        m2 = torch.randn(50, 25, device=device).to(dtype)
        _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="all_sparse")

        # Test beta=0, M=nan
        M = torch.full((10, 25), float('nan'), device=device).to(dtype)
        m1 = torch.randn(10, 50, device=device).to(dtype)
        m2 = torch.randn(50, 25, device=device).to(dtype)
        _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="all_sparse")

        # Test transpose
        for t1, t2, t3, t4 in itertools.product([True, False], repeat=4):
            def maybe_transpose(cond, m):
                if not cond:
                    return m
                return m.t().clone(memory_format=torch.contiguous_format).t()

            M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
            m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
            m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
            _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="all_sparse")

    @onlyCPU
    @skipCPUIfNoMklSparse
    @dtypes(*floating_and_complex_types())
    @sparse_compressed_nonblock_layouts()
    def test_addmm_dense_result(self, device, dtype, layout):
        M = torch.randn(10, 25, device=device).to(dtype)
        m1 = torch.randn(10, 50, device=device).to(dtype)
        m2 = torch.randn(50, 25, device=device).to(dtype)
        _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result")

        # Test 0-strided
        M = torch.randn(10, 1, device=device).to(dtype).expand(10, 25)
        m1 = torch.randn(10, 1, device=device).to(dtype).expand(10, 50)
        m2 = torch.randn(50, 25, device=device).to(dtype)
        _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=layout, mode="dense_result")

        # Test beta=0, M=nan
        M = torch.full((10, 25), float('nan'), device=device).to(dtype)
        m1 = torch.randn(10, 50, device=device).to(dtype)
        m2 = torch.randn(50, 25, device=device).to(dtype)
        _test_addmm_addmv(self, torch.addmm, M, m1, m2, beta=0, layout=layout, mode="dense_result")

        # Test transpose
        for t1, t2, t3, t4 in itertools.product([True, False], repeat=4):
            def maybe_transpose(cond, m):
                if not cond:
                    return m
                return m.t().clone(memory_format=torch.contiguous_format).t()

            M = maybe_transpose(t1, torch.randn(10, 25, device=device).to(dtype))
            m1 = maybe_transpose(t2, torch.randn(10, 50, device=device).to(dtype))
            m2 = maybe_transpose(t3, torch.randn(50, 25, device=device).to(dtype))
            _test_addmm_addmv(self, torch.addmm, M, m1, m2, transpose_out=t4, layout=layout, mode="dense_result")

    @parametrize("k", [0, 1, 8])
    @parametrize("n", [0, 1, 10])
    @parametrize("m", [0, 1, 25])
    @skipCPUIfNoMklSparse
    @dtypes(*floating_and_complex_types())
    @dtypesIfCUDA(*floating_types_and(torch.complex64,
                                      *[torch.bfloat16] if SM80OrLater else [],
                                      *[torch.half] if SM53OrLater else [],
                                      *[torch.complex128] if CUSPARSE_SPMM_COMPLEX128_SUPPORTED else []))
    @skipCUDAIf(
        not _check_cusparse_spgemm_available(),
        "cuSparse Generic API SpGEMM is not available"
    )
    @precisionOverride({torch.double: 1e-8, torch.float: 1e-4, torch.bfloat16: 0.6,
                        torch.half: 1e-1, torch.cfloat: 1e-4, torch.cdouble: 1e-8})
    def test_addmm_sizes_all_sparse_csr(self, device, dtype, m, n, k):
        M = torch.randn(n, m, device=device).to(dtype)
        m1 = torch.randn(n, k, device=device).to(dtype)
        m2 = torch.randn(k, m, device=device).to(dtype)
        _test_addmm_addmv(self, torch.addmm, M, m1, m2, layout=torch.sparse_csr, mode="all_sparse")

        M = torch.randn(n, m, device=device).to(dtype).to_sparse_csr()
        m1 = torch.randn(n, k + 1, device=device).to(dtype).to_sparse_csr()
        m2 = torch.randn(k, m, device=device).to(dtype).to_sparse_csr()
        self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.addmm(M, m1, m2))
        self.assertRaisesRegex(RuntimeError, f"{n}x{k + 1}.*{k}x{m}", lambda: torch.mm(m1, m2))

    @skipCPUIfNoMklSparse
    @dtypes(torch.float)
    def test_addmm_errors(self, device, dtype):
        # test that the errors are the same for dense and sparse versions
        import re

        def test1(*, is_sparse):
            # shapes must be compatible for matrix multiplication
            a = make_tensor((2, 3), dtype=dtype, device=device)
            if is_sparse:
                a_sparse = a.to_sparse_csr()
                return torch.addmm(a, a_sparse, a)
            else:
                return torch.addmm(a, a, a)

        def test2(*, is_sparse):
            # mat2 must be a matrix
            a = make_tensor((2, 3), dtype=dtype, device=device)
            if is_sparse:
                a_sparse = a.to_sparse_csr()
                return torch.addmm(a, a_sparse, a.unsqueeze(0))
            else:
                return torch.addmm(a, a, a.unsqueeze(0))

        def test3(*, is_sparse):
            # the first input needs to be 1D or 2D
            a = make_tensor((3, 3), dtype=dtype, device=device)
            if is_sparse:
                a_sparse = a.to_sparse_csr()
                return torch.addmm(a.unsqueeze(0), a_sparse, a)
            else:
                return torch.addmm(a.unsqueeze(0), a, a)

        for test in (test1, test2, test3):
            try:
                test(is_sparse=False)
            except RuntimeError as msg:
                with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
                    test(is_sparse=True)

    @skipCPUIfNoMklSparse
    @dtypes(torch.float)
    def test_mm_errors(self, device, dtype):
        # test that the errors are the same for dense and sparse versions
        import re

        def test1(*, is_sparse):
            # shapes must be compatible for matrix multiplication
            a = make_tensor((2, 3), dtype=dtype, device=device)
            if is_sparse:
                a_sparse = a.to_sparse_csr()
                return torch.mm(a_sparse, a)
            else:
                return torch.mm(a, a)

        def test2(*, is_sparse):
            # mat2 must be a matrix
            a = make_tensor((2, 3), dtype=dtype, device=device)
            if is_sparse:
                a_sparse = a.to_sparse_csr()
                return torch.mm(a_sparse, a.unsqueeze(0))
            else:
                return torch.mm(a, a.unsqueeze(0))

        for test in (test1, test2):
            try:
                test(is_sparse=False)
            except RuntimeError as msg:
                with self.assertRaisesRegex(RuntimeError, re.escape(str(msg))):
                    test(is_sparse=True)

    @dtypes(torch.float, torch.double)
    def test_add(self, device, dtype):
        def _test_spadd_shape(nnz, shape):
            # sparse.to_dense() uses torch.add internally so if torch.add is wrong,
            # the dense tensor will be wrong but this test would still pass
            # there's a separate test that checks for the correctness of the .to_dense() call
            x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
            y = torch.randn(*shape, dtype=dtype, device=device)
            r = random.random()

            res = torch.add(y, x, alpha=r)
            expected = y + r * x.to_dense()
            self.assertEqual(res, expected)

