1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
|
# Owner(s): ["module: fft"]
import torch
import unittest
import math
from contextlib import contextmanager
from itertools import product
import itertools
import doctest
import inspect
from torch.testing._internal.common_utils import \
(TestCase, run_tests, TEST_NUMPY, TEST_LIBROSA, TEST_MKL, first_sample, TEST_WITH_ROCM,
make_tensor)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, ops, dtypes, onlyNativeDeviceTypes,
skipCPUIfNoFFT, deviceCountAtLeast, onlyCUDA, OpDTypes, skipIf, toleranceOverride, tol)
from torch.testing._internal.common_methods_invocations import (
spectral_funcs, SpectralFuncType)
from torch.testing._internal.common_cuda import SM53OrLater
from setuptools import distutils
from typing import Optional, List
if TEST_NUMPY:
import numpy as np
if TEST_LIBROSA:
import librosa
has_scipy_fft = False
try:
import scipy.fft
has_scipy_fft = True
except ModuleNotFoundError:
pass
LooseVersion = distutils.version.LooseVersion
REFERENCE_NORM_MODES = (
(None, "forward", "backward", "ortho")
if LooseVersion(np.__version__) >= '1.20.0' and (
not has_scipy_fft or LooseVersion(scipy.__version__) >= '1.6.0')
else (None, "ortho"))
def _complex_stft(x, *args, **kwargs):
# Transform real and imaginary components separably
stft_real = torch.stft(x.real, *args, **kwargs, return_complex=True, onesided=False)
stft_imag = torch.stft(x.imag, *args, **kwargs, return_complex=True, onesided=False)
return stft_real + 1j * stft_imag
def _hermitian_conj(x, dim):
"""Returns the hermitian conjugate along a single dimension
H(x)[i] = conj(x[-i])
"""
out = torch.empty_like(x)
mid = (x.size(dim) - 1) // 2
idx = [slice(None)] * out.dim()
idx_center = list(idx)
idx_center[dim] = 0
out[idx] = x[idx]
idx_neg = list(idx)
idx_neg[dim] = slice(-mid, None)
idx_pos = idx
idx_pos[dim] = slice(1, mid + 1)
out[idx_pos] = x[idx_neg].flip(dim)
out[idx_neg] = x[idx_pos].flip(dim)
if (2 * mid + 1 < x.size(dim)):
idx[dim] = mid + 1
out[idx] = x[idx]
return out.conj()
def _complex_istft(x, *args, **kwargs):
# Decompose into Hermitian (FFT of real) and anti-Hermitian (FFT of imaginary)
n_fft = x.size(-2)
slc = (Ellipsis, slice(None, n_fft // 2 + 1), slice(None))
hconj = _hermitian_conj(x, dim=-2)
x_hermitian = (x + hconj) / 2
x_antihermitian = (x - hconj) / 2
istft_real = torch.istft(x_hermitian[slc], *args, **kwargs, onesided=True)
istft_imag = torch.istft(-1j * x_antihermitian[slc], *args, **kwargs, onesided=True)
return torch.complex(istft_real, istft_imag)
def _stft_reference(x, hop_length, window):
r"""Reference stft implementation
This doesn't implement all of torch.stft, only the STFT definition:
.. math:: X(m, \omega) = \sum_n x[n]w[n - m] e^{-jn\omega}
"""
n_fft = window.numel()
X = torch.empty((n_fft, (x.numel() - n_fft + hop_length) // hop_length),
device=x.device, dtype=torch.cdouble)
for m in range(X.size(1)):
start = m * hop_length
if start + n_fft > x.numel():
slc = torch.empty(n_fft, device=x.device, dtype=x.dtype)
tmp = x[start:]
slc[:tmp.numel()] = tmp
else:
slc = x[start: start + n_fft]
X[:, m] = torch.fft.fft(slc * window)
return X
def skip_helper_for_fft(device, dtype):
device_type = torch.device(device).type
if dtype not in (torch.half, torch.complex32):
return
if device_type == 'cpu':
raise unittest.SkipTest("half and complex32 are not supported on CPU")
if TEST_WITH_ROCM:
raise unittest.SkipTest("half and complex32 are not supported on ROCM")
if not SM53OrLater:
raise unittest.SkipTest("half and complex32 are only supported on CUDA device with SM>53")
# Tests of functions related to Fourier analysis in the torch.fft namespace
class TestFFT(TestCase):
exact_dtype = True
@onlyNativeDeviceTypes
@ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.OneD],
allowed_dtypes=(torch.float, torch.cfloat))
def test_reference_1d(self, device, dtype, op):
if op.ref is None:
raise unittest.SkipTest("No reference implementation")
norm_modes = REFERENCE_NORM_MODES
test_args = [
*product(
# input
(torch.randn(67, device=device, dtype=dtype),
torch.randn(80, device=device, dtype=dtype),
torch.randn(12, 14, device=device, dtype=dtype),
torch.randn(9, 6, 3, device=device, dtype=dtype)),
# n
(None, 50, 6),
# dim
(-1, 0),
# norm
norm_modes
),
# Test transforming middle dimensions of multi-dim tensor
*product(
(torch.randn(4, 5, 6, 7, device=device, dtype=dtype),),
(None,),
(1, 2, -2,),
norm_modes
)
]
for iargs in test_args:
args = list(iargs)
input = args[0]
args = args[1:]
expected = op.ref(input.cpu().numpy(), *args)
exact_dtype = dtype in (torch.double, torch.complex128)
actual = op(input, *args)
self.assertEqual(actual, expected, exact_dtype=exact_dtype)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@toleranceOverride({
torch.half : tol(1e-2, 1e-2),
torch.chalf : tol(1e-2, 1e-2),
})
@dtypes(torch.half, torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128)
def test_fft_round_trip(self, device, dtype):
skip_helper_for_fft(device, dtype)
# Test that round trip through ifft(fft(x)) is the identity
if dtype not in (torch.half, torch.complex32):
test_args = list(product(
# input
(torch.randn(67, device=device, dtype=dtype),
torch.randn(80, device=device, dtype=dtype),
torch.randn(12, 14, device=device, dtype=dtype),
torch.randn(9, 6, 3, device=device, dtype=dtype)),
# dim
(-1, 0),
# norm
(None, "forward", "backward", "ortho")
))
else:
# cuFFT supports powers of 2 for half and complex half precision
test_args = list(product(
# input
(torch.randn(64, device=device, dtype=dtype),
torch.randn(128, device=device, dtype=dtype),
torch.randn(4, 16, device=device, dtype=dtype),
torch.randn(8, 6, 2, device=device, dtype=dtype)),
# dim
(-1, 0),
# norm
(None, "forward", "backward", "ortho")
))
fft_functions = [(torch.fft.fft, torch.fft.ifft)]
# Real-only functions
if not dtype.is_complex:
# NOTE: Using ihfft as "forward" transform to avoid needing to
# generate true half-complex input
fft_functions += [(torch.fft.rfft, torch.fft.irfft),
(torch.fft.ihfft, torch.fft.hfft)]
for forward, backward in fft_functions:
for x, dim, norm in test_args:
kwargs = {
'n': x.size(dim),
'dim': dim,