            # Non contiguous dense tensor
            s = list(shape)
            s[0] = shape[-1]
            s[-1] = shape[0]
            y = torch.randn(*s, dtype=torch.double, device=device)
            y.transpose_(0, len(s) - 1)
            r = random.random()

            res = torch.add(y, x, alpha=r)
            expected = y + r * x.to_dense()

            self.assertEqual(res, expected)

        ns = [2, 5]
        batch_shapes = [(), (2,), (2, 3)]
        for b, m, n in itertools.product(batch_shapes, ns, ns):
            _test_spadd_shape(0, (*b, m, n))
            _test_spadd_shape(m * n // 2, (*b, m, n))
            _test_spadd_shape(m * n, (*b, m, n))

    @dtypes(torch.float, torch.double)
    def test_mul(self, device, dtype):
        # TODO: This whole test should be migrated to OpInfos
        def _test_spadd_shape(fn, nnz, shape):
            x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
            y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)

            # Forward comparison
            res_sparse_sparse = fn(y, x)
            res_dense_sparse = fn(y.to_dense(), x)
            res_sparse_dense = fn(y, x.to_dense())
            expected = fn(y.to_dense(), x.to_dense()).to_sparse_csr()
            self.assertEqual(res_sparse_sparse, expected)
            # TODO: While result of mul(dense, csr) is csr, it is not fully compressed.
            # That means it may contain materialized zeros, since the dense argument
            # is converted according to the sparsity pattern of csr. In the future
            # we might require the result to be fully compressed.
            self.assertEqual(res_dense_sparse.to_dense(), expected.to_dense())
            self.assertEqual(res_sparse_dense.to_dense(), expected.to_dense())

            # Grad comparison
            x = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
            y = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)
            z = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=torch.int32)

            # csr * csr -> csr with csr, csr gradients
            x_a = x.clone().requires_grad_()
            y_a = y.clone().requires_grad_()

            fn(y_a, x_a).backward(z)

            x_dense_a = x.to_dense().requires_grad_()
            y_dense_a = y.to_dense().requires_grad_()

            fn(y_dense_a, x_dense_a).backward(z.to_dense())

            self.assertEqual(x_a.grad.layout, torch.sparse_csr)
            self.assertEqual(y_a.grad.layout, torch.sparse_csr)

            self.assertEqual(x_a.grad.to_dense(), x_dense_a.grad)
            self.assertEqual(y_a.grad.to_dense(), y_dense_a.grad)

            # TODO: Currently strided Tensors cannot have csr gradients
            # dense * csr -> csr with csr, dense gradients
            x_a = x.clone().requires_grad_()
            y_a = y.to_dense().clone().requires_grad_()
            err_msg = "Function MulBackward0 returned an invalid gradient at index 0 - expected layout Strided but got SparseCsr"
            with self.assertRaisesRegex(RuntimeError, err_msg):
                fn(y_a, x_a).backward(z)

            # csr * dense -> csr with dense, csr gradients
            x_a = x.to_dense().clone().requires_grad_()
            y_a = y.clone().requires_grad_()
            err_msg = "Function MulBackward0 returned an invalid gradient at index 1 - expected layout Strided but got SparseCsr"
            with self.assertRaisesRegex(RuntimeError, err_msg):
                fn(y_a, x_a).backward(z)

        _test_spadd_shape(torch.mul, 100, [100, 100])
        _test_spadd_shape(torch.mul, 0, [100, 100])
        _test_spadd_shape(torch.mul, 100, [100, 1])
        _test_spadd_shape(torch.mul, 100, [1, 100])

    @skipCPUIfNoMklSparse
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_sparse_add(self, device, dtype):
        def run_test(m, n, index_dtype):

            alpha = random.random()
            nnz1 = random.randint(0, m * n)
            nnz2 = random.randint(0, m * n)
            nnz3 = random.randint(0, m * n)

            if TEST_WITH_ROCM:
                # ROCm fails when nnz = 0
                nnz1, nnz2, nnz3 = max(1, nnz1), max(1, nnz2), max(1, nnz3)

            S1 = self.genSparseCSRTensor([m, n], nnz1, dtype=dtype, device=device, index_dtype=index_dtype)
            S2 = self.genSparseCSRTensor([m, n], nnz2, dtype=dtype, device=device, index_dtype=index_dtype)
            S3 = self.genSparseCSRTensor([m, n], nnz3, dtype=dtype, device=device, index_dtype=index_dtype)

            expected = torch.add(S1.to_dense(), S2.to_dense(), alpha=alpha)
            actual = torch.add(S1, S2, alpha=alpha, out=S3)

            self.assertEqual(actual.to_dense(), expected)
            self.assertEqual(S3.to_dense(), expected)

        for index_dtype in [torch.int32, torch.int64]:
            for m, n in itertools.product([3, 5], [3, 5]):
                run_test(m, n, index_dtype)

    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_sparse_add_errors(self, device, dtype):
        def run_test(index_type):
            a = self.genSparseCSRTensor((2, 2), 3, dtype=dtype, device=device, index_dtype=index_dtype)
            b = self.genSparseCSRTensor((2, 1), 2, dtype=dtype, device=device, index_dtype=index_dtype)
            with self.assertRaisesRegex(RuntimeError, "Expected input tensors to have the same shape"):
                torch.add(a, b)

        for index_dtype in [torch.int32, torch.int64]:
            run_test(index_dtype)

    @skipCPUIfNoMklSparse
    @skipCUDAIf(
        not _check_cusparse_triangular_solve_available(),
        "cuSparse Generic API SpSV is not available"
    )
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
                        torch.float64: 1e-8, torch.complex128: 1e-8})
    def test_sparse_triangular_solve(self, device, dtype):

        def run_test(n, k, upper, unitriangular, transpose, zero):
            triangle_function = torch.triu if upper else torch.tril
            make_A = torch.zeros if zero else make_tensor
            A = make_A((n, n), dtype=dtype, device=device)
            A = triangle_function(A)
            A_sparse = A.to_sparse_csr()
            B = make_tensor((n, k), dtype=dtype, device=device)

            expected = torch.triangular_solve(B, A, upper=upper, unitriangular=unitriangular, transpose=transpose)
            expected_X = expected.solution

            actual = torch.triangular_solve(B, A_sparse, upper=upper, unitriangular=unitriangular, transpose=transpose)
            actual_X = actual.solution
            actual_A_clone = actual.cloned_coefficient
            self.assertTrue(actual_A_clone.numel() == 0)
            if A_sparse._nnz() == 0:
                self.assertTrue(actual_X.isnan().all())
                return
            self.assertEqual(actual_X, expected_X)

            # test out with C contiguous strides
            out = torch.empty_strided((n, k), (k, 1), dtype=dtype, device=device)
            torch.triangular_solve(
                B, A_sparse,
                upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
            )
            self.assertEqual(out, expected_X)

            # test out with F contiguous strides
            out = torch.empty_strided((n, k), (1, n), dtype=dtype, device=device)
            torch.triangular_solve(
                B, A_sparse,
                upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
            )
            self.assertEqual(out, expected_X)
            self.assertEqual(out.stride(), (1, n))