'norm': norm,
}
y = backward(forward(x, **kwargs), **kwargs)
if x.dtype is torch.half and y.dtype is torch.complex32:
# Since type promotion currently doesn't work with complex32
# manually promote `x` to complex32
x = x.to(torch.complex32)
# For real input, ifft(fft(x)) will convert to complex
self.assertEqual(x, y, exact_dtype=(
forward != torch.fft.fft or x.is_complex()))
# Note: NumPy will throw a ValueError for an empty input
@onlyNativeDeviceTypes
@ops(spectral_funcs, allowed_dtypes=(torch.half, torch.float, torch.complex32, torch.cfloat))
def test_empty_fft(self, device, dtype, op):
t = torch.empty(1, 0, device=device, dtype=dtype)
match = r"Invalid number of data points \([-\d]*\) specified"
with self.assertRaisesRegex(RuntimeError, match):
op(t)
@onlyNativeDeviceTypes
def test_empty_ifft(self, device):
t = torch.empty(2, 1, device=device, dtype=torch.complex64)
match = r"Invalid number of data points \([-\d]*\) specified"
for f in [torch.fft.irfft, torch.fft.irfft2, torch.fft.irfftn,
torch.fft.hfft, torch.fft.hfft2, torch.fft.hfftn]:
with self.assertRaisesRegex(RuntimeError, match):
f(t)
@onlyNativeDeviceTypes
def test_fft_invalid_dtypes(self, device):
t = torch.randn(64, device=device, dtype=torch.complex128)
with self.assertRaisesRegex(RuntimeError, "rfft expects a real input tensor"):
torch.fft.rfft(t)
with self.assertRaisesRegex(RuntimeError, "rfftn expects a real-valued input tensor"):
torch.fft.rfftn(t)
with self.assertRaisesRegex(RuntimeError, "ihfft expects a real input tensor"):
torch.fft.ihfft(t)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@dtypes(torch.int8, torch.half, torch.float, torch.double,
torch.complex32, torch.complex64, torch.complex128)
def test_fft_type_promotion(self, device, dtype):
skip_helper_for_fft(device, dtype)
if dtype.is_complex or dtype.is_floating_point:
t = torch.randn(64, device=device, dtype=dtype)
else:
t = torch.randint(-2, 2, (64,), device=device, dtype=dtype)
PROMOTION_MAP = {
torch.int8: torch.complex64,
torch.half: torch.complex32,
torch.float: torch.complex64,
torch.double: torch.complex128,
torch.complex32: torch.complex32,
torch.complex64: torch.complex64,
torch.complex128: torch.complex128,
}
T = torch.fft.fft(t)
self.assertEqual(T.dtype, PROMOTION_MAP[dtype])
PROMOTION_MAP_C2R = {
torch.int8: torch.float,
torch.half: torch.half,
torch.float: torch.float,
torch.double: torch.double,
torch.complex32: torch.half,
torch.complex64: torch.float,
torch.complex128: torch.double,
}
if dtype in (torch.half, torch.complex32):
# cuFFT supports powers of 2 for half and complex half precision
# NOTE: With hfft and default args where output_size n=2*(input_size - 1),
# we make sure that logical fft size is a power of two.
x = torch.randn(65, device=device, dtype=dtype)
R = torch.fft.hfft(x)
else:
R = torch.fft.hfft(t)
self.assertEqual(R.dtype, PROMOTION_MAP_C2R[dtype])
if not dtype.is_complex:
PROMOTION_MAP_R2C = {
torch.int8: torch.complex64,
torch.half: torch.complex32,
torch.float: torch.complex64,
torch.double: torch.complex128,
}
C = torch.fft.rfft(t)
self.assertEqual(C.dtype, PROMOTION_MAP_R2C[dtype])
@onlyNativeDeviceTypes
@ops(spectral_funcs, dtypes=OpDTypes.unsupported,
allowed_dtypes=[torch.half, torch.bfloat16])
def test_fft_half_and_bfloat16_errors(self, device, dtype, op):
# TODO: Remove torch.half error when complex32 is fully implemented
sample = first_sample(self, op.sample_inputs(device, dtype))
device_type = torch.device(device).type
if dtype is torch.half and device_type == 'cuda' and TEST_WITH_ROCM:
err_msg = "Unsupported dtype "
elif dtype is torch.half and device_type == 'cuda' and not SM53OrLater:
err_msg = "cuFFT doesn't support signals of half type with compute capability less than SM_53"
else:
err_msg = "Unsupported dtype "
with self.assertRaisesRegex(RuntimeError, err_msg):
op(sample.input, *sample.args, **sample.kwargs)
@onlyNativeDeviceTypes
@ops(spectral_funcs, allowed_dtypes=(torch.half, torch.chalf))
def test_fft_half_and_chalf_not_power_of_two_error(self, device, dtype, op):
t = make_tensor(13, 13, device=device, dtype=dtype)
err_msg = "cuFFT only supports dimensions whose sizes are powers of two"
with self.assertRaisesRegex(RuntimeError, err_msg):
op(t)
if op.ndimensional in (SpectralFuncType.ND, SpectralFuncType.TwoD):
kwargs = {'s': (12, 12)}
else:
kwargs = {'n': 12}
with self.assertRaisesRegex(RuntimeError, err_msg):
op(t, **kwargs)
# nd-fft tests
@onlyNativeDeviceTypes
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
@ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.ND],
allowed_dtypes=(torch.cfloat, torch.cdouble))
def test_reference_nd(self, device, dtype, op):
if op.ref is None:
raise unittest.SkipTest("No reference implementation")
norm_modes = REFERENCE_NORM_MODES
# input_ndim, s, dim
transform_desc = [
*product(range(2, 5), (None,), (None, (0,), (0, -1))),
*product(range(2, 5), (None, (4, 10)), (None,)),
(6, None, None),
(5, None, (1, 3, 4)),
(3, None, (1,)),
(1, None, (0,)),
(4, (10, 10), None),
(4, (10, 10), (0, 1))
]
for input_ndim, s, dim in transform_desc:
shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim)
input = torch.randn(*shape, device=device, dtype=dtype)
for norm in norm_modes:
expected = op.ref(input.cpu().numpy(), s, dim, norm)
exact_dtype = dtype in (torch.double, torch.complex128)
actual = op(input, s, dim, norm)
self.assertEqual(actual, expected, exact_dtype=exact_dtype)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@toleranceOverride({
torch.half : tol(1e-2, 1e-2),
torch.chalf : tol(1e-2, 1e-2),
})
@dtypes(torch.half, torch.float, torch.double,
torch.complex32, torch.complex64, torch.complex128)
def test_fftn_round_trip(self, device, dtype):
skip_helper_for_fft(device, dtype)
norm_modes = (None, "forward", "backward", "ortho")
# input_ndim, dim
transform_desc = [
*product(range(2, 5), (None, (0,), (0, -1))),
(7, None),
(5, (1, 3, 4)),
(3, (1,)),
(1, 0),
]
fft_functions = [(torch.fft.fftn, torch.fft.ifftn)]
# Real-only functions
if not dtype.is_complex:
# NOTE: Using ihfftn as "forward" transform to avoid needing to
# generate true half-complex input
fft_functions += [(torch.fft.rfftn, torch.fft.irfftn),
(torch.fft.ihfftn, torch.fft.hfftn)]
for input_ndim, dim in transform_desc:
if dtype in (torch.half, torch.complex32):
# cuFFT supports powers of 2 for half and complex half precision
shape = itertools.islice(itertools.cycle((2, 4, 8)), input_ndim)
else:
shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim)
x = torch.randn(*shape, device=device, dtype=dtype)
for (forward, backward), norm in product(fft_functions, norm_modes):
if isinstance(dim, tuple):
s = [x.size(d) for d in dim]
else:
s = x.size() if dim is None else x.size(dim)
kwargs = {'s': s, 'dim': dim, 'norm': norm}
y = backward(forward(x, **kwargs), **kwargs)
# For real input, ifftn(fftn(x)) will convert to complex
if x.dtype is torch.half and y.dtype is torch.chalf:
# Since type promotion currently doesn't work with complex32
# manually promote `x` to complex32
self.assertEqual(x.to(torch.chalf), y)
else:
self.assertEqual(x, y, exact_dtype=(
forward != torch.fft.fftn or x.is_complex()))
@onlyNativeDeviceTypes
@ops([op for op in spectral_funcs if op.ndimensional == SpectralFuncType.ND],
allowed_dtypes=[torch.float, torch.cfloat])
def test_fftn_invalid(self, device, dtype, op):
a = torch.rand(10, 10, 10, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, "dims must be unique"):
op(a, dim=(0, 1, 0))
with self.assertRaisesRegex(RuntimeError, "dims must be unique"):
op(a, dim=(2, -1))
with self.assertRaisesRegex(RuntimeError, "dim and shape .* same length"):
op(a, s=(1,), dim=(0, 1))
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
op(a, dim=(3,))
with self.assertRaisesRegex(RuntimeError, "tensor only has 3 dimensions"):
op(a, s=(10, 10, 10, 10))
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@toleranceOverride({
torch.half : tol(1e-2, 1e-2),
})
@dtypes(torch.half, torch.float, torch.double)
def test_hfftn(self, device, dtype):
skip_helper_for_fft(device, dtype)
# input_ndim, dim
transform_desc = [
*product(range(2, 5), (None, (0,), (0, -1))),
(6, None),
(5, (1, 3, 4)),
(3, (1,)),
(1, (0,)),
(4, (0, 1))
]
for input_ndim, dim in transform_desc:
actual_dims = list(range(input_ndim)) if dim is None else dim
if dtype is torch.half:
shape = tuple(itertools.islice(itertools.cycle((2, 4, 8)), input_ndim))
else:
shape = tuple(itertools.islice(itertools.cycle(range(4, 9)), input_ndim))
expect = torch.randn(*shape, device=device, dtype=dtype)
input = torch.fft.ifftn(expect, dim=dim, norm="ortho")
lastdim = actual_dims[-1]
lastdim_size = input.size(lastdim) // 2 + 1
idx = [slice(None)] * input_ndim
idx[lastdim] = slice(0, lastdim_size)
input = input[idx]
s = [shape[dim] for dim in actual_dims]
actual = torch.fft.hfftn(input, s=s, dim=dim, norm="ortho")
self.assertEqual(expect, actual)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@toleranceOverride({
torch.half : tol(1e-2, 1e-2),
})
@dtypes(torch.half, torch.float, torch.double)
def test_ihfftn(self, device, dtype):
skip_helper_for_fft(device, dtype)
# input_ndim, dim
transform_desc = [
*product(range(2, 5), (None, (0,), (0, -1))),
(6, None),
(5, (1, 3, 4)),
(3, (1,)),
(1, (0,)),
(4, (0, 1))
]
for input_ndim, dim in transform_desc:
if dtype is torch.half:
shape = tuple(itertools.islice(itertools.cycle((2, 4, 8)), input_ndim))
else:
shape = tuple(itertools.islice(itertools.cycle(range(4, 9)), input_ndim))
input = torch.randn(*shape, device=device, dtype=dtype)
expect = torch.fft.ifftn(input, dim=dim, norm="ortho")
# Slice off the half-symmetric component
lastdim = -1 if dim is None else dim[-1]
lastdim_size = expect.size(lastdim) // 2 + 1
idx = [slice(None)] * input_ndim
idx[lastdim] = slice(0, lastdim_size)
expect = expect[idx]
actual = torch.fft.ihfftn(input, dim=dim, norm="ortho")
self.assertEqual(expect, actual)
# 2d-fft tests
# NOTE: 2d transforms are only thin wrappers over n-dim transforms,
# so don't require exhaustive testing.
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@dtypes(torch.double, torch.complex128)
def test_fft2_numpy(self, device, dtype):
norm_modes = REFERENCE_NORM_MODES
# input_ndim, s
transform_desc = [
*product(range(2, 5), (None, (4, 10))),
]
fft_functions = ['fft2', 'ifft2', 'irfft2', 'hfft2']
if dtype.is_floating_point:
fft_functions += ['rfft2', 'ihfft2']
for input_ndim, s in transform_desc:
shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim)
input = torch.randn(*shape, device=device, dtype=dtype)
for fname, norm in product(fft_functions, norm_modes):
torch_fn = getattr(torch.fft, fname)
if "hfft" in fname:
if not has_scipy_fft:
continue # Requires scipy to compare against
numpy_fn = getattr(scipy.fft, fname)
else:
numpy_fn = getattr(np.fft, fname)
def fn(t: torch.Tensor, s: Optional[List[int]], dim: List[int] = (-2, -1), norm: Optional[str] = None):
return torch_fn(t, s, dim, norm)
torch_fns = (torch_fn, torch.jit.script(fn))
# Once with dim defaulted
input_np = input.cpu().numpy()
expected = numpy_fn(input_np, s, norm=norm)
for fn in torch_fns:
actual = fn(input, s, norm=norm)
self.assertEqual(actual, expected)
# Once with explicit dims
dim = (1, 0)
expected = numpy_fn(input_np, s, dim, norm)
for fn in torch_fns:
actual = fn(input, s, dim, norm)
self.assertEqual(actual, expected)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@dtypes(torch.float, torch.complex64)
def test_fft2_fftn_equivalence(self, device, dtype):
norm_modes = (None, "forward", "backward", "ortho")
# input_ndim, s, dim
transform_desc = [
*product(range(2, 5), (None, (4, 10)), (None, (1, 0))),
(3, None, (0, 2)),
]
fft_functions = ['fft', 'ifft', 'irfft', 'hfft']
# Real-only functions
if dtype.is_floating_point:
fft_functions += ['rfft', 'ihfft']
for input_ndim, s, dim in transform_desc:
shape = itertools.islice(itertools.cycle(range(4, 9)), input_ndim)
x = torch.randn(*shape, device=device, dtype=dtype)
for func, norm in product(fft_functions, norm_modes):
f2d = getattr(torch.fft, func + '2')
fnd = getattr(torch.fft, func + 'n')
kwargs = {'s': s, 'norm': norm}
if dim is not None:
kwargs['dim'] = dim
expect = fnd(x, **kwargs)
else:
expect = fnd(x, dim=(-2, -1), **kwargs)
actual = f2d(x, **kwargs)