            # test out with discontiguous strides
            out = torch.empty_strided((2 * n, k), (1, 2 * n), dtype=dtype, device=device)[::2]
            if n > 0 and k > 0:
                self.assertFalse(out.is_contiguous())
                self.assertFalse(out.t().is_contiguous())
            before_stride = out.stride()
            torch.triangular_solve(
                B, A_sparse,
                upper=upper, unitriangular=unitriangular, transpose=transpose, out=(out, actual_A_clone)
            )
            self.assertEqual(out, expected_X)
            self.assertEqual(out.stride(), before_stride)

        ks = [0, 1, 3]
        ns = [5, 3, 0]
        for (k, n), (upper, unitriangular, transpose, zero) in itertools.product(itertools.product(ks, ns),
                                                                                 itertools.product([True, False], repeat=4)):
            run_test(n, k, upper, unitriangular, transpose, zero)

    @skipCUDAIfRocm
    @skipCUDAIf(
        not _check_cusparse_sddmm_available(),
        "cuSparse Generic API SDDMM is not available"
    )
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
                        torch.float64: 1e-8, torch.complex128: 1e-8})
    def test_sampled_addmm(self, device, dtype):
        def run_test(c, a, b, op_a, op_b, *, alpha=None, beta=None):
            if dtype.is_complex:
                alpha = random.random() + 0.3j if alpha is None else alpha
                beta = random.random() + 0.6j if beta is None else beta
            else:
                alpha = random.random() if alpha is None else alpha
                beta = random.random() if beta is None else beta

            if op_a and a.shape == b.shape:
                a = a.mH
            if op_b and a.shape == b.shape:
                b = b.mH

            actual = torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta)

            out = torch.sparse_csr_tensor(
                *map(torch.clone, (actual.crow_indices(), actual.col_indices())),
                torch.empty_like(actual.values()),
                size=actual.shape
            )
            torch.sparse.sampled_addmm(c, a, b, alpha=alpha, beta=beta, out=out)

            spy_c = torch.sparse_csr_tensor(c.crow_indices(), c.col_indices(), torch.ones_like(c.values()), size=c.shape)
            expected = alpha * (a @ b) * spy_c.to_dense() + beta * c.to_dense()
            self.assertEqual(actual.to_dense(), out.to_dense())
            self.assertEqual(actual.to_dense(), expected)

        mnk = list(itertools.product([2, 5], repeat=3))

        # Add a test case for size 0 a and b tensors
        mnk = mnk + [(5, 5, 0)]

        batch_shapes = [(), (2,), (2, 3)] if self.device_type == 'cuda' else [(), ]
        tf = [True, False]
        for index_dtype in [torch.int32, torch.int64]:
            for (m, n, k), b, noncontiguous, bcast_c in itertools.product(mnk, batch_shapes, tf, tf):
                if bcast_c and len(b) == 0:
                    continue
                nnz = random.randint(0, m * n)
                c_batch = () if bcast_c else b
                c = self.genSparseCSRTensor((*c_batch, m, n), nnz, dtype=dtype, device=device, index_dtype=index_dtype)
                a = make_tensor((*b, m, k), dtype=dtype, device=device, noncontiguous=noncontiguous)
                b = make_tensor((*b, k, n), dtype=dtype, device=device, noncontiguous=noncontiguous)
                for op_a, op_b in itertools.product([True, False], repeat=2):
                    run_test(c, a, b, op_a, op_b)

    @skipCUDAIfRocm
    @skipCUDAIf(
        not _check_cusparse_sddmm_available(),
        "cuSparse Generic API SDDMM is not available"
    )
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_sampled_addmm_autograd(self, device, dtype):
        from torch.testing._internal.common_methods_invocations import sample_inputs_sparse_sampled_addmm

        samples = list(sample_inputs_sparse_sampled_addmm(None, device, dtype, requires_grad=True))

        for sample, dense_covector in zip(samples, [True, False]):
            c = sample.input
            a = sample.args[0]
            b = sample.args[1]

            # Compute sparse result
            output = torch.sparse.sampled_addmm(c, a, b, **sample.kwargs)
            covector = torch.randn_like(output).to_dense() if dense_covector else torch.randn_like(output)
            output.backward(covector)

            # Compute dense result and compare with sparse result
            c1, a1, b1 = map(lambda x: x.detach().to_dense().requires_grad_(True), [c, a, b])
            dense_output = sample.kwargs['alpha'] * (a1 @ b1) * torch.ones_like(c).to_dense() + sample.kwargs['beta'] * c1
            self.assertEqual(output, dense_output)
            dense_covector = covector.to_dense()
            dense_output.backward(dense_covector)
            self.assertEqual(c.grad, c1.grad)
            self.assertEqual(a.grad, a1.grad)
            self.assertEqual(b.grad, b1.grad)

    @skipCUDAIfRocm
    @onlyCUDA
    @skipCUDAIf(True, "Causes CUDA memory exception, see https://github.com/pytorch/pytorch/issues/72177")
    @skipCUDAIf(
        not _check_cusparse_sddmm_available(),
        "cuSparse Generic API SDDMM is not available"
    )
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    @precisionOverride({torch.float32: 1e-3, torch.complex64: 1e-3,
                        torch.float64: 1e-8, torch.complex128: 1e-8})
    def test_sampled_addmm_zero_sized(self, device, dtype):
        def run_test(c, a, b):
            actual = torch.sparse.sampled_addmm(c, a, b)
            self.assertEqual(actual.shape, c.shape)

        for m, n, k in itertools.product([0, 5], repeat=3):
            c = torch.empty(m, n, dtype=dtype, device=device, layout=torch.sparse_csr)
            a = make_tensor((m, k), dtype=dtype, device=device)
            b = make_tensor((k, n), dtype=dtype, device=device)
            run_test(c, a, b)

    @onlyCUDA
    @skipCUDAIf(
        not (TEST_WITH_ROCM or _check_cusparse_sddmm_available()),
        "cuSparse Generic API SDDMM is not available"
    )
    @dtypes(torch.float32, torch.float64, torch.complex64, torch.complex128)
    def test_sampled_addmm_errors(self, device, dtype):
        # test that the errors are the same for dense and sparse sampled versions
        # import re

        # shapes must be compatible for matrix multiplication
        a = make_tensor((2, 3), dtype=dtype, device=device)
        a_sparse = a.to_sparse_csr()
        with self.assertRaisesRegex(RuntimeError, r"cannot be multiplied"):
            torch.sparse.sampled_addmm(a_sparse, a, a)

        # mat1 must be a matrix
        with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to be a matrix"):
            torch.sparse.sampled_addmm(a_sparse, a[..., 0, :], a)