self.assertEqual(actual, expect)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
def test_fft2_invalid(self, device):
a = torch.rand(10, 10, 10, device=device)
fft_funcs = (torch.fft.fft2, torch.fft.ifft2,
torch.fft.rfft2, torch.fft.irfft2)
for func in fft_funcs:
with self.assertRaisesRegex(RuntimeError, "dims must be unique"):
func(a, dim=(0, 0))
with self.assertRaisesRegex(RuntimeError, "dims must be unique"):
func(a, dim=(2, -1))
with self.assertRaisesRegex(RuntimeError, "dim and shape .* same length"):
func(a, s=(1,))
with self.assertRaisesRegex(IndexError, "Dimension out of range"):
func(a, dim=(2, 3))
c = torch.complex(a, a)
with self.assertRaisesRegex(RuntimeError, "rfftn expects a real-valued input"):
torch.fft.rfft2(c)
# Helper functions
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
@dtypes(torch.float, torch.double)
def test_fftfreq_numpy(self, device, dtype):
test_args = [
*product(
# n
range(1, 20),
# d
(None, 10.0),
)
]
functions = ['fftfreq', 'rfftfreq']
for fname in functions:
torch_fn = getattr(torch.fft, fname)
numpy_fn = getattr(np.fft, fname)
for n, d in test_args:
args = (n,) if d is None else (n, d)
expected = numpy_fn(*args)
actual = torch_fn(*args, device=device, dtype=dtype)
self.assertEqual(actual, expected, exact_dtype=False)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@dtypes(torch.float, torch.double)
def test_fftfreq_out(self, device, dtype):
for func in (torch.fft.fftfreq, torch.fft.rfftfreq):
expect = func(n=100, d=.5, device=device, dtype=dtype)
actual = torch.empty((), device=device, dtype=dtype)
with self.assertWarnsRegex(UserWarning, "out tensor will be resized"):
func(n=100, d=.5, out=actual)
self.assertEqual(actual, expect)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
@dtypes(torch.float, torch.double, torch.complex64, torch.complex128)
def test_fftshift_numpy(self, device, dtype):
test_args = [
# shape, dim
*product(((11,), (12,)), (None, 0, -1)),
*product(((4, 5), (6, 6)), (None, 0, (-1,))),
*product(((1, 1, 4, 6, 7, 2),), (None, (3, 4))),
]
functions = ['fftshift', 'ifftshift']
for shape, dim in test_args:
input = torch.rand(*shape, device=device, dtype=dtype)
input_np = input.cpu().numpy()
for fname in functions:
torch_fn = getattr(torch.fft, fname)
numpy_fn = getattr(np.fft, fname)
expected = numpy_fn(input_np, axes=dim)
actual = torch_fn(input, dim=dim)
self.assertEqual(actual, expected)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@unittest.skipIf(not TEST_NUMPY, 'NumPy not found')
@dtypes(torch.float, torch.double)
def test_fftshift_frequencies(self, device, dtype):
for n in range(10, 15):
sorted_fft_freqs = torch.arange(-(n // 2), n - (n // 2),
device=device, dtype=dtype)
x = torch.fft.fftfreq(n, d=1 / n, device=device, dtype=dtype)
# Test fftshift sorts the fftfreq output
shifted = torch.fft.fftshift(x)
self.assertEqual(shifted, shifted.sort().values)
self.assertEqual(sorted_fft_freqs, shifted)
# And ifftshift is the inverse
self.assertEqual(x, torch.fft.ifftshift(shifted))
# Legacy fft tests
def _test_fft_ifft_rfft_irfft(self, device, dtype):
complex_dtype = {
torch.float16: torch.complex32,
torch.float32: torch.complex64,
torch.float64: torch.complex128
}[dtype]
def _test_complex(sizes, signal_ndim, prepro_fn=lambda x: x):
x = prepro_fn(torch.randn(*sizes, dtype=complex_dtype, device=device))
dim = tuple(range(-signal_ndim, 0))
for norm in ('ortho', None):
res = torch.fft.fftn(x, dim=dim, norm=norm)
rec = torch.fft.ifftn(res, dim=dim, norm=norm)
self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='fft and ifft')
res = torch.fft.ifftn(x, dim=dim, norm=norm)
rec = torch.fft.fftn(res, dim=dim, norm=norm)
self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='ifft and fft')
def _test_real(sizes, signal_ndim, prepro_fn=lambda x: x):
x = prepro_fn(torch.randn(*sizes, dtype=dtype, device=device))
signal_numel = 1
signal_sizes = x.size()[-signal_ndim:]
dim = tuple(range(-signal_ndim, 0))
for norm in (None, 'ortho'):
res = torch.fft.rfftn(x, dim=dim, norm=norm)
rec = torch.fft.irfftn(res, s=signal_sizes, dim=dim, norm=norm)
self.assertEqual(x, rec, atol=1e-8, rtol=0, msg='rfft and irfft')
res = torch.fft.fftn(x, dim=dim, norm=norm)
rec = torch.fft.ifftn(res, dim=dim, norm=norm)
x_complex = torch.complex(x, torch.zeros_like(x))
self.assertEqual(x_complex, rec, atol=1e-8, rtol=0, msg='fft and ifft (from real)')
# contiguous case
_test_real((100,), 1)
_test_real((10, 1, 10, 100), 1)
_test_real((100, 100), 2)
_test_real((2, 2, 5, 80, 60), 2)
_test_real((50, 40, 70), 3)
_test_real((30, 1, 50, 25, 20), 3)
_test_complex((100,), 1)
_test_complex((100, 100), 1)
_test_complex((100, 100), 2)
_test_complex((1, 20, 80, 60), 2)
_test_complex((50, 40, 70), 3)
_test_complex((6, 5, 50, 25, 20), 3)
# non-contiguous case
_test_real((165,), 1, lambda x: x.narrow(0, 25, 100)) # input is not aligned to complex type
_test_real((100, 100, 3), 1, lambda x: x[:, :, 0])
_test_real((100, 100), 2, lambda x: x.t())
_test_real((20, 100, 10, 10), 2, lambda x: x.view(20, 100, 100)[:, :60])
_test_real((65, 80, 115), 3, lambda x: x[10:60, 13:53, 10:80])
_test_real((30, 20, 50, 25), 3, lambda x: x.transpose(1, 2).transpose(2, 3))
_test_complex((100,), 1, lambda x: x.expand(100, 100))
_test_complex((20, 90, 110), 2, lambda x: x[:, 5:85].narrow(2, 5, 100))
_test_complex((40, 60, 3, 80), 3, lambda x: x.transpose(2, 0).select(0, 2)[5:55, :, 10:])
_test_complex((30, 55, 50, 22), 3, lambda x: x[:, 3:53, 15:40, 1:21])
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@dtypes(torch.double)
def test_fft_ifft_rfft_irfft(self, device, dtype):
self._test_fft_ifft_rfft_irfft(device, dtype)
@deviceCountAtLeast(1)
@onlyCUDA
@dtypes(torch.double)
def test_cufft_plan_cache(self, devices, dtype):
@contextmanager
def plan_cache_max_size(device, n):
if device is None:
plan_cache = torch.backends.cuda.cufft_plan_cache
else:
plan_cache = torch.backends.cuda.cufft_plan_cache[device]
original = plan_cache.max_size
plan_cache.max_size = n
yield
plan_cache.max_size = original
with plan_cache_max_size(devices[0], max(1, torch.backends.cuda.cufft_plan_cache.size - 10)):
self._test_fft_ifft_rfft_irfft(devices[0], dtype)
with plan_cache_max_size(devices[0], 0):
self._test_fft_ifft_rfft_irfft(devices[0], dtype)
torch.backends.cuda.cufft_plan_cache.clear()
# check that stll works after clearing cache
with plan_cache_max_size(devices[0], 10):
self._test_fft_ifft_rfft_irfft(devices[0], dtype)
with self.assertRaisesRegex(RuntimeError, r"must be non-negative"):
torch.backends.cuda.cufft_plan_cache.max_size = -1
with self.assertRaisesRegex(RuntimeError, r"read-only property"):
torch.backends.cuda.cufft_plan_cache.size = -1
with self.assertRaisesRegex(RuntimeError, r"but got device with index"):
torch.backends.cuda.cufft_plan_cache[torch.cuda.device_count() + 10]
# Multigpu tests
if len(devices) > 1:
# Test that different GPU has different cache
x0 = torch.randn(2, 3, 3, device=devices[0])
x1 = x0.to(devices[1])
self.assertEqual(torch.fft.rfftn(x0, dim=(-2, -1)), torch.fft.rfftn(x1, dim=(-2, -1)))
# If a plan is used across different devices, the following line (or
# the assert above) would trigger illegal memory access. Other ways
# to trigger the error include
# (1) setting CUDA_LAUNCH_BLOCKING=1 (pytorch/pytorch#19224) and
# (2) printing a device 1 tensor.
x0.copy_(x1)
# Test that un-indexed `torch.backends.cuda.cufft_plan_cache` uses current device
with plan_cache_max_size(devices[0], 10):
with plan_cache_max_size(devices[1], 11):
self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10)
self.assertEqual(torch.backends.cuda.cufft_plan_cache[1].max_size, 11)
self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0
with torch.cuda.device(devices[1]):
self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1
with torch.cuda.device(devices[0]):
self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0
self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10)
with torch.cuda.device(devices[1]):
with plan_cache_max_size(None, 11): # default is cuda:1
self.assertEqual(torch.backends.cuda.cufft_plan_cache[0].max_size, 10)
self.assertEqual(torch.backends.cuda.cufft_plan_cache[1].max_size, 11)
self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1
with torch.cuda.device(devices[0]):
self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 10) # default is cuda:0
self.assertEqual(torch.backends.cuda.cufft_plan_cache.max_size, 11) # default is cuda:1
# passes on ROCm w/ python 2.7, fails w/ python 3.6
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@dtypes(torch.double)
def test_stft(self, device, dtype):
if not TEST_LIBROSA:
raise unittest.SkipTest('librosa not found')
def librosa_stft(x, n_fft, hop_length, win_length, window, center):
if window is None:
window = np.ones(n_fft if win_length is None else win_length)
else:
window = window.cpu().numpy()
input_1d = x.dim() == 1
if input_1d:
x = x.view(1, -1)
# NOTE: librosa 0.9 changed default pad_mode to 'constant' (zero padding)
# however, we use the pre-0.9 default ('reflect')
pad_mode = 'reflect'
result = []
for xi in x:
ri = librosa.stft(xi.cpu().numpy(), n_fft=n_fft, hop_length=hop_length,
win_length=win_length, window=window, center=center,
pad_mode=pad_mode)
result.append(torch.from_numpy(np.stack([ri.real, ri.imag], -1)))
result = torch.stack(result, 0)
if input_1d:
result = result[0]
return result
def _test(sizes, n_fft, hop_length=None, win_length=None, win_sizes=None,
center=True, expected_error=None):
x = torch.randn(*sizes, dtype=dtype, device=device)
if win_sizes is not None:
window = torch.randn(*win_sizes, dtype=dtype, device=device)
else:
window = None
if expected_error is None:
result = x.stft(n_fft, hop_length, win_length, window,
center=center, return_complex=False)
# NB: librosa defaults to np.complex64 output, no matter what
# the input dtype
ref_result = librosa_stft(x, n_fft, hop_length, win_length, window, center)
self.assertEqual(result, ref_result, atol=7e-6, rtol=0, msg='stft comparison against librosa', exact_dtype=False)
# With return_complex=True, the result is the same but viewed as complex instead of real
result_complex = x.stft(n_fft, hop_length, win_length, window, center=center, return_complex=True)
self.assertEqual(result_complex, torch.view_as_complex(result))
else:
self.assertRaises(expected_error,
lambda: x.stft(n_fft, hop_length, win_length, window, center=center))
for center in [True, False]:
_test((10,), 7, center=center)
_test((10, 4000), 1024, center=center)
_test((10,), 7, 2, center=center)
_test((10, 4000), 1024, 512, center=center)
_test((10,), 7, 2, win_sizes=(7,), center=center)
_test((10, 4000), 1024, 512, win_sizes=(1024,), center=center)
# spectral oversample
_test((10,), 7, 2, win_length=5, center=center)
_test((10, 4000), 1024, 512, win_length=100, center=center)
_test((10, 4, 2), 1, 1, expected_error=RuntimeError)
_test((10,), 11, 1, center=False, expected_error=RuntimeError)
_test((10,), -1, 1, expected_error=RuntimeError)
_test((10,), 3, win_length=5, expected_error=RuntimeError)
_test((10,), 5, 4, win_sizes=(11,), expected_error=RuntimeError)
_test((10,), 5, 4, win_sizes=(1, 1), expected_error=RuntimeError)
@skipCPUIfNoFFT
@onlyNativeDeviceTypes
@dtypes(torch.double)
def test_istft_against_librosa(self, device, dtype):
if not TEST_LIBROSA:
raise unittest.SkipTest('librosa not found')
def librosa_istft(x, n_fft, hop_length, win_length, window, length, center):
if window is None:
window = np.ones(n_fft if win_length is None else win_length)
else:
window = window.cpu().numpy()
return librosa.istft(x.cpu().numpy(), n_fft=n_fft, hop_length=hop_length,
win_length=win_length, length=length, window=window, center=center)
def _test(size, n_fft, hop_length=None, win_length=None, win_sizes=None,
length=None, center=True):
x = torch.randn(size, dtype=dtype, device=device)
if win_sizes is not None:
window = torch.randn(*win_sizes, dtype=dtype, device=device)
else:
window = None
x_stft = x.stft(n_fft, hop_length, win_length, window, center=center,
onesided=True, return_complex=True)
ref_result = librosa_istft(x_stft, n_fft, hop_length, win_length,
window, length, center)
result = x_stft.istft(n_fft, hop_length, win_length, window,
length=length, center=center)
self.assertEqual(result, ref_result)