        # mat2 must be a matrix
        with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to be a matrix"):
            torch.sparse.sampled_addmm(a_sparse, a, a[..., 0, :])

        a = make_tensor((2, 2), dtype=dtype, device=device)
        b = make_tensor((3, 3), dtype=dtype, device=device)
        b_sparse = b.to_sparse_csr()
        with self.assertRaisesRegex(RuntimeError, r"self.shape\[-2\] must match mat1.shape\[-2\]"):
            torch.sparse.sampled_addmm(b_sparse, a, a)

        b = make_tensor((2, 3), dtype=dtype, device=device)
        b_sparse = b.to_sparse_csr()
        with self.assertRaisesRegex(RuntimeError, r"self.shape\[-1\] must match mat2.shape\[-1\]"):
            torch.sparse.sampled_addmm(b_sparse, a, a)

        a = make_tensor((2, 2), dtype=dtype, device=device)
        a_sparse = a.to_sparse_csr()
        with self.assertRaisesRegex(RuntimeError, r"Expected mat1 to have strided layout"):
            torch.sparse.sampled_addmm(a_sparse, a_sparse, a_sparse)

        with self.assertRaisesRegex(RuntimeError, r"Expected mat2 to have strided layout"):
            torch.sparse.sampled_addmm(a_sparse, a, a_sparse)

    @skipMeta
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_coo_csr_conversion(self, device, dtype):
        for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
            size = (m, n)
            dense = make_tensor(size, dtype=dtype, device=device)
            coo_sparse = dense.to_sparse()
            csr_sparse = coo_sparse.to_sparse_csr()

            self.assertEqual(csr_sparse.to_dense(), dense)

    @skipMeta
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_csr_coo_conversion(self, device, dtype):
        for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
            size = (m, n)
            dense = make_tensor(size, dtype=dtype, device=device)
            csr_sparse = dense.to_sparse_csr()
            coo_sparse = csr_sparse.to_sparse()

            self.assertEqual(coo_sparse.to_dense(), dense)

    # Currently, there is no rule in PyTorch for filling zeros in the outputs
    #   from operations on Sparse CSR tensors. Hence only those operators are supported
    #   which have 0->0 correspondence, example: sin(0) = 0, tan(0) = 0 but
    #   cos(0) = 1 (and hence it's not supported).
    # Note: here, we do this test only for unary operators
    @ops(sparse_csr_unary_ufuncs)
    def test_zero_to_zero_correspondence_unary(self, device, dtype, op):
        zero = torch.zeros((1, 2), dtype=dtype, device=device)
        tensor_explicit_zeros = torch.sparse_csr_tensor([0, 1], [1], [0], dtype=dtype, device=device)

        output_zero = op(zero)
        expected_zero = zero.to(output_zero.dtype)

        output_explicit_zeros = op(tensor_explicit_zeros).to_dense()
        expected_explicit_zeros = tensor_explicit_zeros.to_dense().to(output_explicit_zeros.dtype)

        for (output, expected) in [
                (output_zero, expected_zero),
                (output_explicit_zeros, expected_explicit_zeros)
        ]:
            self.assertEqual(output, expected, f"This operator ({op.name}) should not be supported for "
                             "Sparse CSR as it breaks 0->0 correspondence.")

        for inp in [zero.to_sparse_csr(), tensor_explicit_zeros]:
            self.assertEqual(op(inp).values().numel(), inp.values().numel(),
                             f"{op.name} fails to preserve sparsity pattern.")

    @ops(sparse_csr_unary_ufuncs)
    def test_sparse_csr_unary_out(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype)

        if not op.supports_out:
            self.skipTest("Skipped! Out not supported")

        for sample in samples:
            assert torch.is_tensor(sample.input)
            # Sparse CSR only supports 2D tensors as inputs
            # Fail early to prevent silent success with this test
            if sample.input.ndim != 2:
                raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")

            sample.input = sample.input.to_sparse_csr()
            expect = op(sample.input, *sample.args, **sample.kwargs)

            out = self.genSparseCSRTensor(sample.input.size(), sample.input._nnz(),
                                          device=sample.input.device, dtype=expect.dtype,
                                          index_dtype=sample.input.crow_indices().dtype)
            op(sample.input, *sample.args, **sample.kwargs, out=out)

            self.assertEqual(out, expect)

    @ops(sparse_csr_unary_ufuncs)
    def test_sparse_csr_unary_inplace(self, device, dtype, op):
        samples = op.sample_inputs(device, dtype)

        if op.inplace_variant is None:
            self.skipTest("Skipped! Inplace variant not supported!")

        for sample in samples:
            assert torch.is_tensor(sample.input)
            # Sparse CSR only supports 2D tensors as inputs
            # Fail early to prevent silent success with this test
            if sample.input.ndim != 2:
                raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")

            sample.input = sample.input.to_sparse_csr()
            expect = op(sample.input, *sample.args, **sample.kwargs)

            if not torch.can_cast(expect.dtype, dtype):
                with self.assertRaisesRegex(RuntimeError, "result type"):
                    op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
                continue

            if sample.input.is_complex() and op.name == "abs":
                with self.assertRaisesRegex(RuntimeError, "not supported"):
                    op.inplace_variant(sample.input, *sample.args, **sample.kwargs)
                continue

            actual = op.inplace_variant(sample.input, *sample.args, **sample.kwargs)

            self.assertIs(actual, sample.input)
            self.assertEqual(actual, expect)

    @ops(sparse_csr_unary_ufuncs, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, torch.cdouble])
    def test_autograd_sparse_csr_unary(self, device, dtype, op):
        if op.name not in UNARY_EWISE_CSR_ALLOW_AUTOGRAD:
            self.skipTest(f"Skipped! Unary op {op.name} not supported with CSR input and autograd")

        samples = list(op.sample_inputs(device, dtype))

        # Fail early to prevent silent success with this test
        ndims_equals_2d = (s.input.ndim == 2 for s in samples)
        if not any(ndims_equals_2d):
            raise ValueError("Expected at least one 2D tensor in samples.")

        for sample in samples:
            sparse_input = sample.input.to_sparse_csr().requires_grad_(True)

            def fn(input):
                output = op.gradcheck_wrapper(op.get_op(), input, *sample.args, **sample.kwargs)
                if sample.output_process_fn_grad is not None:
                    return sample.output_process_fn_grad(output)
                return output

            # Compute sparse result
            output = fn(sparse_input)
            covector = torch.randn_like(output)
            output.backward(covector)
            self.assertTrue(torch.is_tensor(sparse_input.grad))
            self.assertTrue(sparse_input.grad.is_sparse_csr)

            # Compute dense result and compare with sparse result
            dense_input = sparse_input.detach().to_dense().requires_grad_(True)
            dense_output = fn(dense_input)
            dense_covector = covector.to_dense()
            dense_output.backward(dense_covector)
            self.assertEqual(sparse_input.grad, dense_input.grad)

    @skipCUDAIfRocm
    @skipCUDAIf(
        not _check_cusparse_sddmm_available(),
        "cuSparse Generic API SDDMM is not available"
    )
    @dtypes(torch.float64)
    def test_autograd_dense_output_addmm(self, device, dtype):
        from torch.testing._internal.common_methods_invocations import sample_inputs_addmm

        samples = list(sample_inputs_addmm(None, device, dtype, requires_grad=True))

        # Fail early to prevent silent success with this test
        ndims_equals_2d = (s.args[0].ndim == 2 for s in samples)
        if not any(ndims_equals_2d):
            raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.")

        for sample in samples:
            a = sample.args[0].relu().to_sparse_csr()