for center in [True, False]:
_test(10, 7, center=center)
_test(4000, 1024, center=center)
_test(4000, 1024, center=center, length=4000)
_test(10, 7, 2, center=center)
_test(4000, 1024, 512, center=center)
_test(4000, 1024, 512, center=center, length=4000)
_test(10, 7, 2, win_sizes=(7,), center=center)
_test(4000, 1024, 512, win_sizes=(1024,), center=center)
_test(4000, 1024, 512, win_sizes=(1024,), center=center, length=4000)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.double, torch.cdouble)
def test_complex_stft_roundtrip(self, device, dtype):
test_args = list(product(
# input
(torch.randn(600, device=device, dtype=dtype),
torch.randn(807, device=device, dtype=dtype),
torch.randn(12, 60, device=device, dtype=dtype)),
# n_fft
(50, 27),
# hop_length
(None, 10),
# center
(True,),
# pad_mode
("constant", "reflect", "circular"),
# normalized
(True, False),
# onesided
(True, False) if not dtype.is_complex else (False,),
))
for args in test_args:
x, n_fft, hop_length, center, pad_mode, normalized, onesided = args
common_kwargs = {
'n_fft': n_fft, 'hop_length': hop_length, 'center': center,
'normalized': normalized, 'onesided': onesided,
}
# Functional interface
x_stft = torch.stft(x, pad_mode=pad_mode, return_complex=True, **common_kwargs)
x_roundtrip = torch.istft(x_stft, return_complex=dtype.is_complex,
length=x.size(-1), **common_kwargs)
self.assertEqual(x_roundtrip, x)
# Tensor method interface
x_stft = x.stft(pad_mode=pad_mode, return_complex=True, **common_kwargs)
x_roundtrip = torch.istft(x_stft, return_complex=dtype.is_complex,
length=x.size(-1), **common_kwargs)
self.assertEqual(x_roundtrip, x)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.double, torch.cdouble)
def test_stft_roundtrip_complex_window(self, device, dtype):
test_args = list(product(
# input
(torch.randn(600, device=device, dtype=dtype),
torch.randn(807, device=device, dtype=dtype),
torch.randn(12, 60, device=device, dtype=dtype)),
# n_fft
(50, 27),
# hop_length
(None, 10),
# pad_mode
("constant", "reflect", "replicate", "circular"),
# normalized
(True, False),
))
for args in test_args:
x, n_fft, hop_length, pad_mode, normalized = args
window = torch.rand(n_fft, device=device, dtype=torch.cdouble)
x_stft = torch.stft(
x, n_fft=n_fft, hop_length=hop_length, window=window,
center=True, pad_mode=pad_mode, normalized=normalized)
self.assertEqual(x_stft.dtype, torch.cdouble)
self.assertEqual(x_stft.size(-2), n_fft) # Not onesided
x_roundtrip = torch.istft(
x_stft, n_fft=n_fft, hop_length=hop_length, window=window,
center=True, normalized=normalized, length=x.size(-1),
return_complex=True)
self.assertEqual(x_stft.dtype, torch.cdouble)
if not dtype.is_complex:
self.assertEqual(x_roundtrip.imag, torch.zeros_like(x_roundtrip.imag),
atol=1e-6, rtol=0)
self.assertEqual(x_roundtrip.real, x)
else:
self.assertEqual(x_roundtrip, x)
@skipCPUIfNoFFT
@dtypes(torch.cdouble)
def test_complex_stft_definition(self, device, dtype):
test_args = list(product(
# input
(torch.randn(600, device=device, dtype=dtype),
torch.randn(807, device=device, dtype=dtype)),
# n_fft
(50, 27),
# hop_length
(10, 15)
))
for args in test_args:
window = torch.randn(args[1], device=device, dtype=dtype)
expected = _stft_reference(args[0], args[2], window)
actual = torch.stft(*args, window=window, center=False)
self.assertEqual(actual, expected)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.cdouble)
def test_complex_stft_real_equiv(self, device, dtype):
test_args = list(product(
# input
(torch.rand(600, device=device, dtype=dtype),
torch.rand(807, device=device, dtype=dtype),
torch.rand(14, 50, device=device, dtype=dtype),
torch.rand(6, 51, device=device, dtype=dtype)),
# n_fft
(50, 27),
# hop_length
(None, 10),
# win_length
(None, 20),
# center
(False, True),
# pad_mode
("constant", "reflect", "circular"),
# normalized
(True, False),
))
for args in test_args:
x, n_fft, hop_length, win_length, center, pad_mode, normalized = args
expected = _complex_stft(x, n_fft, hop_length=hop_length,
win_length=win_length, pad_mode=pad_mode,
center=center, normalized=normalized)
actual = torch.stft(x, n_fft, hop_length=hop_length,
win_length=win_length, pad_mode=pad_mode,
center=center, normalized=normalized)
self.assertEqual(expected, actual)
@skipCPUIfNoFFT
@dtypes(torch.cdouble)
def test_complex_istft_real_equiv(self, device, dtype):
test_args = list(product(
# input
(torch.rand(40, 20, device=device, dtype=dtype),
torch.rand(25, 1, device=device, dtype=dtype),
torch.rand(4, 20, 10, device=device, dtype=dtype)),
# hop_length
(None, 10),
# center
(False, True),
# normalized
(True, False),
))
for args in test_args:
x, hop_length, center, normalized = args
n_fft = x.size(-2)
expected = _complex_istft(x, n_fft, hop_length=hop_length,
center=center, normalized=normalized)
actual = torch.istft(x, n_fft, hop_length=hop_length,
center=center, normalized=normalized,
return_complex=True)
self.assertEqual(expected, actual)
@skipCPUIfNoFFT
def test_complex_stft_onesided(self, device):
# stft of complex input cannot be onesided
for x_dtype, window_dtype in product((torch.double, torch.cdouble), repeat=2):
x = torch.rand(100, device=device, dtype=x_dtype)
window = torch.rand(10, device=device, dtype=window_dtype)
if x_dtype.is_complex or window_dtype.is_complex:
with self.assertRaisesRegex(RuntimeError, 'complex'):
x.stft(10, window=window, pad_mode='constant', onesided=True)
else:
y = x.stft(10, window=window, pad_mode='constant', onesided=True,
return_complex=True)
self.assertEqual(y.dtype, torch.cdouble)
self.assertEqual(y.size(), (6, 51))
x = torch.rand(100, device=device, dtype=torch.cdouble)
with self.assertRaisesRegex(RuntimeError, 'complex'):
x.stft(10, pad_mode='constant', onesided=True)
# stft is currently warning that it requires return-complex while an upgrader is written
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
def test_stft_requires_complex(self, device):
x = torch.rand(100)
y = x.stft(10, pad_mode='constant')
# with self.assertRaisesRegex(RuntimeError, 'stft requires the return_complex parameter'):
# y = x.stft(10, pad_mode='constant')
@skipCPUIfNoFFT