            # This path tests the autograd path wrt dense inputs
            for addmm in [torch.addmm, torch.sparse.addmm]:

                def fn(c, b):
                    output = addmm(c, a, b, **sample.kwargs)
                    if sample.output_process_fn_grad is not None:
                        return sample.output_process_fn_grad(output)
                    return output

                self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True))

                # noncontiguous
                c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
                b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
                self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True))

                # Now test the autograd path wrt sparse inputs
                for reverse in [True, False]:
                    c, b = sample.input, sample.args[1]
                    if reverse and a.shape != b.shape:
                        continue

                    def fn(a):
                        inputs = (c, b, a) if reverse else (c, a, b)
                        output = addmm(*inputs, **sample.kwargs)
                        if sample.output_process_fn_grad is not None:
                            return sample.output_process_fn_grad(output)
                        return output

                    # gradcheck doesn't work for sparse CSR yet, compare against dense path
                    # Compute sparse result
                    a = a.detach().requires_grad_(True)
                    output = fn(a)
                    covector = torch.randn_like(output)
                    output.backward(covector)
                    self.assertTrue(torch.is_tensor(a.grad))
                    if addmm == torch.sparse.addmm:
                        self.assertTrue(a.grad.is_sparse_csr)
                    else:
                        self.assertTrue(a.grad.layout == torch.strided)

                    # Compute dense result and compare with sparse result
                    dense_a = a.detach().to_dense().requires_grad_(True)
                    dense_output = fn(dense_a)
                    self.assertEqual(output, dense_output)
                    dense_covector = covector.to_dense()
                    dense_output.backward(dense_covector)

                    if addmm == torch.sparse.addmm:
                        self.assertEqual(a.grad, dense_a.grad.sparse_mask(a))
                    else:
                        self.assertEqual(a.grad, dense_a.grad)

    @skipCUDAIfRocm
    @skipCPUIfNoMklSparse
    @dtypes(torch.float64)
    def test_autograd_dense_output_addmv(self, device, dtype):
        from torch.testing._internal.common_methods_invocations import sample_inputs_addmv

        samples = list(sample_inputs_addmv(None, device, dtype, requires_grad=True))

        # Fail early to prevent silent success with this test
        ndims_equals_2d = (s.args[0].ndim == 2 for s in samples)
        if not any(ndims_equals_2d):
            raise ValueError("Expected at least one 2D tensor in samples to convert to sparse.")

        for sample in samples:
            # TODO: Remove detach once we have autograd support for CSR input
            a = sample.args[0].to_sparse_csr().detach()

            def fn(c, b):
                output = torch.addmv(c, a, b, **sample.kwargs)
                if sample.output_process_fn_grad is not None:
                    return sample.output_process_fn_grad(output)
                return output

            self.assertTrue(torch.autograd.gradcheck(fn, [sample.input, sample.args[1]], fast_mode=True))

            # noncontiguous
            c = make_tensor(sample.input.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
            b = make_tensor(sample.args[1].shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True)
            self.assertTrue(torch.autograd.gradcheck(fn, [c, b], fast_mode=True))

    @ops(binary_ops_with_dense_output, dtypes=OpDTypes.supported, allowed_dtypes=[torch.double, ])
    def test_autograd_dense_output(self, device, dtype, op):
        if op.name == "mv" and no_mkl_sparse and self.device_type == 'cpu':
            self.skipTest("MKL Sparse is not available")
        if op.name == "mv" and TEST_WITH_ROCM and self.device_type == 'cuda':
            # mv currently work only on CUDA
            self.skipTest("ROCm is not supported")

        samples = list(op.sample_inputs(device, dtype, requires_grad=True))

        # Fail early to prevent silent success with this test
        ndims_equals_2d = (s.input.ndim == 2 for s in samples)
        if not any(ndims_equals_2d):
            raise ValueError("Expected at least one 2D tensor in samples.")

        # Here we assume that the signature is op(sparse_input, dense_input) -> dense_output
        for sample in samples:
            # TODO: Remove detach once we have autograd support for CSR input
            sparse_input = sample.input.to_sparse_csr().detach()

            def fn(*args):
                output = op.gradcheck_wrapper(op.get_op(), sparse_input, *args, **sample.kwargs)
                if sample.output_process_fn_grad is not None:
                    return sample.output_process_fn_grad(output)
                return output

            self.assertTrue(torch.autograd.gradcheck(fn, sample.args, fast_mode=True))

            # noncontiguous
            args = [make_tensor(a.shape, device=device, dtype=dtype, noncontiguous=True, requires_grad=True) for a in sample.args]
            self.assertTrue(torch.autograd.gradcheck(fn, args, fast_mode=True))

    @dtypes(*all_types_and_complex())
    def test_direct_coo_csr_conversion(self, device, dtype):
        for m, n in itertools.product([5, 2, 0], [5, 2, 0]):
            size = (m, n)
            dense = make_tensor(size, dtype=dtype, device=device)
            coo_sparse = dense.to_sparse_coo()

            self.assertEqual(coo_sparse.to_sparse_csr().to_sparse_coo(), coo_sparse)

    @skipMeta
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_sum(self, device, dtype):
        def run_test(shape, nnz, index_type):
            a = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
            self.assertEqual(a.sum(), a.values().sum())
            if dtype in floating_types():
                a.requires_grad_(True)
                a.sum().backward()
                self.assertEqual(a.grad, torch.ones(shape, dtype=dtype, device=device))
        for shape, index_dtype in itertools.product(
                [(10, 5), (10, 10)],
                [torch.int32, torch.int64]):
            run_test(shape, 0, index_dtype)
            run_test(shape, max(shape), index_dtype)
            run_test(shape, shape[0] * shape[1], index_dtype)


    @skipMeta
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    @all_sparse_compressed_layouts()
    def test_transpose(self, device, dtype, layout):

        def _check_transpose_view(subject, transpose):
            self.assertTrue(transpose.values()._is_view())
            self.assertTrue(transpose._is_view())
            self.assertTrue(transpose._base is subject)

        def _check_layout_invariants(transpose):
            self.assertEqual(transpose.device, torch.device(device))
            compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[transpose.layout]
            compressed_indices, plain_indices = compressed_indices_mth(transpose), plain_indices_mth(transpose)
            # note: invariant check for bsr/bsc values is too strict wrt to value contiguity (invariant 3.7)
            if transpose.layout in (torch.sparse_bsr, torch.sparse_bsc):
                n_batch = compressed_indices.dim() - 1
                n_dense = transpose.dim() - 2 - n_batch
                self.assertTrue(transpose.values().is_contiguous()
                                or transpose.values().transpose(-2 - n_dense, -1 - n_dense).is_contiguous())
                torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, transpose.values().contiguous(),
                                                              transpose.shape, transpose.layout)
            else:
                torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, transpose.values(),
                                                              transpose.shape, transpose.layout)

        def check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout):
            transpose = subject.transpose(dim0, dim1)
            # correct layout
            self.assertEqual(transpose.layout, expected_layout)
            # transpose must be return a view
            _check_transpose_view(subject, transpose)
            # result uses unsafe construction, so we check invariants
            _check_layout_invariants(transpose)
            self.assertEqual(transpose.to_dense(), subject_dense.transpose(dim0, dim1))