def test_fft_input_modification(self, device):
# FFT functions should not modify their input (gh-34551)
signal = torch.ones((2, 2, 2), device=device)
signal_copy = signal.clone()
spectrum = torch.fft.fftn(signal, dim=(-2, -1))
self.assertEqual(signal, signal_copy)
spectrum_copy = spectrum.clone()
_ = torch.fft.ifftn(spectrum, dim=(-2, -1))
self.assertEqual(spectrum, spectrum_copy)
half_spectrum = torch.fft.rfftn(signal, dim=(-2, -1))
self.assertEqual(signal, signal_copy)
half_spectrum_copy = half_spectrum.clone()
_ = torch.fft.irfftn(half_spectrum_copy, s=(2, 2), dim=(-2, -1))
self.assertEqual(half_spectrum, half_spectrum_copy)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
def test_fft_plan_repeatable(self, device):
# Regression test for gh-58724 and gh-63152
for n in [2048, 3199, 5999]:
a = torch.randn(n, device=device, dtype=torch.complex64)
res1 = torch.fft.fftn(a)
res2 = torch.fft.fftn(a.clone())
self.assertEqual(res1, res2)
a = torch.randn(n, device=device, dtype=torch.float64)
res1 = torch.fft.rfft(a)
res2 = torch.fft.rfft(a.clone())
self.assertEqual(res1, res2)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.double)
def test_istft_round_trip_simple_cases(self, device, dtype):
"""stft -> istft should recover the original signale"""
def _test(input, n_fft, length):
stft = torch.stft(input, n_fft=n_fft, return_complex=True)
inverse = torch.istft(stft, n_fft=n_fft, length=length)
self.assertEqual(input, inverse, exact_dtype=True)
_test(torch.ones(4, dtype=dtype, device=device), 4, 4)
_test(torch.zeros(4, dtype=dtype, device=device), 4, 4)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.double)
def test_istft_round_trip_various_params(self, device, dtype):
"""stft -> istft should recover the original signale"""
def _test_istft_is_inverse_of_stft(stft_kwargs):
# generates a random sound signal for each tril and then does the stft/istft
# operation to check whether we can reconstruct signal
data_sizes = [(2, 20), (3, 15), (4, 10)]
num_trials = 100
istft_kwargs = stft_kwargs.copy()
del istft_kwargs['pad_mode']
for sizes in data_sizes:
for i in range(num_trials):
original = torch.randn(*sizes, dtype=dtype, device=device)
stft = torch.stft(original, return_complex=True, **stft_kwargs)
inversed = torch.istft(stft, length=original.size(1), **istft_kwargs)
self.assertEqual(
inversed, original, msg='istft comparison against original',
atol=7e-6, rtol=0, exact_dtype=True)
patterns = [
# hann_window, centered, normalized, onesided
{
'n_fft': 12,
'hop_length': 4,
'win_length': 12,
'window': torch.hann_window(12, dtype=dtype, device=device),
'center': True,
'pad_mode': 'reflect',
'normalized': True,
'onesided': True,
},
# hann_window, centered, not normalized, not onesided
{
'n_fft': 12,
'hop_length': 2,
'win_length': 8,
'window': torch.hann_window(8, dtype=dtype, device=device),
'center': True,
'pad_mode': 'reflect',
'normalized': False,
'onesided': False,
},
# hamming_window, centered, normalized, not onesided
{
'n_fft': 15,
'hop_length': 3,
'win_length': 11,
'window': torch.hamming_window(11, dtype=dtype, device=device),
'center': True,
'pad_mode': 'constant',
'normalized': True,
'onesided': False,
},
# hamming_window, centered, not normalized, onesided
# window same size as n_fft
{
'n_fft': 5,
'hop_length': 2,
'win_length': 5,
'window': torch.hamming_window(5, dtype=dtype, device=device),
'center': True,
'pad_mode': 'constant',
'normalized': False,
'onesided': True,
},
]
for i, pattern in enumerate(patterns):
_test_istft_is_inverse_of_stft(pattern)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.double)
def test_istft_round_trip_with_padding(self, device, dtype):
"""long hop_length or not centered may cause length mismatch in the inversed signal"""
def _test_istft_is_inverse_of_stft_with_padding(stft_kwargs):
# generates a random sound signal for each tril and then does the stft/istft
# operation to check whether we can reconstruct signal
num_trials = 100
sizes = stft_kwargs['size']
del stft_kwargs['size']
istft_kwargs = stft_kwargs.copy()
del istft_kwargs['pad_mode']
for i in range(num_trials):
original = torch.randn(*sizes, dtype=dtype, device=device)
stft = torch.stft(original, return_complex=True, **stft_kwargs)
with self.assertWarnsOnceRegex(UserWarning, "The length of signal is shorter than the length parameter."):
inversed = torch.istft(stft, length=original.size(-1), **istft_kwargs)
n_frames = stft.size(-1)
if stft_kwargs["center"] is True:
len_expected = stft_kwargs["n_fft"] // 2 + stft_kwargs["hop_length"] * (n_frames - 1)
else:
len_expected = stft_kwargs["n_fft"] + stft_kwargs["hop_length"] * (n_frames - 1)
# trim the original for case when constructed signal is shorter than original
padding = inversed[..., len_expected:]
inversed = inversed[..., :len_expected]
original = original[..., :len_expected]
# test the padding points of the inversed signal are all zeros
zeros = torch.zeros_like(padding, device=padding.device)
self.assertEqual(
padding, zeros, msg='istft padding values against zeros',
atol=7e-6, rtol=0, exact_dtype=True)
self.assertEqual(
inversed, original, msg='istft comparison against original',
atol=7e-6, rtol=0, exact_dtype=True)
patterns = [
# hamming_window, not centered, not normalized, not onesided
# window same size as n_fft
{
'size': [2, 20],
'n_fft': 3,
'hop_length': 2,
'win_length': 3,
'window': torch.hamming_window(3, dtype=dtype, device=device),
'center': False,
'pad_mode': 'reflect',
'normalized': False,
'onesided': False,
},
# hamming_window, centered, not normalized, onesided, long hop_length
# window same size as n_fft
{
'size': [2, 500],
'n_fft': 256,
'hop_length': 254,
'win_length': 256,
'window': torch.hamming_window(256, dtype=dtype, device=device),
'center': True,
'pad_mode': 'constant',
'normalized': False,
'onesided': True,
},
]
for i, pattern in enumerate(patterns):
_test_istft_is_inverse_of_stft_with_padding(pattern)
@onlyNativeDeviceTypes
def test_istft_throws(self, device):
"""istft should throw exception for invalid parameters"""
stft = torch.zeros((3, 5, 2), device=device)
# the window is size 1 but it hops 20 so there is a gap which throw an error
self.assertRaises(