            round_trip = transpose.transpose(dim0, dim1)
            self.assertEqual(round_trip.layout, subject.layout)
            # transpose must be return a view
            _check_transpose_view(subject, round_trip)
            # result uses unsafe construction, so we check invariants
            _check_layout_invariants(round_trip)
            self.assertEqual(round_trip.to_dense(), subject_dense)

        def check_same_dim_transpose(subject, subject_dense, dim):
            transpose = subject.transpose(dim, dim)
            # correct layout
            self.assertEqual(transpose.layout, subject.layout)
            # transpose must be return a view
            _check_transpose_view(subject, transpose)
            # result uses unsafe construction, so we check invariants
            _check_layout_invariants(transpose)
            self.assertEqual(transpose.to_dense(), subject_dense)

        def check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1):
            mismatch_name = f"{dim0}\\({name0}\\) and {dim1}\\({name1}\\)"
            err = r"transpose\(\): can only transpose dimensions of the same type \(Batch, Sparse, Dense\), got " + mismatch_name

            with self.assertRaisesRegex(RuntimeError, err):
                subject.transpose(dim0, dim1)

        def run_test(shape, nnz, index_type, n_dense, blocksize=()):
            subject = self.genSparseCompressedTensor(shape,
                                                     nnz,
                                                     layout=layout,
                                                     device=device,
                                                     index_dtype=index_type,
                                                     blocksize=blocksize,
                                                     dense_dims=n_dense,
                                                     dtype=dtype)


            sparse0 = len(shape) - n_dense - 1
            sparse1 = sparse0 - 1

            dense0 = sparse0 + 1 if n_dense > 0 else None
            dense1 = dense0 + 1 if n_dense > 1 else None

            n_batch = len(shape) - n_dense - 2
            batch0 = sparse1 - 1 if n_batch > 0 else None
            batch1 = 0 if n_batch > 1 else None

            sparse_dims = (sparse0, sparse1)
            dense_dims = (dense0, dense1)
            batch_dims = (batch0, batch1)

            named0 = [(name, d[0]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))]
            named1 = [(name, d[1]) for name, d in zip(["Batch", "Sparse", "Dense"], (batch_dims, sparse_dims, dense_dims))]

            flipped_layout = {
                torch.sparse_csr: torch.sparse_csc,
                torch.sparse_csc: torch.sparse_csr,
                torch.sparse_bsr: torch.sparse_bsc,
                torch.sparse_bsc: torch.sparse_bsr
            }[layout]
            if n_dense > 0:
                # expect all transpose to throw
                for (name0, dim0), (name1, dim1) in itertools.product(named0, named1):
                    msg = r"transpose\(\): hybrid sparse compressed tensors with dense dimensions are not supported"
                    if (dim0 is not None) and (dim1 is not None):
                        with self.assertRaisesRegex(RuntimeError, msg):
                            subject.transpose(dim0, dim1)
            else:
                subject_dense = subject.to_dense()
                for (name0, dim0), (name1, dim1) in itertools.product(named0, named1):
                    if dim0 is not None:
                        check_same_dim_transpose(subject, subject_dense, dim0)

                        if dim1 is not None:
                            if name0 == name1:
                                expected_layout = flipped_layout if name0 == "Sparse" else layout
                                check_good_transpose(subject, subject_dense, dim0, dim1, expected_layout)
                            else:
                                check_dim_type_mismatch_throws(subject, name0, dim0, name1, dim1)

        # batch/sparse, sparse/dense only and full hybrid cases
        shape_ndense = list(itertools.product([(2, 4, 6, 2), (10, 6, 4, 2), (2, 4, 4, 2, 6)], [0, 1, 2]))
        # sparse only cases
        shape_ndense += [[(4, 8), 0], [(2, 2), 0], [(8, 4), 0]]
        for (shape, n_dense), index_dtype in itertools.product(shape_ndense, [torch.int32, torch.int64]):
            n_batch = len(shape) - n_dense - 2
            sparse_shape = shape[n_batch: n_batch + 2]
            if layout in (torch.sparse_bsr, torch.sparse_bsc):
                # for blocked all combinations of 2,1 shoudl be valid blocksizes
                run_test(shape, 0, index_dtype, n_dense, blocksize=(2, 2))
                run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 2))
                run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense, blocksize=(2, 2))
                # repeat the realistic sparseity case with varried block sizes
                run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(2, 1))
                run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 2))
                run_test(shape, max(sparse_shape), index_dtype, n_dense, blocksize=(1, 1))
            else:
                run_test(shape, 0, index_dtype, n_dense)
                run_test(shape, max(sparse_shape), index_dtype, n_dense)
                run_test(shape, sparse_shape[0] * sparse_shape[1], index_dtype, n_dense)

    # TODO: This is a stopgap for a rigorous extension of our autograd tests
    # to test the functionality of detach
    @skipMeta
    @dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
    def test_exercise_detach(self, device, dtype):
        shape = (3, 3)
        nnz = 4
        for index_dtype in [torch.int32, torch.int64]:
            inp = self.genSparseCSRTensor(shape, nnz, dtype=dtype, device=device, index_dtype=index_dtype)
            detached_inp = inp.detach()
            self.assertEqual(inp, detached_inp)

    def _convert_to_layout(self, a, target_layout, blocksize=(2, 2)):
        """
        Helper function to call the correct layout conversion
        with reasonable defaults for the block size. Clearly there
        is a need for a to.layout overload.
        """
        if target_layout is torch.sparse_csr:
            result = a.to_sparse_csr()
        elif target_layout is torch.sparse_csc:
            result = a.to_sparse_csc()
        elif target_layout is torch.sparse_bsr:
            result = a.to_sparse_bsr(blocksize)
        elif target_layout is torch.sparse_bsc:
            result = a.to_sparse_bsc(blocksize)
        else:
            raise NotImplementedError(repr(a))
        assert result.layout is target_layout
        # to_sparse_xyz methods use unsafe construction of sparse
        # compressed tensors. Here we explicitly validate the results
        # to make sure that the sparse tensors are consistent with the
        # corresponding sparse tensor invariants.
        compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[result.layout]
        compressed_indices, plain_indices = compressed_indices_mth(result), plain_indices_mth(result)
        torch._validate_sparse_compressed_tensor_args(compressed_indices, plain_indices, result.values(),
                                                      result.shape, result.layout)
        return result

    def _construct_sp_matrix(self, tensor, layout, blocksize=(2, 2)):
        if tensor.layout in [torch.sparse_coo, torch.sparse_csr, torch.sparse_csc, torch.strided]:
            tensor = tensor.to_dense()
        else:
            raise NotImplementedError(repr(tensor))
        if layout is torch.sparse_csr:
            return sp.csr_matrix(tensor.cpu().numpy())
        if layout is torch.sparse_csc:
            return sp.csc_matrix(tensor.cpu().numpy())
        if layout is torch.sparse_bsr:
            return sp.bsr_matrix(tensor.cpu().numpy(), blocksize=blocksize).sorted_indices()
        # No native scipy BSC support?
        raise NotImplementedError(repr(tensor))