RuntimeError, torch.istft, stft, n_fft=4,
hop_length=20, win_length=1, window=torch.ones(1))
# A window of zeros does not meet NOLA
invalid_window = torch.zeros(4, device=device)
self.assertRaises(
RuntimeError, torch.istft, stft, n_fft=4, win_length=4, window=invalid_window)
# Input cannot be empty
self.assertRaises(RuntimeError, torch.istft, torch.zeros((3, 0, 2)), 2)
self.assertRaises(RuntimeError, torch.istft, torch.zeros((0, 3, 2)), 2)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.double)
def test_istft_of_sine(self, device, dtype):
def _test(amplitude, L, n):
# stft of amplitude*sin(2*pi/L*n*x) with the hop length and window size equaling L
x = torch.arange(2 * L + 1, device=device, dtype=dtype)
original = amplitude * torch.sin(2 * math.pi / L * x * n)
# stft = torch.stft(original, L, hop_length=L, win_length=L,
# window=torch.ones(L), center=False, normalized=False)
stft = torch.zeros((L // 2 + 1, 2, 2), device=device, dtype=dtype)
stft_largest_val = (amplitude * L) / 2.0
if n < stft.size(0):
stft[n, :, 1] = -stft_largest_val
if 0 <= L - n < stft.size(0):
# symmetric about L // 2
stft[L - n, :, 1] = stft_largest_val
inverse = torch.istft(
stft, L, hop_length=L, win_length=L,
window=torch.ones(L, device=device, dtype=dtype), center=False, normalized=False)
# There is a larger error due to the scaling of amplitude
original = original[..., :inverse.size(-1)]
self.assertEqual(inverse, original, atol=1e-3, rtol=0)
_test(amplitude=123, L=5, n=1)
_test(amplitude=150, L=5, n=2)
_test(amplitude=111, L=5, n=3)
_test(amplitude=160, L=7, n=4)
_test(amplitude=145, L=8, n=5)
_test(amplitude=80, L=9, n=6)
_test(amplitude=99, L=10, n=7)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
@dtypes(torch.double)
def test_istft_linearity(self, device, dtype):
num_trials = 100
def _test(data_size, kwargs):
for i in range(num_trials):
tensor1 = torch.randn(data_size, device=device, dtype=dtype)
tensor2 = torch.randn(data_size, device=device, dtype=dtype)
a, b = torch.rand(2, dtype=dtype, device=device)
# Also compare method vs. functional call signature
istft1 = tensor1.istft(**kwargs)
istft2 = tensor2.istft(**kwargs)
istft = a * istft1 + b * istft2
estimate = torch.istft(a * tensor1 + b * tensor2, **kwargs)
self.assertEqual(istft, estimate, atol=1e-5, rtol=0)
patterns = [
# hann_window, centered, normalized, onesided
(
(2, 7, 7, 2),
{
'n_fft': 12,
'window': torch.hann_window(12, device=device, dtype=dtype),
'center': True,
'normalized': True,
'onesided': True,
},
),
# hann_window, centered, not normalized, not onesided
(
(2, 12, 7, 2),
{
'n_fft': 12,
'window': torch.hann_window(12, device=device, dtype=dtype),
'center': True,
'normalized': False,
'onesided': False,
},
),
# hamming_window, centered, normalized, not onesided
(
(2, 12, 7, 2),
{
'n_fft': 12,
'window': torch.hamming_window(12, device=device, dtype=dtype),
'center': True,
'normalized': True,
'onesided': False,
},
),
# hamming_window, not centered, not normalized, onesided
(
(2, 7, 3, 2),
{
'n_fft': 12,
'window': torch.hamming_window(12, device=device, dtype=dtype),
'center': False,
'normalized': False,
'onesided': True,
},
)
]
for data_size, kwargs in patterns:
_test(data_size, kwargs)
@onlyNativeDeviceTypes
@skipCPUIfNoFFT
def test_batch_istft(self, device):
original = torch.tensor([
[[4., 0.], [4., 0.], [4., 0.], [4., 0.], [4., 0.]],
[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]],
[[0., 0.], [0., 0.], [0., 0.], [0., 0.], [0., 0.]]
], device=device)
single = original.repeat(1, 1, 1, 1)
multi = original.repeat(4, 1, 1, 1)
i_original = torch.istft(original, n_fft=4, length=4)
i_single = torch.istft(single, n_fft=4, length=4)
i_multi = torch.istft(multi, n_fft=4, length=4)
self.assertEqual(i_original.repeat(1, 1), i_single, atol=1e-6, rtol=0, exact_dtype=True)
self.assertEqual(i_original.repeat(4, 1), i_multi, atol=1e-6, rtol=0, exact_dtype=True)
@onlyCUDA
@skipIf(not TEST_MKL, "Test requires MKL")
def test_stft_window_device(self, device):
# Test the (i)stft window must be on the same device as the input
x = torch.randn(1000, dtype=torch.complex64)
window = torch.randn(100, dtype=torch.complex64)
with self.assertRaisesRegex(RuntimeError, "stft input and window must be on the same device"):
torch.stft(x, n_fft=100, window=window.to(device))
with self.assertRaisesRegex(RuntimeError, "stft input and window must be on the same device"):
torch.stft(x.to(device), n_fft=100, window=window)
X = torch.stft(x, n_fft=100, window=window)
with self.assertRaisesRegex(RuntimeError, "istft input and window must be on the same device"):
torch.istft(X, n_fft=100, window=window.to(device))
with self.assertRaisesRegex(RuntimeError, "istft input and window must be on the same device"):
torch.istft(x.to(device), n_fft=100, window=window)
class FFTDocTestFinder:
'''The default doctest finder doesn't like that function.__module__ doesn't
match torch.fft. It assumes the functions are leaked imports.
'''
def __init__(self):
self.parser = doctest.DocTestParser()
def find(self, obj, name=None, module=None, globs=None, extraglobs=None):
doctests = []
modname = name if name is not None else obj.__name__
globs = {} if globs is None else globs
for fname in obj.__all__:
func = getattr(obj, fname)
if inspect.isroutine(func):
qualname = modname + '.' + fname
docstring = inspect.getdoc(func)
if docstring is None:
continue
examples = self.parser.get_doctest(
docstring, globs=globs, name=fname, filename=None, lineno=None)
doctests.append(examples)
return doctests
class TestFFTDocExamples(TestCase):
pass
def generate_doc_test(doc_test):
def test(self, device):
self.assertEqual(device, 'cpu')
runner = doctest.DocTestRunner()
runner.run(doc_test)
if runner.failures != 0:
runner.summarize()
self.fail('Doctest failed')
setattr(TestFFTDocExamples, 'test_' + doc_test.name, skipCPUIfNoFFT(test))
for doc_test in FFTDocTestFinder().find(torch.fft, globs=dict(torch=torch)):
generate_doc_test(doc_test)
instantiate_device_type_tests(TestFFT, globals())
instantiate_device_type_tests(TestFFTDocExamples, globals(), only_for='cpu')
if __name__ == '__main__':
run_tests()
|