    @skipMeta
    @all_sparse_compressed_layouts('to_layout')
    @all_sparse_compressed_layouts('from_layout')
    def test_compressed_layout_conversions_coverage(self, device, from_layout, to_layout):
        """
        This test performs a smoke test for covered conversion and verifies
        that an exception is thrown for unsupported conversions.
        """

        allowed_pairwise_layouts_sets = {
            frozenset({torch.sparse_csc}),
            frozenset({torch.sparse_csr}),
            frozenset({torch.sparse_csc, torch.sparse_csr}),
            frozenset({torch.sparse_bsc}),
            frozenset({torch.sparse_bsr}),
            frozenset({torch.sparse_bsc, torch.sparse_bsr}),
            frozenset({torch.sparse_csr, torch.sparse_bsr}),
        }
        block_layouts = (torch.sparse_bsr, torch.sparse_bsc)

        def _to_from_layout(layout_a, layout_b, a):
            expect_error = True
            if {layout_a, layout_b} in allowed_pairwise_layouts_sets:
                expect_error = False

            # BSR -> CSR is not yet supported
            if (layout_a, layout_b) == (torch.sparse_bsr, torch.sparse_csr):
                expect_error = True
            # CSR -> BSR only works for non-batched inputs
            if (layout_a, layout_b) == (torch.sparse_csr, torch.sparse_bsr):
                if a.dim() > 2:
                    expect_error = True

            b = self._convert_to_layout(a, layout_a)
            if expect_error:
                with self.assertRaises(RuntimeError):
                    self._convert_to_layout(b, layout_b)
            else:
                c = self._convert_to_layout(b, layout_b)
                self.assertEqual(a.to_dense(), c.to_dense())

                # change of blocksize upon conversion is not yet supported.
                if b.layout in block_layouts:
                    for block_layout in block_layouts:
                        with self.assertRaisesRegex(RuntimeError, "blocksize does not match the blocksize"):
                            self._convert_to_layout(b, block_layout, blocksize=3)

        batch_dims = [(), (2,), (2, 2), (2, 2, 2)]
        sparse_dims = (6, 12)
        for batch_dim in batch_dims:
            a = make_tensor(batch_dim + sparse_dims, dtype=torch.float, device=device)
            _to_from_layout(from_layout, to_layout, a)

    @skipMeta
    @all_sparse_compressed_layouts()
    @batched_nonbatched()
    @hybrid_nonhybrid()
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_dense_to_from_sparse_compressed(self, device, hybrid, batched, layout):
        """
        This test tests conversion from dense to/from CSR and CSC
        by comparing to SciPy's implementation.

        TODO: Eventually this is meant to be merged into test_compressed_layout_conversions_coverage
        """

        # adjust this block as support is added
        supports_batched_from_sparse = (torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc)
        supports_batched_to_sparse = (torch.sparse_bsr, torch.sparse_bsc, torch.sparse_csr, torch.sparse_csc)
        supports_hybrid_from_sparse = ()
        supports_hybrid_to_sparse = ()

        blocked_layouts = (torch.sparse_bsr, torch.sparse_bsc)

        # helpers

        def _check_against_scipy_matrix(pt_matrix, dense, blocksize, **kwargs):
            # scipy has no bsc layout, so we check against the bsr layout of the tranposed dense
            if layout == torch.sparse_bsc:
                sp_matrix = self._construct_sp_matrix(dense.t(), layout=torch.sparse_bsr, blocksize=blocksize[::-1])
            else:
                sp_matrix = self._construct_sp_matrix(dense, layout=layout, blocksize=blocksize)

            compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]

            self.assertEqual(layout, pt_matrix.layout)
            if layout == torch.sparse_bsc:
                self.assertEqual(sp_matrix.shape[::-1], pt_matrix.shape)
            else:
                self.assertEqual(sp_matrix.shape, pt_matrix.shape)

            self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
            self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
            if layout == torch.sparse_bsc:
                # we must tranpose the blocks before comparing
                self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values().transpose(-2, -1))
            else:
                self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())

        def _check_hybrid_matrix(pt_matrix, dense, **kwargs):
            # no support for dense dims, all layouts should skip before this failure
            self.assertTrue(False, "not implemented")

        def _check_batched(pt_tensor, dense, check_batch=None, batch_shape=(), blocksize=(), **kwargs):
            self.assertEqual(layout, pt_tensor.layout)
            self.assertEqual(pt_tensor.shape, dense.shape)
            compressed_indices_mth, plain_indices_mth = sparse_compressed_indices_methods[layout]
            for batch_index in np.ndindex(batch_shape):
                pt_matrix = pt_tensor[batch_index]
                dense_matrix = dense[batch_index]
                dense_matrix_pt = self._convert_to_layout(dense_matrix, layout, blocksize)
                # sanity check, selecting batch of to_<layout> and dense[batch].to_<layout> should give the same result
                self.assertEqual(pt_matrix, dense_matrix_pt)
                check_batch(pt_matrix, dense_matrix, blocksize, **kwargs)

        def _generate_subject(sparse_shape, batch_shape, hybrid_shape):
            shape = batch_shape + sparse_shape + hybrid_shape
            n_batch_dim = len(batch_shape)
            n_hybrid_dim = len(hybrid_shape)
            # generate a dense tensor
            dense = make_tensor(shape, dtype=torch.float, device=device)

            # introduce some sparsty, mask is sparse shape, element applies to entire dense sub-tensor (hybrid) and is
            # applied to each batch
            mask = make_tensor(sparse_shape, dtype=torch.bool, device=device)
            # manually expand to match hybrid shape
            if hybrid:
                mask = mask.view(sparse_shape + tuple(1 for _ in range(n_hybrid_dim)))
                mask = mask.expand(sparse_shape + hybrid_shape)

            # mask will broadcast over the batch dims if present

            return dense * mask

        expect_to_layout_support = True
        expect_from_layout_support = True
        # note: order is important here, the hybrid-ness decides the inner content check which is used to build the
        # batched checker (if needed)
        check_content = _check_against_scipy_matrix
        if hybrid:
            expect_to_layout_support = expect_to_layout_support and layout in supports_hybrid_to_sparse
            expect_from_layout_support = expect_from_layout_support and layout in supports_hybrid_from_sparse
            check_content = _check_hybrid_matrix

        if batched:
            expect_to_layout_support = expect_to_layout_support and layout in supports_batched_to_sparse
            expect_from_layout_support = expect_from_layout_support and layout in supports_batched_from_sparse
            check_content = functools.partial(_check_batched, check_batch=check_content)

        sparse_sizes = [(6, 10), (0, 10), (6, 0), (0, 0)]
        blocksizes = [(2, 2), (1, 1), (1, 2)] if layout in blocked_layouts else [()]
        batch_sizes = [(3,), (1, 3), (2, 1, 3)] if batched else [()]
        hybrid_sizes = [(4, ), (2, 2)] if hybrid else [()]
        if not hybrid:
            # general cases, always run, hybrid excluded untill dense->sparse api exists
            for sparse_shape, blocksize, batch_shape, hybrid_shape in itertools.product(
                    sparse_sizes, blocksizes, batch_sizes, hybrid_sizes):
                dense = _generate_subject(sparse_shape, batch_shape, hybrid_shape)
                if expect_to_layout_support:
                    sparse = self._convert_to_layout(dense, layout, blocksize)
                    check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape)
                    if expect_from_layout_support:
                        dense_back = sparse.to_dense()
                        self.assertEqual(dense, dense_back)
                    else:
                        with self.assertRaises(RuntimeError):
                            sparse.to_dense()
                else:
                    with self.assertRaises(RuntimeError):
                        self._convert_to_layout(dense, layout, blocksize)

        # special cases for batched tensors
        if batched and expect_to_layout_support:
            # batched sparse tensors need only have the same number of non-zeros in each batch not nessesarily the
            # same sparsity pattern in each batch
            sparse_shape = sparse_sizes[0]
            hybrid_shape = hybrid_sizes[0]
            batch_shape = batch_sizes[0]
            shape = batch_shape + sparse_shape + hybrid_shape
            dense = make_tensor(shape, dtype=torch.float, device=device)
            blocksize = blocksizes[0]
            # number of elements/blocks in each batch (total not nnz)
            batch_mask_shape = sparse_shape
            if layout in blocked_layouts:
                # if we are blocked the mask is genereated for the block valued elemetns
                batch_mask_shape = sparse_shape[0] // blocksize[0], sparse_shape[1] // blocksize[1]


            # random bool vector w/ length equal to max possible nnz for the sparse_shape
            mask_source = make_tensor(batch_mask_shape, dtype=torch.bool, device=device).flatten()
            n_batch = functools.reduce(lambda x, y: x * y, batch_shape, 1)

            # stack random permutations of the source for each batch
            mask = torch.stack([mask_source[torch.randperm(mask_source.numel())]
                               for _ in range(n_batch)], dim=0).reshape(batch_shape + batch_mask_shape)
            if layout in blocked_layouts:
                # for blocked we need to do a bit of extra work to expand the mask from blocked-space to element-space
                mask_shape = mask.shape
                mask = mask.view(mask_shape + (1, 1))
                mask = mask.expand(mask_shape + blocksize)
                mask = mask.transpose(-3, -2)
                mask = mask.reshape_as(dense)
            dense = dense * mask
            sparse = self._convert_to_layout(dense, layout, blocksize)
            check_content(sparse, dense, blocksize=blocksize, batch_shape=batch_shape, hybrid_shape=hybrid_shape)

            if expect_from_layout_support:
                dense_back = sparse.to_dense()
                self.assertEqual(dense, dense_back)

            # if batches have different nnz we expect the conversion to throw
            mask_0 = mask[0]
            mask_1 = mask[0].clone().fill_(True)
            mask_2 = mask[0].clone().fill_(False)
            mask_true = mask_source.clone().fill_(True)
            mask_false = mask_source.clone().fill_(False)
            mask = torch.stack([(mask_0, mask_1, mask_2)[i % 3] for i in range(n_batch)], dim=0).reshape(batch_shape + mask_0.shape)
            dense = make_tensor(shape, dtype=torch.float, device=device)
            dense = dense * mask
            msg = "Expect the same number of specified elements per batch."
            with self.assertRaisesRegex(RuntimeError, msg):
                self._convert_to_layout(dense, layout, blocksize)

            # Should throw if there is a zero in the batch size
            dense = make_tensor((0,) + shape, dtype=torch.float, device=device)
            layout_code = str(layout).split("_")[-1]
            msg = f"to_sparse_{layout_code}: Expected product of batch dimensions to be non-zero."
            with self.assertRaisesRegex(RuntimeError, msg):
                self._convert_to_layout(dense, layout, blocksize=blocksize)

        if hybrid:
            # conversion from sparse -> dense should be blocked with dense dims
            sparse_shape = sparse_sizes[0]
            hybrid_shape = hybrid_sizes[0]
            batch_shape = batch_sizes[0]
            blocksize = blocksizes[0]
            sparse_hybrid = self.genSparseCompressedTensor(batch_shape + sparse_shape + hybrid_shape,
                                                           nnz=4,
                                                           layout=layout,
                                                           device=device,
                                                           dtype=torch.float,
                                                           index_dtype=torch.int64,
                                                           blocksize=blocksize,
                                                           dense_dims=len(hybrid_shape))
            with self.assertRaises(RuntimeError):
                sparse_hybrid.to_dense()

        # special cases for hybrid tensors
        # todo: figure out what these are
        # if hybrid and expect_to_layout_support:

    @skipMeta
    @all_sparse_compressed_layouts()
    @coalescedonoff
    @dtypes(torch.double)
    @unittest.skipIf(not TEST_SCIPY, "SciPy not found")
    def test_sparse_to_sparse_compressed(self, device, dtype, coalesced, layout):
        """
        This test tests conversion from COO to CSR and CSC and CSC to CSR and CSC
        by comparing to SciPy's implementation.

        TODO: Eventually this is meant to be merged into test_compressed_layout_conversions_coverage
        """
        if layout is torch.sparse_bsc:
            # TODO: Remove this once support has been enabled
            return
        if layout is torch.sparse_bsr:
            # TODO: Remove this once support has been enabled
            return

        for shape in [(0, 10), (6, 0), (6, 10), (0, 0)]:
            sparse_dim = 2
            nnz = shape[0] * shape[1] // 2
            sparse, _, _ = self.genSparseTensor(shape, sparse_dim, nnz, coalesced, device, dtype)
            sp_matrix = self._construct_sp_matrix(sparse, layout)
            pt_matrix = self._convert_to_layout(sparse, layout)

            compressed_indices_mth = {
                torch.sparse_csr: torch.Tensor.crow_indices,
                torch.sparse_csc: torch.Tensor.ccol_indices,
            }[layout]

            plain_indices_mth = {
                torch.sparse_csr: torch.Tensor.col_indices,
                torch.sparse_csc: torch.Tensor.row_indices,
            }[layout]

            self.assertEqual(layout, pt_matrix.layout)
            self.assertEqual(sp_matrix.shape, pt_matrix.shape)
            self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
            self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
            self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())

            sparse_csc = sparse.to_sparse_csc()
            sp_matrix = self._construct_sp_matrix(sparse_csc, layout)
            pt_matrix = self._convert_to_layout(sparse_csc, layout)

            self.assertEqual(layout, pt_matrix.layout)
            self.assertEqual(sp_matrix.shape, pt_matrix.shape)
            self.assertEqual(torch.tensor(sp_matrix.indptr, dtype=torch.int64), compressed_indices_mth(pt_matrix))
            self.assertEqual(torch.tensor(sp_matrix.indices, dtype=torch.int64), plain_indices_mth(pt_matrix))
            self.assertEqual(torch.tensor(sp_matrix.data), pt_matrix.values())


# e.g., TestSparseCSRCPU and TestSparseCSRCUDA
instantiate_device_type_tests(TestSparseCSR, globals())
instantiate_device_type_tests(TestSparseCompressed, globals())

if __name__ == '__main__':
    run_tests()